Stem Cells Grown in Space Could Revolutionize Medicine Here on Earth

The International Space Station (ISS) in orbit. Credit: NASA

Extended periods spent in microgravity can take a serious toll on the human body, leading to muscular atrophy, bone density loss, vision problems, and changes to the cardiovascular, endocrine, and nervous systems. At the same time, however, scientists have found that microgravity may play a key role in the future of medicine. This includes bioprinting in space, where cultured cells are printed out to form organic tissues and organs without the need for grafts. Printing in microgravity also ensures that fragile cell structures do not collapse due to pressures caused by Earth’s gravity.

However, space medicine may also have applications for stem cell research, which also benefit from a microgravity environment. Stem cells have countless applications in medicine because of their ability to quickly replicate and differentiate into many different types of cells. Based on experiments carried out aboard the International Space Station (ISS), researchers from the Mayo Clinic in Florida determined that these abilities are enhanced when grown in space. These findings could have significant benefits in the study of disease prevention and treatment on Earth, as well as medical treatments delivered in space.

Continue reading “Stem Cells Grown in Space Could Revolutionize Medicine Here on Earth”

Space Travel Weakens the Heart, New Study Finds

The International Space Station (ISS) in orbit. Credit: NASA

It’s no secret that spending extended periods in space takes a toll on the human body. For years, NASA and other space agencies have been researching the effects of microgravity on humans, animals, and plants aboard the International Space Station (ISS). So far, the research has shown that being in space for long periods leads to muscle atrophy, bone density loss, changes in vision, gene expression, and psychological issues. Knowing these effects and how to mitigate them is essential given our future space exploration goals, which include long-duration missions to the Moon, Mars, and beyond.

However, according to a recent experiment led by researchers at Johns Hopkins University and supported by NASA’s Johnson Space Center, it appears that heart tissues “really don’t fare well in space” either. The experiment consisted of 48 samples of human bioengineered heart tissue being sent to the ISS for 30 days. As they indicate in their paper, the experiment demonstrates that exposure to microgravity weakens heart tissue and weakens its ability to maintain rhythmic beats. These results indicate that additional measures must be taken to ensure humans can maintain their cardiovascular health in space.

Continue reading “Space Travel Weakens the Heart, New Study Finds”

There Was a Strange Sound Coming From Starliner. It Was Caused by a Speaker in the Capsule

The Starliner spacecraft is pictured docked with the Harmony module at the International Space Station high above the Mediterranean Sea. Credit: NASA

As part of the Commercial Crew Program (CCP), NASA contracted with commercial space partners to develop crew-capable spacecraft to restore domestic launch capability to U.S. soil. In addition to SpaceX’s Crew Dragon vehicle, which was validated in 2020 and has been transporting crews to the International Space Station (ISS) ever since. Concurrently, Boeing developed the CT-100 Starliner, which has suffered a seemingly endless string of technical issues and delays. After undergoing a long checklist of fixes, the Starliner completed its first orbital flight test (OFT-1) in May 2022.

The Starliner then made its first crewed flight to the ISS on June 5th, 2024, carrying two astronauts – Butch Wilmore and Sunita Williams. Unfortunately, malfunctions with the spacecraft’s RCS thrusters have forced it to remain in orbit until the necessary fixes were made. In addition to its thrusters, astronaut Butch Wilmore identified a strange pulsing sound coming from the Starliner crew capsule. That sound has since been identified as feedback from one of the capsule’s speakers, apparently due to an audio configuration between the ISS and Starliner.

Continue reading “There Was a Strange Sound Coming From Starliner. It Was Caused by a Speaker in the Capsule”

NASA Decides to Play it Safe. Wilmore and Williams are Coming Home on a Crew Dragon in February

NASA’s Boeing Crew Flight Test astronauts (from top) Butch Wilmore and Suni Williams pose on June 13, 2024 for a portrait inside the vestibule between the forward port on the International Space Station’s Harmony module and Boeing’s Starliner spacecraft. Credit: NASA

Astronauts Butch Wilmore and Suni Williams will remain on board the International Space Station until February, returning to Earth on a SpaceX Crew Dragon. NASA announced its decision over the weekend, citing concerns about the safety of the Boeing Starliner capsule due to helium leaks and thruster issues. The troublesome Starliner is slated to undock from the ISS without a crew in early September and attempt to return on autopilot, landing in the New Mexico desert.

NASA said this allows them and Boeing to continue gathering test data on Starliner during its uncrewed flight home, while also not accepting more risk than necessary for the crew.

Continue reading “NASA Decides to Play it Safe. Wilmore and Williams are Coming Home on a Crew Dragon in February”

SpaceX Reveals the Beefed-Up Dragon That Will De-Orbit the ISS

Artist's impression of the U.S. Deorbit Vehicle currently being developed by SpaceX. Credit: NASA

The International Space Station (ISS) has been continuously orbiting Earth for more than 25 years and has been visited by over 270 astronauts, cosmonauts, and commercial astronauts. In January 2031, a special spacecraft designed by SpaceX – aka. The U.S. Deorbit Vehicle – will lower the station’s orbit until it enters our atmosphere and lands in the South Pacific. On July 17th, NASA held a live press conference where it released details about the process, including a first glance at the modified SpaceX Dragon responsible for deorbiting the ISS.

Continue reading “SpaceX Reveals the Beefed-Up Dragon That Will De-Orbit the ISS”

Dune-Inspired Stillsuits Could Allow Astronauts to Recycle Their Urine Into Water

A Fremen from Dune wearing a stillsuit. Credit: DALL-E generated image

If history has taught us one thing, it is that science fiction often gives way to science fact. Consider the Star Trek communicator and the rise of flip phones in the late 1990s and early 2000s, or how 2001: A Space Odyssey predicted orbiting space stations and reusable space planes – like the International Space Station (ISS) and the Space Shuttle. And who can forget Jules Verne’s classic, From the Earth to the Moon, and how it anticipated that humans would one day walk on the Moon? Almost a century later, this dream would be realized with the Apollo Program.

