In 2011, Stratolaunch Systems was founded with a simple goal: to reduce the costs of rocket launches by creating the world’s largest air-launch-to-orbit system. Similar to Virgin Galactic’s SpaceShipTwo, this concept involves a large air carrier – Scaled Composites Model 351 (aka. the “Roc”) – deploying rockets from high altitudes so they can deliver small payloads to Low-Earth Orbit (LEO).
Recently, the aircraft reached a major milestone when it conducted its second taxi test at the Mojave Air and Space Port. The test consisted of the aircraft rolling down the runway at a speed of 74 km/h (46 mph) in preparation for its maiden flight. The event was captured on video and posted to twitter by Stratolaunch Systems (and Microsoft) co-founder Paul Allen, who was on hand for the event.
The Roc is essentially two 747 hulls mated together, making it the largest aircraft in the world – spanning 117 meters (385 ft) from one wingtip to the other and weighing 226,796 kg (500,000 lbs). It is powered by six Pratt & Whitney turbofan engines, giving it a maximum lift capacity of up to 249,476 kg (550,000 pounds). This would allow it to air-launch rockets that could deploy satellites to Low-Earth Orbit (LEO).
Captured new video of @Stratolaunch plane as it reached a top taxi speed of 40 knots (46 mph) with all flight surfaces in place on Sunday. The team verified control responses, building on the first taxi tests conducted in December. pic.twitter.com/OcH1ZkxZRA
As with other alternatives to rocket launches, the concept of an air-launch-to-orbit system is a time-honored one. During the early days of the Space Race, NASA relied on heavy aircraft to bring experimental aircraft to high altitudes (like the Bell X-1) where they would then be deployed. Since that time, NASA has partnered with companies like Orbital ATK and the Virgin Group to develop such a system to launch rockets.
However, the process is still somewhat limited when it comes to what kinds of payloads can be deployed. For instance, Orbital ATK’s three-stage Pegasus rocket is capable of deploying only small satellites weighing up to 454 kg (1,000 pounds) to Low-Earth Orbit (LEO). Looking to accommodating heavier payloads, which could include space planes, StratoLaunch has created the heaviest commercial airlift craft in history.
Back on May 31st, 2017, the aircraft was presented to the world for the first time as it was rolled out of the company’s hangar facility at the Mojave Air and Space Port in California. This presentation also marked the beginning of several tests, which including fueling tests, engine runs, and a series of taxi tests. The engine testing took place in September, 19th, 2017, and involved the aircraft starting it’s six Pratt & Whitney turbofan engines.
The testing followed a build-up approach that consisted of three phases. First, there was the “dry motor” phase, where an auxiliary power unit charged the engines. This was followed by the “wet motor” phase, where fuel was introduced to the engines. In the final phase, the engines were started one at a time and were allowed to idle.
This test was followed in December 18th, 2017, with the aircraft conducting its first low-speed taxi test, where it traveled down the runway under its own power. The primary purpose of this was to test the aircraft’s ability to steer and stop, and saw the aircraft reach a maximum taxing speed of 45 km/h (28 mph). This latest test almost doubled that taxing speed and brought the aircraft one step closer to flight.
The aircraft’s maiden flight is currently scheduled to take place in 2019. If successful, the Roc could be conducted regular satellite runs within a few years time, helping to fuel the commercialization of LEO. Alongside companies like SpaceX, Blue Origin, and the Virgin Group, StratoLaunch will be yet another company that is making space more accessible.
NASA and SpaceX have jointly decided to move forward with the Dragon CRS-13 cargo blastoff apparently because the mission does not involve use of the problematical payload fairing that halted last weeks planned Falcon 9 launch with the rocket and the mysterious Zuma payload.
Zuma was ready and waiting at pad 39A for the GO to launch that never came.
Then after a series of daily delays SpaceX ultimately announced a ‘stand down’ for super secret Zuma at pad 39A on Friday, Nov. 17, for the foreseeable future.
Since SpaceX’s gumdrop shaped Dragon cargo freighter launches as a stand alone aerodynamically shielded spacecraft atop the Falcon 9, it does not require additional protection from atmospheric forces and friction housed inside a nose cone during ascent to orbit unlike satellites with many unprotected exposed surfaces, critical hardware and delicate instruments.
Thus Dragon is deemed good to go since there currently appear to be no other unresolved technical issues with the Falcon 9 rocket.
“NASA commercial cargo provider SpaceX is targeting its 13th commercial resupply services mission to the International Space Station for no earlier than 2:53 p.m. EST Monday, Dec. 4,” NASA announced on the agency blog and social media accounts.
