Life Can Maintain a Habitable Environment in Hostile Conditions

Astronomers have detected thousands of planets, including dozens that are potentially habitable. To winnow them down, they need to understand their atmospheres and other factors. (NASA Illustration)
Astronomers have detected thousands of planets, including dozens that are potentially habitable. To winnow them down, they need to understand their atmospheres and other factors. (NASA Illustration)

Everybody knows that for life to thrive on any world, you need water, warmth, and something to eat. It’s like a habitability mantra. But, what other factors affect habitability? What if you relaxed the conditions conducive to life? Would it still exist? If so, what would it be?

Continue reading “Life Can Maintain a Habitable Environment in Hostile Conditions”

How Bad Can Solar Storms Get? Ask the Trees

The study of tree rings may help prepare for space weather events that could threaten satellites and astronauts. Amy Hessl, professor of geography at WVU, is leading a project funded by the National Science Foundation.

One of the many threats facing space travellers and indeed our own planet is that of Solar Storms. At their most minor they can grant polar latitudes with a gentle auroral display but at their most extreme they can pose a threat to technology in space, communications and even our atmosphere. Now a team of researchers have found that extreme space weather can leave its mark in tree rings, leaving evidence that can help guard against future severe events. 

Continue reading “How Bad Can Solar Storms Get? Ask the Trees”

The Webb Discovers a Rich Population of Brown Dwarfs Outside the Milky Way

Near the outskirts of the Small Magellanic Cloud, a satellite galaxy roughly 200 000 light-years from Earth, lies the young star cluster NGC 602, which is featured in this new image from the NASA/ESA/CSA James Webb Space Telescope. This image includes data from Webb’s NIRCam (Near-InfraRed Camera) and MIRI (Mid-InfraRed Instrument). Image Credit: ESA/Webb, NASA & CSA, P. Zeidler, E. Sabbi, A. Nota, M. Zamani (ESA/Webb)

This stunning image of a star cluster in the Small Magellanic Cloud (SMC) is more than just a pretty picture. It’s part of a scientific effort to understand star formation in an environment different from ours. The young star cluster is called NGC 602, and it’s very young, only about 2 or 3 million years old.

Continue reading “The Webb Discovers a Rich Population of Brown Dwarfs Outside the Milky Way”

White Dwarf Stars May be Shrouded in Extremely Light Particles Called Axions

Image from a computer simulation of the distribution of matter in the universe. Orange regions host galaxies; blue structures are gas and dark matter. Credit: TNG Collaboration

Since the 1960s, astronomers have theorized that the Universe may be filled with a mysterious mass that only interacts with “normal matter” via gravity. This mass, nicknamed Dark Matter (DM), is essential to resolving issues between astronomical observations and General Relativity. In recent years, scientists have considered that DM may be composed of axions, a class of hypothetical elementary particles with low mass within a specific range. First proposed in the 1970s to resolve problems in the Standard Model of particle physics, these particles have emerged as a leading candidate for DM.

In addition to growing evidence that this could be the case, researchers at CERN are developing a new telescope that could help the scientific community look for axions – the CERN Axion Solar Telescope (CAST). According to new research conducted by an international team of physicists, these hypothetical particles may occur in large clouds around neutron stars. These axions could be the long-awaited explanation for Dark Matter that cosmologists have spent decades searching for. What’s more, their research indicates that these axions may not be very difficult to observe from Earth.

Continue reading “White Dwarf Stars May be Shrouded in Extremely Light Particles Called Axions”

NASA is Building Telescopes for the LISA Mission

NASA is supplying all six telescopes for their joint LISA mission with the ESA. In this image, a technician is inspecting a prototype in a clean room at the Goddard Space Flight Center. Image Credit: NASA/Dennis Henry

Some of the most cataclysmic and mysterious events in the cosmos only reveal themselves by their gravitational waves. We’ve detected some of them with our ground-based detectors, but the size of these detectors is limited. The next step forward in gravitational wave (GW) astronomy is a space-based detector: LISA, the Laser Interferometer Space Antenna.

