Galaxies Filled With Old Stars Seen Shortly After the Big Bang

Astronomers used JWST to investigate three mysterious objects in the very early Universe. These little red dots contain extremely ancient stars and supermassive black holes. Courtesy JWST/Penn State University.
Astronomers used JWST to investigate three mysterious objects in the very early Universe. These little red dots contain extremely ancient stars and supermassive black holes. Courtesy JWST/Penn State University.

How can young galaxies in the early Universe have ancient stars? That’s the question a team of astronomers set out to answer using JWST as a probe. They first spotted the massive objects in 2022 and are still working to explain what these things are.

Continue reading “Galaxies Filled With Old Stars Seen Shortly After the Big Bang”

The Space Station Now Has Blisteringly Fast Internet

A collage of the pet photos sent over laser links from Earth to LCRD (Laser Communications Relay Demonstration) to ILLUMA-T (Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal) on the space station. Credit: NASA/Dave Ryan
A collage of the pet photos sent over laser links from Earth to LCRD (Laser Communications Relay Demonstration) to ILLUMA-T (Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal) on the space station. Credit: NASA/Dave Ryan

NASA’s Space Communications and Navigation programme (SCaN) has demonstrated the first two way end-to-end laser relay system, deployed through an innovative network. To test SCaN, they sent data to the International Space Station at the impressive speed of 1.2 gigabits per second. Using bandwidth that would normally be reserved for more important communications, the chosen message for the test was a set of adorable images and videos featuring the pets of NASA astronauts and staffers.

Continue reading “The Space Station Now Has Blisteringly Fast Internet”

Merging Galaxies Make for Explosive Star Formation

A festive array of bright pinks and blues makes for a remarkable sight in this image captured with the Gemini North telescope, one half of the International Gemini Observatory. Resembling a cloud of cosmic confetti, this image is being released in celebration of Gemini North’s 25th anniversary. NGC 4449 is a prime example of starburst activity caused by the interacting and mingling of galaxies as it slowly absorbs its smaller galactic neighbors.

The Gemini Observatory has unveiled a striking new image that shows star formation within the irregular galaxy NGC 4449. This galaxy is categorised as a “Magellanic-type” galaxy due to its similarities  with the Magellanic Clouds, although it is smaller in size. Surrounding NGC 4449 is a halo of smaller dwarf galaxies, two of which are currently merging with it. This merger is causing clouds of gas to collide, fuelling the surge in star formation observed in NGC 4449.

Continue reading “Merging Galaxies Make for Explosive Star Formation”

Determining the Safest Martian Caves for Future Astronauts

Image of a lava tube skylight entrance on the Martian volcano Pavonis Mons obtained by NASA’s HiRISE camera onboard the Mars reconnaissance Orbiter. (Credit: NASA/JPL/University of Arizona)

When astronauts land on Mars someday, they might have to live in lava caves or lava tubes to survive the harsh radiation that rains down on the Martian surface every second. But which caves could offer them the best chance of survival? This is what a recent study presented at the 55th Lunar and Planetary Science Conference hopes to address as Dr. Anatoliy P. Vidmachenko from the National University of Life and Environmental Sciences of Ukraine investigated where, how, and why lava tubes and lava caves could aid future Mars astronauts regarding their survival. This study holds the potential to help scientists and engineers help mitigate risks for future Mars astronauts and what steps that need to be taken to make that a reality.

Continue reading “Determining the Safest Martian Caves for Future Astronauts”

NASA Releases a New 3D Animation of the Lunar Gateway

A detailed 3D animation of NASA's Gateway space station, showcasing its modules and structural components from various angles against the backdrop of deep space. NASA/Bradley Reynolds, Alberto Bertolin

To get to the Moon, NASA is building a Lunar Gateway in orbit to facilitate easier access to the Moon. With construction beginning in 2028 as part of Artemis IV there will be an ongoing programme of enhancements and additions. NASA has now released a fabulous new 3D animation of the Lunar Gateway to showcase what the final Gateway will look like. It includes modules from partner nations and an Orion lunar landers dock to carry astronauts. 

Continue reading “NASA Releases a New 3D Animation of the Lunar Gateway”

Supernovae: Why study them? What can they teach us about finding life beyond Earth?