But the targeted Dec 4 liftoff from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL, was cast in doubt after SpaceX disclosed the payload fairing issue related launch delay on Friday.
Since last week SpaceX engineers have been busy taking the time to carefully scrutinize all the pertinent fairing data before proceeding with the top secret Zuma launch.
“We have decided to stand down and take a closer look at data from recent fairing testing for another customer,” said SpaceX spokesman John Taylor last Friday.
All of SpaceX’s launches this year from Florida’s Spaceport have taken place from NASA’s historic Launch Complex-39A at the Kennedy Space Center.
Pad 39A became SpaceX’s only operational Florida Space Coast launch pad following a catastrophic launch pad accident last year on Sept. 1, 2016 that took place during a routine fueling test that suddenly ended in a devastating explosion and fire that completely consumed the Falcon 9 rocket and Amos-6 payload and heavily damaged the pad and support infrastructure.
Since the Amos-6 accident workers raced to finish refurbishments to NASA’s long dormant pad 39A to transform into operational status and successfully launched a dozen missions this year.
Simultaneously additional crews have been hard at work to repair damaged pad 40 so that flights can resume there as soon as possible for the bulk of NASA, commercial and military contracted missions.
The Dragon CRS-13 mission was recently announced as the maiden mission for the reopening of pad 40.
Altogether Dragon CRS-13 will count as the fourth SpaceX Dragon liftoff of 2017.
The 20-foot high, 12-foot-diameter Dragon CRS-13 vessel will carry about 3 tons of science and supplies to the orbiting outpost and stay about 4 weeks.
It will be a reused Dragon that previously flew on the CRS-6 mission.
“The Dragon [CRS-13] spacecraft will spend about a month attached to the space station,” NASA said.
The prior Dragon CRS-12 resupply ship launched from pad 39A on Aug. 14, 2017 from KSC pad 39A and carried more than 6,400 pounds ( 2,900 kg) of science experiments and research instruments, crew supplies, food water, clothing, hardware, gear and spare parts to the million pound orbiting laboratory complex.
Dragon CRS-9 was the last ISS resupply mission to launch from pad 40 on July 18, 2016.
The recently arrived Orbital ATK Cygnus cargo ship is expected to depart the station from the Earth facing Unity node on Dec. 3 to make way for Dragon’s berthing at the Harmony node.
Watch for Ken’s continuing onsite coverage of SpaceX CRS-13, Zuma and KoreaSat-5A & Orbital ATK OA-8 Cygnus and NASA and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
NASA WALLOPS FLIGHT FACILITY, VA – An Orbital ATK Antares rocket successfully blasted off this morning, Sunday, Nov. 12, from the eastern shore of Virginia on a NASA contracted mission bound for the International Space Station (ISS) carrying a Cygnus cargo ship loaded with nearly 4 tons of vital science and supplies.
The two stage Antares rocket launched flawlessly shortly sunrise Sunday at 7:19 a.m. EST, Nov. 12 on an upgraded version of the Antares rocket from Pad-0A at NASA’s Wallops Flight Facility in Virginia carrying the Cygnus resupply spacecraft named in honor of Gene Cernan, the last man to walk on the Moon.
The launch came a day late due to a last moment scrub on the originally planned Veteran’s Day liftoff, Saturday, Nov. 11, when a reckless pilot flew below radar into restricted airspace just 5 miles away from the launch pad – forcing a sudden and unexpected halt to the countdown under absolutely perfect weather conditions.
Finally the rocket roared off the pad Sunday under cloudy skies – to the delight of a spectators, with a brilliant flash of light. Slowly at first and then accelerating almost straight up before arcing over just slightly in a southeasterly direction and soon disappearing into the thick clouds. In fact it was so load that local residents told me their windows and houses shook and rattled.
Saturday’s sudden scrub disappointed tens of thousands of spectators who had gathered around the East coast launch region and beyond for a rare chance to see the launch of a powerful rocket on a critical cargo delivery mission for NASA conducted the benefit of the six person crew serving on the station to advance science for all of humanity.
The pilot may have intentionally flown the plane low enough to avoid detection so he could take photos for profit.
As a result of this extremely serious violation of flight rules which raises significant safety and base security issues the FAA and NASA are now undertaking an intense review of rules after the repeated serious incursions by planes and boats into exclusion zones during launches, and what penalties and fines should be applied.
The Cygnus spacecraft dubbed OA-8 is Orbital ATK’s eighth contracted cargo resupply mission with NASA to the International Space Station under the unmanned Commercial Resupply Services (CRS) program to stock the station with supplies on a continuing and reliable basis.
