Categories: HubbleSpitzer

Spitzer Provides Most Precise Measurement Yet of the Universe’s Expansion

This graph illustrates the Cepheid period-luminosity relationship, which scientists use to calculate the size, age and expansion rate of the Universe. Credit: NASA/JPL-Caltech/Carnegie

How fast is our Universe expanding? Over the decades, there have been different estimates used and heated debates over those approximations, but now data from the Spitzer Space Telescope have provided the most precise measurement yet of the Hubble constant, or the rate at which our universe is stretching apart. The result? The Universe is getting bigger a little bit faster than previously thought.

The newly refined value for the Hubble constant is 74.3 plus or minus 2.1 kilometers per second per megaparsec.

The most previous estimation came from a study from the Hubble Space Telescope, at 74.2 plus or minus 3.6 kilometers per second per megaparsec. A megaparsec is roughly 3 million light-years.

To make the new measurements, Spitzer scientists looked at pulsating stars called cephied variable stars, taking advantage of being able to observe them in long-wavelength infrared light. In addition, the findings were combined with previously published data from NASA’s Wilkinson Microwave Anisotropy Probe (WMAP) on dark energy. The new determination brings the uncertainty down to 3 percent, a giant leap in accuracy for cosmological measurements, scientists say.

WMAP obtained an independent measurement of dark energy, which is thought to be winning a battle against gravity, pulling the fabric of the universe apart. Research based on this acceleration garnered researchers the 2011 Nobel Prize in physics.

The Hubble constant is named after the astronomer Edwin P. Hubble, who astonished the world in the 1920s by confirming our universe has been expanding since it exploded into being 13.7 billion years ago. In the late 1990s, astronomers discovered the expansion is accelerating, or speeding up over time. Determining the expansion rate is critical for understanding the age and size of the universe.

“This is a huge puzzle,” said the lead author of the new study, Wendy Freedman of the Observatories of the Carnegie Institution for Science in Pasadena. “It’s exciting that we were able to use Spitzer to tackle fundamental problems in cosmology: the precise rate at which the universe is expanding at the current time, as well as measuring the amount of dark energy in the universe from another angle.” Freedman led the groundbreaking Hubble Space Telescope study that earlier had measured the Hubble constant.

Glenn Wahlgren, Spitzer program scientist at NASA Headquarters in Washington, said the better views of cepheids enabled Spitzer to improve on past measurements of the Hubble constant.

“These pulsating stars are vital rungs in what astronomers call the cosmic distance ladder: a set of objects with known distances that, when combined with the speeds at which the objects are moving away from us, reveal the expansion rate of the universe,” said Wahlgren.

Cepheids are crucial to the calculations because their distances from Earth can be measured readily. In 1908, Henrietta Leavitt discovered these stars pulse at a rate directly related to their intrinsic brightness.

To visualize why this is important, imagine someone walking away from you while carrying a candle. The farther the candle traveled, the more it would dim. Its apparent brightness would reveal the distance. The same principle applies to cepheids, standard candles in our cosmos. By measuring how bright they appear on the sky, and comparing this to their known brightness as if they were close up, astronomers can calculate their distance from Earth.

Spitzer observed 10 cepheids in our own Milky Way galaxy and 80 in a nearby neighboring galaxy called the Large Magellanic Cloud. Without the cosmic dust blocking their view, the Spitzer research team was able to obtain more precise measurements of the stars’ apparent brightness, and thus their distances. These data opened the way for a new and improved estimate of our universe’s expansion rate.

“Just over a decade ago, using the words ‘precision’ and ‘cosmology’ in the same sentence was not possible, and the size and age of the universe was not known to better than a factor of two,” said Freedman. “Now we are talking about accuracies of a few percent. It is quite extraordinary.”

“Spitzer is yet again doing science beyond what it was designed to do,” said project scientist Michael Werner at NASA’s Jet Propulsion Laboratory. Werner has worked on the mission since its early concept phase more than 30 years ago. “First, Spitzer surprised us with its pioneering ability to study exoplanet atmospheres,” said Werner, “and now, in the mission’s later years, it has become a valuable cosmology tool.”

The study appears in the Astrophysical Journal.

Paper on arXiv: A Mid-Infrared Calibration of the Hubble Constant

Source: JPL

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

New View of Venus Reveals Previously Hidden Impact Craters

Think of the Moon and most people will imagine a barren world pockmarked with craters.…

2 hours ago

Multimode Propulsion Could Revolutionize How We Launch Things to Space

In a few years, as part of the Artemis Program, NASA will send the "first…

13 hours ago

China Trains Next Batch of Taikonauts

China has a fabulously rich history when it comes to space travel and was among…

13 hours ago

NASA Focusses in on Artemis III Landing Sites.

It was 1969 that humans first set foot on the Moon. Back then, the Apollo…

14 hours ago

The Connection Between Black Holes and Dark Energy is Getting Stronger

The discovery of the accelerated expansion of the Universe has often been attributed to the…

16 hours ago

Will Advanced Civilizations Build Habitable Planets or Dyson Spheres

Freeman Dyson proposed that advanced civilizations might eventually harvest all the energy coming from their…

19 hours ago