Categories: Mars

Field of Fault Lines on Mars

This image, taken by the High Resolution Stereo Camera (HRSC) on board ESA?s Mars Express spacecraft, shows the Claritas Fossae tectonic grabens and part of the Solis Planum plains.

The image was taken during orbit 508 in June 2004 with a ground resolution of approximately 40 metres per pixel. The displayed region is the eastern part of Claritas Fossae and the western part of Solis Planum at longitude 260? East and latitude of about 28? South.

The diffuse blue-white streaks in the northern parts of the scene are clouds or aerosols.

The Claritas Fossae (?fossa? is Latin for trough) region is characterised by systems of ?grabens? running mainly north-west to south-east. These can be traced several hundred kilometres up to the northern Tharsis shield volcanoes.

A graben forms when a block of the planet?s crust drops down between two faults, due to extension, or pulling, of the crust.

Grabens are often seen together with features called ?horsts?, which are upthrown blocks lying between two steep-angled fault blocks.

A ?horst and graben? system can occur where there are several parallel faults.

Geographically, the grabens separate the eastern volcanic plains of the Solis Planum region from the western Daedalia Planum lava plains.

The lava blankets of the Solis Planum area cover the eastern parts of the older Claritas Fossae ridge and surround some of the higher ground.

The geological history of this region can be reconstructed by analysing the layers of tectonic grabens, impact craters, volcanic features and even small valley networks.

The complexity of this superposition record suggests that some of the events took place at the same time.

The detailed view of the large southern impact crater shows patches of dark material which are located near the central and marginal parts of the impact crater floor. This material may be of volcanic origin.

The HRSC experiment on ESA?s Mars Express mission is led by the Principal Investigator Prof. Gerhard Neukum of the Freie Universit?t Berlin, who also designed the camera. The experiment?s science team consists of 45 Co-Investigators from 10 nations.

The camera was developed at the German Aerospace Centre (DLR) and built in co-operation with industrial partners EADS Astrium, Lewicke Microelectronic GmbH and Jena-Optronic GmbH). The HRSC is operated by DLR Institute of Planetary Research through ESA?s European Space Operations Centre, Darmstadt.

The systematic processing of image data is carried out at DLR. The images shown here were processed by the FU Berlin group in co-operation with DLR, Berlin.

Original Source: ESA News Release

Fraser Cain

Fraser Cain is the publisher of Universe Today. He's also the co-host of Astronomy Cast with Dr. Pamela Gay. Here's a link to my Mastodon account.

Recent Posts

The First Close-Up Picture of Star Outside the Milky Way

Like a performer preparing for their big finale, a distant star is shedding its outer…

12 hours ago

Here’s What We Know About Earth’s Temporary Mini-Moon

For a little over a month now, the Earth has been joined by a new…

13 hours ago

New Study Suggests Black Holes Get their “Hair” from their Mothers

Despite decades of study, black holes are still one of the most puzzling objects in…

14 hours ago

Gaze at New Pictures of the Sun from Solar Orbiter

74 million kilometres is a huge distance from which to observe something. But 74 million…

14 hours ago

Are Fast Radio Bursts Caused by Interstellar Objects Crashing Into Neutron Stars?

Astronomers have only been aware of fast radio bursts for about two decades. These are…

19 hours ago

Here’s How to Weigh Gigantic Filaments of Dark Matter

How do you weigh one of the largest objects in the entire universe? Very carefully,…

21 hours ago