“Today’s successful launch of the OA-8 Cygnus on our Antares launch vehicle once again demonstrates the reliability of Orbital ATK’s hardware along with our commitment to deliver critical cargo to astronauts on the International Space Station,” said Frank Culbertson, President of Orbital ATK’s Space Systems Group.
“Soon, Cygnus will rendezvous with the space station to deliver valuable scientific experiments, hardware and crew supplies to the orbiting platform. On this mission, Cygnus will again display its flexibility as an in-orbit science platform by supporting experiments to be performed inside the cargo module while attached to the space station. We are proud to dedicate this mission to Apollo astronaut Gene Cernan and his family and look forward to celebrating the OA-8 contributions to science in his name.”
After a two day orbital chase the S.S. Gene Cernan will arrive in the vicinity of the space station early Tuesday, Nov. 14. Cygnus will be grappled by Expedition 53 astronaut Paolo Nespoli of ESA (European Space Agency) of Italy at approximately 4:50 a.m. EST on November 14 using the space station’s robotic arm. He will be assisted by NASA astronaut Randy Bresnik.
NASA TV will provide live coverage of the rendezvous and grappling.
Cygnus will remain at the space station until Dec. 4, when the spacecraft will depart the station and deploy several CubeSats before its fiery re-entry into Earth’s atmosphere as it disposes of several tons of trash.
The 14 story tall commercial Antares rocket launched for only the second time in the upgraded 230 configuration – powered by a pair of the new Russian-built RD-181 first stage engines.
The rocket performed flawlessly said Kurt Eberly, Orbital ATK deputy program manager for Antares, during the post launch briefing at NASA Wallops.
There was only a slight over performance of the Castor XL solid fueled second stage, which was all to the good – as occurred during the first launch of the upgraded Antares a year ago in October 2016 on the OA-5 resupply mission.
Indeed the overperformance of the second stage may allow Orbital ATK to load the Cygnus with an even heavier cargo load than previously foreseen.
On this flight,the Cygnus OA-8 spacecraft is jam packed with its heaviest cargo load to date!
Altogether over 7,400 pounds of science and research, crew supplies and vehicle hardware launched to the orbital laboratory and its crew of six for investigations that will occur during Expeditions 53 and 54.
The S.S. Gene Cernan manifest includes equipment and samples for dozens of scientific investigations including those that will study communication and navigation, microbiology, animal biology and plant biology. The ISS science program supports over 300 ongoing research investigations.
Cernan was commander of the Apollo 17, NASA’s last lunar landing mission and passed away in January at age 82. He set records for both lunar surface extravehicular activities and the longest time in lunar orbit on Apollo 10 and Apollo 17.
The 139-foot-tall (42.5-meter) Antares rocket had been rolled out to the launch pad around 1 a.m. EST Thursday morning, Nov. 9, and erected as planned into the vertical position, Kurt Eberly, Orbital ATK deputy program manager for Antares, told Universe Today.
The Cygnus OA-8 spacecraft is Orbital ATK’s eighth contracted cargo resupply mission with NASA to the International Space Station under the unmanned Commercial Resupply Services (CRS) program to stock the station with supplies on a continuing basis.
Under the Commercial Resupply Services-1 (CRS-1) contract with NASA, Orbital ATK will deliver approximately 66,000 pounds (30,000 kilograms) of cargo to the space station. OA-8 is the eighth of these missions.
Beginning in 2019, the company will carry out a minimum of six cargo missions under NASA’s CRS-2 contract using a more advanced version of Cygnus.
Watch for Ken’s continuing Antares/Cygnus mission and launch reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Aerospace giant Northrop Grumman will acquire Orbital ATK for approximately $9.2 billion, in a deal the companies announced Monday and they say will “expand capability” is largely “complementary” and involves “little overlap.”
Orbital ATK specializes in a wide variety of launch vehicles, satellites, missiles and munitions that Northrop believes will significantly enhance capabilities it lacks while offering Orbital significantly more technical and financial resources to grow sales and business opportunities.
Under the terms of the huge deal West Falls Church, Virginia based Northrop will dole out approximately $7.8 billion in cash to buy Dulles, Virginia based Orbital ATK and assume $1.4 billion in net debt. Orbital ATK shareholders will receive all-cash consideration of $134.50 per share, which is about a 20% premium above the stock’s price of $110 per share at the close of trading Friday, Sept. 15.
Rumors of the deal first appeared on Sunday.