The latest comes from Cornell University, where a team of researchers has developed a novel in-suit urine collection and filtration system inspired by the suits the Fremen wore in Frank Herbert’s Dune. Once integrated into NASA’s standard spacesuit—the Extravehicular Mobility Unit (EMU)—this system has the potential to provide astronauts with additional water while reducing the risk of hygiene-related medical events. In short, the stillsuit technology has the potential to enable longer-duration missions on the surface of the Moon, Mars, and orbit.

Continue reading “Dune-Inspired Stillsuits Could Allow Astronauts to Recycle Their Urine Into Water”

The Space Station Now Has Blisteringly Fast Internet

A collage of the pet photos sent over laser links from Earth to LCRD (Laser Communications Relay Demonstration) to ILLUMA-T (Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal) on the space station. Credit: NASA/Dave Ryan
A collage of the pet photos sent over laser links from Earth to LCRD (Laser Communications Relay Demonstration) to ILLUMA-T (Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal) on the space station. Credit: NASA/Dave Ryan

NASA’s Space Communications and Navigation programme (SCaN) has demonstrated the first two way end-to-end laser relay system, deployed through an innovative network. To test SCaN, they sent data to the International Space Station at the impressive speed of 1.2 gigabits per second. Using bandwidth that would normally be reserved for more important communications, the chosen message for the test was a set of adorable images and videos featuring the pets of NASA astronauts and staffers.

Continue reading “The Space Station Now Has Blisteringly Fast Internet”

Can We Survive in Space? It Might Depend on How Our Gut Microbiome Adapts

Researchers at Penn State University are developing a way to use microbes to turn human waste into food on long space voyages. Image: Yuri Gorby, Rensselaer Polytechnic Institute
Microbes play a critical role on Earth. Understanding how they react to space travel is crucial to ensuring astronaut health. Credit: Yuri Gorby, Rensselaer Polytechnic Institute

For over a century, people have dreamed of the day when humanity (as a species) would venture into space. In recent decades, that dream has moved much closer to realization, thanks to the rise of the commercial space industry (NewSpace), renewed interest in space exploration, and long-term plans to establish habitats in Low Earth Orbit (LEO), on the lunar surface, and Mars. Based on the progression, it is clear that going to space exploration will not be reserved for astronauts and government space agencies for much longer.

But before the “Great Migration” can begin, there are a lot of questions that need to be addressed. Namely, how will prolonged exposure to microgravity and space radiation affect human health? These include the well-studied aspects of muscle and bone density loss and how time in space can impact our organ function and cardiovascular and psychological health. In a recent study, an international team of scientists considered an often-overlooked aspect of human health: our microbiome. In short, how will time in space affect our gut bacteria, which is crucial to our well-being?

Continue reading “Can We Survive in Space? It Might Depend on How Our Gut Microbiome Adapts”

NASA 2024 NIAC Program Selects Deep-Space Hibernation Technology for Development

Graphic depiction of A revolutionary approach to interplanetary space travel: Studying Torpor in Animals for Space-health in Humans (STASH). Color images (top) and thermal images (bottom) show a model hibernation organism requiring low environmental temperatures for torpor study. Credit: Ryan Sprenger

In the next fifteen years, NASA, China, and SpaceX will make the next great leap in space exploration by sending the first crewed missions to Mars. This presents many challenges, not the least of which is distance. Even when they are closest to each other in their orbits (aka. when Mars is in Opposition), Mars can still be up to 55 million km (34 million mi) from Earth. Using conventional propulsion (chemical rockets), a one-way transit can last six to nine months, which works out to a total mission time (including surface operations) of about three years.

That’s a very long time for people to be in microgravity, not to mention exposed to solar and cosmic radiation. To address this, NASA is investigating advanced propulsion methods that will reduce transit times and hibernation technologies that will allow crews to sleep through most of their voyage. This year, the NASA Innovative Advanced Concepts (NIAC) program selected the Studying Torpor in Animals for Space-health in Humans (STASH) experiment, a new method for inducing torpor developed by Ryan Sprenger and colleagues at the California-based biotechnology firm Fauna Bio Inc.

Continue reading “NASA 2024 NIAC Program Selects Deep-Space Hibernation Technology for Development”

How Can Astronauts Maintain Their Bodies With Minimal Equipment?

NASA astronauts Bob Hines and Kjell Lindgren work out on the Advanced Resistive Exercise Device (ARED). Credits: NASA

Decades of research aboard the International Space Station (ISS) and other spacecraft in Low Earth Orbit (LEO) have shown that long-duration stays in microgravity will take a toll on human physiology. Among the most notable effects are muscle atrophy and bone density loss and effects on eyesight, blood flow, and cardiovascular health. However, as research like NASA’s Twin Study showed, the effects extend to organ function, psychological effects, and gene expression. Mitigating these effects is vital for future missions to the Moon, Mars, and other deep-space destinations.

To reduce the impact of microgravity, astronauts aboard the ISS rely on a strict regiment of resistance training, proper diet, and cardiovascular exercise to engage their muscles, bones, and other connective tissues that comprise their musculoskeletal systems. Unfortunately, the machines aboard the ISS are too large and heavy to bring aboard spacecraft for long-duration spaceflights, where space and mass requirements are limited. To address this, NASA is investigating whether exercise regimens that rely on minimal or no equipment could provide adequate physical activity.

Continue reading “How Can Astronauts Maintain Their Bodies With Minimal Equipment?”