The Return of the Rings!

Now that Cassini has gone off on a new trajectory taking it above and below the equatorial plane of Saturn, we’re back to getting some fantastic views of the rings — the likes of which haven’t been seen in over two and a half years!

The image above shows portions of the thin, ropy F ring and the outer A ring, which is split by the 202-mile (325-km) -wide Encke gap. The shepherd moon Pan can be seen cruising along in the gap along with several thin ringlets. Near the A ring’s outer edge is a narrower space called the Keeler gap — this is the home of the smaller shepherd moon Daphnis, which isn’t visible here (but is one of my personal favorites!)

The scalloped pattern on the inner edge of the Encke gap downstream from Pan and a spiral pattern moving inwards from that edge are created by the 12.5-mile-wide (20-km-wide) moon’s gravitational influence.

Other features that have returned for an encore performance are the so-called propellers, spiral sprays of icy ring material created by tiny micro-moons within the rings. Individually too small to discern (less than half a mile in diameter) these propeller moons kick up large clumps of reflective ring particles with their gravity as they travel through the rings, revealing their positions.

The three images above show a propeller within the A ring. Nicknamed “Sikorsky” after Russian-American aviator Igor Sikorsky, the entire structure is about 30 miles (50 km) across and is one of the more well-studied propellers.

Scientists are eager to understand the interactions of propellers in Saturn’s rings as they may hold a key to the evolution of similar systems, such as solar systems forming from disks of matter.

See a video of a propeller orbiting within the rings here, and here’s an image of one that’s large enough to cast a shadow!

“One of the main contributing factors to the enormous success we on the Cassini mission have enjoyed in the exploration of Saturn is the capability to view the planet and the bodies around it from a variety of directions,” Cassini Imaging Team Leader Carolyn Porco wrote earlier today. “Setting the spacecraft high into orbit above Saturn’s equator provides us direct views of the equatorial and middle latitudes on the planet and its moons, while guiding it to high inclination above the equator plane affords the opportunity to view the polar regions of these bodies and be treated to vertigo-inducing shots of the planet’s glorious rings.”

As always, keep up with the latest Cassini news on the mission site here, and read more about these images on the CICLOPS imaging team page here.

Image credits: NASA / JPL / Space Science Institute.

 

Jason Major

A graphic designer in Rhode Island, Jason writes about space exploration on his blog Lights In The Dark, Discovery News, and, of course, here on Universe Today. Ad astra!

Recent Posts

NASA is Developing Solutions for Lunar Housekeeping’s Biggest Problem: Dust!

Through the Artemis Program, NASA will send the first astronauts to the Moon since the…

15 hours ago

Where’s the Most Promising Place to Find Martian Life?

New research suggests that our best hopes for finding existing life on Mars isn’t on…

16 hours ago

Can Entangled Particles Communicate Faster than Light?

Entanglement is perhaps one of the most confusing aspects of quantum mechanics. On its surface,…

2 days ago

IceCube Just Spent 10 Years Searching for Dark Matter

Neutrinos are tricky little blighters that are hard to observe. The IceCube Neutrino Observatory in…

2 days ago

Star Devouring Black Hole Spotted by Astronomers

A team of astronomers have detected a surprisingly fast and bright burst of energy from…

2 days ago

What Makes Brown Dwarfs So Weird?

Meet the brown dwarf: bigger than a planet, and smaller than a star. A category…

3 days ago