The final purchase is expected to take place around mid-2018, subject to approval by government regulators and Orbital ATK shareholders.
The Boards of Directors of both companies have already given unanimous approval to the mega buyout.
“Our two companies represent a very complementary fit,” Wes Bush, chief executive officer and president of Northrop Grumman said in a conference call on Monday, Sept. 18.
“We have very little overlap, and we fully expect our combined portfolios of leading technologies, along with our aligned and innovation-focused cultures, to yield significant value creation through revenue, cost and operational synergies, accelerating our profitable growth trajectory.”
Northrop indicated that Orbital ATK will operate as a separate fourth unit – at least initially – and that Orbital programs will benefit from the increased financial resources available from Northrup.
“Upon completion of the acquisition, Northrop Grumman plans to establish Orbital ATK as a new, fourth business sector to ensure a strong focus on operating performance and a smooth transition into Northrop Grumman.”
For his part Orbital ATK CEO David Thompson was very pleased with the buyout and future opportunities.
“The agreement reflects the tremendous value that Orbital ATK has created for our customers, our shareholders and our employees,” David Thompson, Orbital ATK president and chief executive officer said at the conference call.
“The combination will allow our team as a new business sector within Northrop Grumman to maintain strong operational performance on existing customer programs and to pursue new opportunities that require greater technical and financial resources than we currently possess.”
“Our collective customers should benefit from the expanded capabilities for innovation, increased speed of delivery and improved affordability of production resulting from the combination.”
“The combination of our companies and human capital will also significantly benefit our customers,” Bush elaborated. “Together, we can offer our customers enhanced mission capabilities and more competitive offerings in areas such as space, missiles and strategic deterrents.
“Our shareholders can expect revenue synergies from these new business opportunities.”
Northrop Grumman sales for 2017 amount to about $25 billion vs. about $4.5 billion for Orbital ATK
Orbital ATK itself is the product of a very recent merger in 2015 of Orbital Sciences and ATK.
The company employs over 13,000 people including over 4,200 scientists and engineers. It holds a heft backlog of contracts worth more than $15 billion.
Northrop Grumman employs over 68,000 people and is the fifth largest defense contractor.
“The agreement will also provide expanded career options for our employees as part of a larger, more diverse aerospace and defense company,” said Thompson.
It will also benefit stockholders.
“The transaction represents a truly compelling financial proposition for our shareholders, valuing the enterprise at about $9.2 billion and providing our investors with more than 120% total return over the 3-year period from the completion of the Orbital ATK merger in early 2015 to the expected closing in the first half of 2018.”
Orbital ATK launchers run the gamut from small to medium to large.
The rockets include the massive solid rocket boosters for NASA’s Space Launch System (SLS) heavy lift rocket under development, the Antares liquid fueled booster used to launch Cygnus cargo freighters to the International Space Station for NASA, the Minotaur family of medium class solid rocket launchers, as well as sounding rockets for a variety of low weight science missions.
The most recent Orbital ATK launch took place on Aug. 26 when a Minotaur 4 rocket (a retired Peacekeeper ICBM) lifted off from Cape Canaveral with a USAF surveillance satellite.
Orbital ATK also has a thriving satellite manufacturing business building NASA science, commercial, government and military satellites.
The purchase is also estimated to result in $150 million in annual cost savings by 2020.
“We believe that this combination represents a compelling value creation opportunity for the customers, shareholders and employees of both our companies,” stated Bush. “Through our combination, all of our stakeholders will benefit from expanded capabilities, accelerated innovation and greater competitiveness in critical global security domains.”
Watch for Ken’s continuing onsite NASA mission and launch reports direct from the Kennedy Space Center, and Cape Canaveral Air Force Station, Florida, and NASA Wallops Flight Facility, Va.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
CAPE CANAVERAL AIR FORCE STATION, FL — A Cold War-era derived Peacekeeper ICBM missile formerly armed with multiple nuclear warheads and now modified as a payload orbiter successfully launched an urgently needed space situational awareness and space junk tracking satellite to equatorial orbit overnight this morning, Aug. 26, for the U.S. military from the Florida Space Coast.
Following a nearly 3 hour delay due to day long dismal weather causing locally heavy rain storms and lighting in central Florida, an Orbital ATK Minotaur IV rocket carrying the ORS-5 tracking satellite for the USAF finally lifted off in the wee hours Saturday morning, Aug. 26 at 2:04 a.m. EDT from Cape Canaveral Air Force Station in Florida.