Continue reading “NASA is Building Telescopes for the LISA Mission”

There's a Particle Accelerator at the Center of the Milky Way

Gamma ray emissions in the center of the Milky Way. Credit: Albert, et al

Nestled on the slopes of Cerro La Negra at an elevation of 13,000 feet is an unusual-looking observatory. Known as the High-Altitude Water Cherenkov (HAWC) observatory, it looks like a tightly packed collection of grain silos, which is essentially what it is. But rather than holding grain, the silos are each filled with 188,000 liters of water and four photomultiplier tubes. While it’s an unusual setup, it’s what you need to observe high-energy gamma rays from deep space.

Continue reading “There's a Particle Accelerator at the Center of the Milky Way”

New Research Reveals Provides Insight into Mysterious Features on Airless Worlds

Artist's rendition of the Dawn mission on approach to the protoplanet Ceres. Credit: NASA/JPL

Between 2011 and 2018, NASA’s Dawn mission conducted extended observations of Ceres and Vesta, the largest bodies in the Main Asteroid Belt. The mission’s purpose was to address questions about the formation of the Solar System since asteroids are leftover material from the process, which began roughly 4.5 billion years ago. Ceres and Vesta were chosen because Ceres is largely composed of ice, while Vesta is largely composed of rock. During the years it orbited these bodies, Dawn revealed several interesting features on their surfaces.

This included mysterious flow features similar to those observed on other airless bodies like Jupiter’s moon Europa. In a recent study, Michael J. Poston, a researcher from the Southwest Research Institute (SWRI), recently collaborated with a team at NASA’s Jet Propulsion Laboratory to attempt to explain the presence of these features. In the paper detailing their findings, they outlined how post-impact conditions could temporarily produce liquid brines that flow along the surface, creating curved gullies and depositing debris fans along the impact craters’ walls.

Continue reading “New Research Reveals Provides Insight into Mysterious Features on Airless Worlds”

Testing Heat Shields for Different Atmospheres

Testing is one of the unsung steps in the engineering process. Talk to any product development engineer, and they will tell you how big of a milestone passing “V&V” – or verification and validation – testing is. Testing is even more critical when you work on equipment meant for the harsh space environment. It is also more challenging to mimic those harsh environments on Earth. Luckily for some of NASA’s more critical upcoming missions, another government agency has a unique test lab to help V&V with some of its most critical components – their heat shields.

Continue reading “Testing Heat Shields for Different Atmospheres”

This Early Impact Devastated Life then Gave it a Boost

This graphic depicts what happened when the S2 meteorite struck Earth about 3.26 billion years ago. Initially, it was devastating but eventually it lead to mass blooms. Image Credit: Drabon et al. 2024.

Most of us know about the impact that wiped out the dinosaurs about 66 million years ago. It’s a scientific fact that’s entered mainstream knowledge, maybe because so many of us shared a fascination with dinosaurs as children. However, it’s not the only catastrophic impact that shaped life on Earth.

There was an even more ancient one about 3.26 billion years ago, and its repercussions shaped early life in a unique way.

Continue reading “This Early Impact Devastated Life then Gave it a Boost”

China’s ‘Thousand Sails’ Joins Starlink as the Latest Mega-Satellite Constellation in Orbit

Sails
Sails

With ‘Thousand Sails,’ China joins the race to fill up Low Earth Orbit with mega-satellite constellations.

It’s getting crowded up there in Low Earth orbit (LEO). By now, flocks of Starlinks have become a familiar sight, and the bane of astrophotographers as the ‘vermin of the skies.’ Now, several new competitors have joined the fray, with more waiting in the wings.

Continue reading “China’s ‘Thousand Sails’ Joins Starlink as the Latest Mega-Satellite Constellation in Orbit”