Artist’s illustration of a bright and powerful supernova explosion. (Credit: NASA/CXC/M.Weiss)

Universe Today has recently investigated a myriad of scientific disciplines, including impact craters, planetary surfaces, exoplanets, astrobiology, solar physics, comets, planetary atmospheres, planetary geophysics, cosmochemistry, meteorites, radio astronomy, extremophiles, organic chemistry, black holes, cryovolcanism, planetary protection, and dark matter, and what they can teach us about how we got here, where we’re going, and whether we might find life elsewhere in the universe.

Here, Universe Today discusses the explosive field of supernovae—plural for supernova—with Dr. Joseph Lyman, who is an assistant professor in the Astronomy and Astrophysics Group at the University of Warwick, regarding the importance of studying supernovae, the benefits and challenges, the most intriguing aspects about supernovae he’s studied throughout his career, what supernovae can teach us about finding life beyond Earth, and any advice he can offer upcoming students who wish to pursue studying supernovae. Therefore, what is the importance of studying supernovae?

Continue reading “Supernovae: Why study them? What can they teach us about finding life beyond Earth?”

Earliest Supermassive Black Holes Were “Shockingly Normal”

Artist's impression of a quasar core. Quasars are powered by interactions between supermassive black holes and their accretion disks at the hearts of galaxies. JWST observed one in infrared light to reveal its feeding mechanism. Courtesy T. Mueller/MPIA.
Artist's impression of a quasar core. Quasars are powered by interactions between supermassive black holes and their accretion disks at the hearts of galaxies. JWST observed one in infrared light to reveal its feeding mechanism. Courtesy T. Mueller/MPIA.

The early Universe is a puzzling and—in many ways—still-unknown place. The first billion years of cosmic history saw the explosive creation of stars and the growth of the first galaxies. It’s also a time when the earliest known black holes appeared to grow very massive quickly. Astronomers want to know how they grew and why they feed more like “normal” recent supermassive black holes (SMBH).

Continue reading “Earliest Supermassive Black Holes Were “Shockingly Normal””

Asteroid Samples Were Once Part of a Wetter World

This is a microscope image of a dark Bennu particle, about a millimeter long, with a crust of bright phosphate. To the right is a smaller fragment that broke off. The presence of phosphate hints that Bennu may have once been part of an ocean world. Image Credit: Lauretta & Connolly et al. (2024) Meteoritics & Planetary Science

Nine months have passed since NASA’s OSIRIS-REx returned its samples of asteroid Bennu to Earth. The samples are some of the Solar System’s primordial, pristine materials. They’ve made their way into scientists’ hands, and their work is uncovering some surprises.

Some of the material in the samples indicates that Bennu had a watery past.

Continue reading “Asteroid Samples Were Once Part of a Wetter World”

These Three Neutron Stars Shouldn't Be So Cold

Artist's impression of a neutron star, with white/blue filaments are streaming out from its polar regions, representing magnetic field lines. Credit: ESA

Neutron stars are among the densest objects in the Universe, second only to black holes. Like black holes, neutron stars are what remains after a star reaches the end of its life cycle and undergoes gravitational collapse. This produces a massive explosion (a supernova), in which a star sheds its outer layers and leaves behind a super-compressed stellar remnant. In fact, scientists speculate that matter at the center of the star is compressed to the point that even atoms collapse and electrons merge with protons to create neutrons.

Traditionally, scientists have relied on the “Equation of State” – a theoretical model that describes the state of matter under a given set of physical conditions – to understand what physical processes can occur inside a neutron star. But when a team led by scientists from the Spanish National Research Council (CSIC) examined three exceptionally young neutron stars, they noticed they were 10-100 times colder than other neutron stars of the same age. For this, the researchers concluded that these three stars are inconsistent with most of the proposed equations of state.

Continue reading “These Three Neutron Stars Shouldn't Be So Cold”

Growing Habitats and Furniture in Space Out of Mushrooms

Artist concept depicting a new novel aerospace concept for NIAC Phase III 2024. Credit: Lynn Rothschild

Over the years we have often seen astronauts gently and deftly moving structures into place with their bare hands. Thinks are easy to move in space but getting them there is slightly more tricky and costly. A new piece of research has explored the possibility of growing structures in space based on food substrates. NASA has now awarded a grant to a proposal to investigate further growing structures using fungal mycelial composites, that’s mushrooms to you and I.

Continue reading “Growing Habitats and Furniture in Space Out of Mushrooms”