The five stage solid fueled Minotaur IV roared rapidly off Space Launch Complex 46 (SLC-46) on a half million pounds of thrust and quickly disappeared into the clouds from the perspective of our nearby media launch viewing site on this inaugural launch of the rocket from the Cape.
Check back here to see the expanding gallery of launch photos and videos recorded by myself and space journalist colleagues!
The gap filling ORS-5 space surveillance satellite is a low cost mission technology demonstration mission that will track orbiting threats for the U.S. Air Force – and offered a thrilling nighttime launch experience to those who stayed awake and braved the post midnight time slot.
The converted ICBM motor ignition produced a flash of extremely bright light that briefly turned night into day. The maiden Minotaur from the Cape gushed intensely at liftoff and left a huge exhaust trailing in its wake as it accelerated to orbit.
The ORS-5 is a single satellite constellation with a primary mission to provide space situational awareness of the geosynchronous orbit belt for Combatant Commanders’ urgent needs, according to Brig. Gen. Wayne Monteith, 45th Space Wing commander and mission Launch Decision Authority at Cape Canaveral Air Force Station
The ORS-5 mission, which stands for Operationally Responsive Space-5, marks the first launch of a Minotaur IV rocket from Cape Canaveral Air Force Station and the first use of SLC-46 since 1999.
SLC-46 is operated under license by Space Florida, which invested more than $6 million dollars of state funds into pad upgrades and renovations.
The ORS-5 satellite built for the USAF Operationally Responsive Space Office will provide the US military with space-based surveillance and tracking of other satellites both friend and foe as well as space debris in geosynchronous orbit, 22,236 miles above the equator.
ORS-5 is like a telescope wrapped in a satellite that will aim up to seek threats from LEO to GEO using cameras and spectrometer sensors.
Also known as SensorSat, ORS-5 is designed to scan for other satellites and debris to aid the U.S. military’s tracking of objects in geosynchronous orbit for a minimum of three years and possibly longer if its on board sensor and spacecraft systems continue functioning in a useful and productive manner.
The Minotaur IV is a five stage rocket comprised of three stages of a decommissioned Cold War-era Peacekeeper Intercontinental Ballistic Missile (ICBM) that has been modified to add two additional Orbital ATK Orion 38 solid rocket motors for the upper stages.
Approximately 28 minutes after liftoff at 2:04 a.m. EDT, the Minotaur IV deployed the ORS-5 satellite into its targeted low inclination orbit 372 miles (599 kilometers) above the earth, Orbital ATK confirmed.
“From this orbit, ORS-5 will deliver timely, reliable and accurate space situational awareness information to the United States Strategic Command through the Joint Space Operations Center.”
“This was our first Minotaur launch from Cape Canaveral Air Force Station, demonstrating the rocket’s capability to launch from all four major U.S. spaceports,” said Rich Straka, Vice President and General Manager of Orbital ATK’s Launch Vehicles Division.
This Minotaur IV rocket is a retired Cold War-era ICBM missile once armed with nuclear warheads aimed at the former Soviet Union that can now launch satellites for purposes other than offensive nuclear war retaliation.
So on the event of a nuclear first or retaliatory strike, this is how the world could potentially end in utter destruction and nuclear catastrophy.
To get an up-close feeling of the sounds and fury watch this Minotaur IV/ORS-5 launch video compilation from colleague Jeff Seibert from our media launch viewing site from the roof of the 5th Space Launch Squadron building on Cape Canaveral Air Force Station, FL.
Video Caption: Orbital ATK launch of Minotaur ORS 5 at 2:04 a.m. EDT on Aug. 26, 2017. None of the videos are sped up, it really takes off that fast. The solid fuel Peacekeeper missile segments were repurposed to launch the ORS-5 satellite from Launch Complex 46 on CCAFS., Fl. Credit: Jeff Seibert
Overall the ORS-5 launch was the 26th blastoff in Orbital ATK’s Minotaur family of launch vehicles which enjoy a 100% success rate to date.
Today’s launch was the 6th for the Minotaur IV version.
“With a perfect track record of 26 successful launches, the Minotaur family has proven to be a valuable and reliable asset for the Department of Defense,” said Straka.
“Orbital ATK has launched nearly 100 space launch and strategic rockets for the U.S. Air Force,” said Scott Lehr, President of Orbital ATK’s Flight Systems Group. “We’re proud to be a partner they can count on.”
The past two weeks have been a super busy time at the Kennedy Space Center and Cape Canaveral. This morning’s post midnight launch was the third in just 11 days – and the second in a week!
A ULA Atlas V launched the NASA TDRS-M science relay satellite last Friday, Aug 18. And a SpaceX Falcon 9 launched the Dragon CRS-12 cargo resupply mission to the International Space Station (ISS) on Monday, Aug. 14.
“The ORS-5 Minotaur IV launch was the true epitome of partnership,” Gen. Monteith said.
“A collaborative effort between multiple mission partners, each group came together flawlessly to revolutionize how we work together on the Eastern Range. Teamwork is pivotal to making us the ‘World’s Premier Gateway to Space’ and I couldn’t be prouder to lead a Wing that not only has launched over a quarter of the world’s launches this year, but also three successful, launches from three different providers, in less than two weeks.”
ORS-5 was designed and built by Massachusetts Institute of Technology’s Lincoln Laboratory facility in Lexington, Massachusetts at a cost of $49 million.
In July 2015 the U.S. Air Force’s Operationally Responsive Space (ORS) Office awarded Orbital ATK a $23.6 million contract to launch the ORS-5 SensorSat on the Minotaur IV launch vehicle.
ORS-5/SensorSat was processed for launch and encapsulation inside the 2.3 meter diameter payload fairing at Astrotech Space Operations processing facility in Titusville, Florida.
Watch for Ken’s continuing onsite Minotaur IV ORS-5, TDRS-M, CRS-12, and NASA and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
CAPE CANAVERAL AIR FORCE STATION, FL — A gap filling space surveillance satellite that will track orbiting threats for the U.S. Air Force is set for an thrilling nighttime blastoff Friday, Aug. 25 on the maiden mission of the Minotaur IV rocket from Cape Canaveral that’s powered by a retired Cold War-era ICBM missile – once armed with nuclear warheads.
The ORS-5 satellite will provide the US military with space-based surveillance and tracking of other satellites both friend and foe as well as space debris in geosynchronous orbit, 22,236 miles above the equator.
The Orbital ATK Minotaur IV rocket carrying the ORS-5 tracking satellite for the USAF Operationally Responsive Space Office is targeting liftoff just before midnight Friday at 11:15 p.m. EDT from Space Launch Complex-46 (SLC-46) at Cape Canaveral Air Force Station.
“We are go for launch of Orbital ATK’s Minotaur IV rocket Friday night,” Orbital ATK confirmed.
The ORS-5 mission, which stands for Operationally Responsive Space-5, marks the first launch of a Minotaur IV rocket from Cape Canaveral and the first use of SLC-46 since 1999.
The Minotaur IV is a five stage rocket comprised of three stages of a decommissioned Cold War-era Peacekeeper Intercontinental Ballistic Missile (ICBM) that has been modified to add two additional Orbital ATK Orion 38 solid rocket motors for the upper stages.
Being a night launch and the first of its kind will surely make for a spectacular sky show.
Plus if you want to see how the world could potentially end in nuclear catastrophy, come watch the near midnight launch of the Orbital ATK Minotaur IV rocket that’s a retired Peacekeeper ICBM once armed with nuclear warheads aimed at the Russians but now carrying the USAF ORS-5 surveillance satellite instead.
Its well worth your time if you can watch the Minotaur launch with your own eyeballs. It can be easily viewed from numerous local area beaches, parks, restaurants and more.
Furthermore, its been in a super busy time at the Kennedy Space Center and Cape Canaveral. Because, if all goes well Friday’s midnight launch will be the third in just 11 days – and the second in a week!
A ULA Atlas V launched the NASA TDRS-M science relay satellite last Friday, Aug 18. And a SpaceX Falcon 9 launched the Dragon CRS-12 cargo resupply mission to the International Space Station (ISS) on Monday, Aug. 14.
You can watch the launch live via the Orbital ATK website here: www.orbitalatk.com
The live Orbital ATK broadcast will begin approximately 20 minutes before the launch window opens.
The webcast will be hosted by former CNN space reporter John Zarrella.
The launch window opens at 11:15 p.m. EDT August 25. It extends for four hours until 3:15 a.m. EDT August 26.
In the event of delay for any reason, the next launch opportunity is Saturday, Aug. 26. The launch window remains the same from 11:15 p.m. EDT August 26 to 3:15 a.m. EDT August 27.
The weather looks somewhat iffy at this time with only a 60% chance of favorable conditions at launch time according to U.S. Air Force meteorologists with the 45th Space Wing Weather Squadron at Patrick Air Force Base. The primary concerns on Aug. 25 are for thick clouds and cumulus clouds.
The weather odds deteriorate to only 40% favorable for the 24 hour scrub turnaround day on Aug. 26. The primary concerns on Aug. 26 are for thick clouds, cumulus clouds and lightning.
ORS-5 is like a telescope wrapped in a satellite that will aim up to seek threats from LEO to GEO.
ORS-5, also known as SensorSat, is designed to scan for other satellites and debris to aid the U.S. military’s tracking of objects in geosynchronous orbit for a minimum of three years and possibly longer if its on boards sensor and satellite systems continue functioning in a useful and productive manner.
“The delivery and upcoming launch of ORS-5 marks a significant milestone in fulfilling our commitment to the space situational awareness mission and U.S. Strategic Command,” said Lt. Gen. John F. Thompson, commander of the Space and Missile Systems Center and Air Force program executive officer for Space. “It’s an important asset for the warfighter and will be employed for at least three years.”
The ORS-5 satellite has a payload mass of 140 kg. It will be launched into a low inclination equatorial orbit of 600 km x 600 km (373 mi x 373 mi) at zero degrees.
“This will be the largest low-Earth orbit inclination plane change in history – 28.5 degrees latitude to equatorial orbit,” says Orbital ATK.
“The Minotaur IV 4th stage will put ORS-5 into initial orbit & the payload insertion stage will make a hard left to get to equatorial orbit.”
The Cape Canaveral AFB launch site for this Minotaur IV was chosen, rather than NASA’s Wallops Flight Facility in Virginia based on the final orbit required for ORS-5, Orbital ATK told Universe Today at a prelaunch media briefing.
The Minotaur IV is not powerful enough to deliver ORS-5 to the desired orbit from Wallops.
ORS-5 was designed and built by Massachusetts Institute of Technology’s Lincoln Laboratory facility in Lexington, Massachusetts at a cost of $49 million.
In July 2015 the U.S. Air Force’s Operationally Responsive Space (ORS) Office awarded Orbital ATK a $23.6 million contract to launch the ORS-5 SensorSat on the Minotaur IV launch vehicle.
ORS-5/SensorSat was processed for launch and encapsulation inside the 2.3 meter diameter payload fairing at Astrotech Space Operations processing facility in Titusville, Florida.
The Minotaur IV is quite similar to Orbital ATK’s Minotaur V launch vehicle which successfully propelled NASA’s LADEE lunar orbiter to the Moon for NASA during a night launch from the agency’s Wallops Flight Facility in Virginia in Sept. 2013.
The Minotaur V also utilizes the first three stages of the decommissioned Peacekeeper ICBM missile.
Overall the ORS-5 launch will be the 26th blastoff in Orbital ATK’s Minotaur family of launch vehicles which enjoy a 100% success rate to date.
The U.S. Air Force has a stockpile of about 180 surplus Peacekeeper motors, but not all are launch capable, the USAF told Universe Today at a prelaunch media briefing.
The USAF furnishes the Peacekeeper motors to Orbital ATK after first refurbishing the booster stages at Vandenberg AFB, Ca.
Orbital ATK then upgrades the stages by adding their own “flight-proven avionics, structures, software and other components that are common among Orbital ATK’s space launch vehicles” and integrating the firms Orion 38 solid rocket motors for the two upper stages.
“A combined government and contractor team of mission partners executed final ground activities including a Launch Base Compatibility Test to verify satellite integrity after shipment, an intersegment test to verify communication compatibility from the satellite to the on-orbit operations center and the final battery reconditioning for launch, prior to its integration with the Minotaur IV launch vehicle,” says the USAF.
Watch for Ken’s continuing onsite Minotaur IV ORS-5, TDRS-M, CRS-12, and NASA and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Learn more about the 2017 Total Solar Eclipse, upcoming Minotaur IV ORS-5 military launch on Aug. 25, recent ULA Atlas TDRS-M NASA comsat on Aug. 18, 2017 , SpaceX Dragon CRS-12 resupply launch to ISS on Aug. 14, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:
Aug 25-26: “2017 Total Solar Eclipse, Minotaur IV ORS-5, TDRS-M NASA comsat, SpaceX CRS-12 resupply launches to the ISS, Intelsat35e, BulgariaSat 1 and NRO Spysat, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, ULA Atlas/John Glenn Cygnus launch to ISS, SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity and Opportunity explore Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings
KENNEDY SPACE CENTER, FL – A triad of August liftoffs from the Florida Space Coast inaugurates Monday, Aug. 14 with a science laden commercial SpaceXDragon bound for the International Space Station (ISS) – loaded with over 3 tons of NASA science, hardware and supplies including a cosmic ray detector, medical research experiments dealing with Parkinson’s disease and lung tissue, vegetable seeds, mice and much more, following a successful engine test firing of the Falcon 9 booster on Thursday.
“Static fire test of Falcon 9 complete,” SpaceX confirmed via Twitter soon after completion of the test at 9:10 a.m. EDT, Aug 10. (1310 GMT) “—targeting August 14 launch from Pad 39A for Dragon’s next resupply mission to the @Space_Station.”
Check out our photos & videos herein of the Aug. 10 static first test of the Falcon 9 first stage that paves the path to blastoff – as witnessed live by Ken Kremer and Jeff Seibert.
The triple headed sunshine state space spectacular kicks off with Monday’s lunchtime launch of the next unmanned SpaceX Dragon cargo freighter to the ISS from seaside pad 39A at NASA’s Kennedy Space Center in Florida, now targeted for Aug. 14 at 12:31 p.m. EDT (1631 GMT).
Lastly, a week after TDRS-M and just 11 days after the SpaceX Dragon an Orbital ATK Minotaur 4 rocket is due to blastoff just before midnight Aug. 25 and carry the ORS 5 mission to orbit for the U.S. military’s Operationally Responsive Space program. The Minotaur IV utilizes three stages from decommissioned Peacekeeper ICBMs formerly aimed at the Russians.
Of course getting 3 rockets off the ground from 3 different companies is all highly dependent on Florida’s hugely fickle hurricane season weather and the ever present reality of potential technical glitches, errant boaters and more – possibly resulting in a domino effect of cascading launch scrubs.
And sandwiched in between the Florida Space Coast blastoffs is the Total Solar ‘Eclipse Across America’ on Monday, Aug. 21 – for the first time in 99 years!
Although KSC and central Florida are not within the path of totality, the sun will still be about 85% obscured by the Moon.
So if you’re looking for bang for the space buck, the next two weeks have a lot to offer space and astronomy enthusiasts.
The Dragon resupply ship dubbed Dragon CRS-12 counts as SpaceX’s twelfth contracted commercial resupply services (CRS) mission to the International Space Station for NASA since 2012.
Watch this video of the Aug. 10 static hotfire test:
Video Caption: Hot fire test of the SpaceX Falcon 9 rocket in preparation for it launching the NASA CRS-12 Dragon resupply mission to the International Space Station from Pad 39A at Kennedy Space Center in Florida. Credit: Jeff Seibert/AmericaSpace
The 20-foot high, 12-foot-diameter Dragon CRS-12 vessel is carrying more than 6,400 pounds ( 2,900 kg) of science experiments and research instruments, crew supplies, food water, clothing, hardware, gear and spare parts to the million pound orbiting laboratory complex. 20 mice are also onboard. This will support dozens of the 250 research investigations and experiments being conducted by Expedition 52 and 53 crew members.
If you can’t personally be here to witness the launch in Florida, you can always watch NASA’s live coverage on NASA Television and the agency’s website.
The SpaceX/Dragon CRS-12 launch coverage will be broadcast on NASA TV beginning noon on Aug. 14 with additional commentary on the NASA launch blog.
SpaceX will also offer their own live webcast beginning approximately 15 minutes before launch at about 12:16 p.m. EDT.
You can watch the launch live at NASA TV at – http://www.nasa.gov/nasatv
You can also watch the launch live at SpaceX hosted Webcast at – spacex.com/webcast
In the event of delay for any reason, the next launch opportunity is Tuesday, Aug. 15 with NASA TV coverage starting about 11:30 a.m. EDT.
The weather looks decent at this time with a 70% chance of favorable conditions at launch time according to U.S. Air Force meteorologists with the 45th Space Wing Weather Squadron at Patrick Air Force Base. The primary concerns on Aug. 14 are cumulus clouds and the potential for precipitation in the flight path.
The odds remain at 70% favorable for the 24 hour scrub turnaround day on Aug. 15.
Everything is currently on track for Monday’s noontime launch of the 230 foot tall SpaceX Falcon 9 on the NASA contracted SpaceX CRS-12 resupply mission to the million pound orbiting lab complex.
However since the launch window is instantaneous there is no margin for error. In case any delays arise during the countdown due to technical or weather issues a 24 hour scrub to Tuesday will result.
The lunchtime launch coincidently offers a convenient and spectacular opportunity for fun for the whole family as space enthusiasts flock in from around the globe.
Plus SpaceX will attempt a land landing of the 156 foot tall first stage back at the Cape at Landing Zone 1 some 8 minutes after liftoff – thus a double whammy of space action !!– punctuated by multiple loud sonic booms at booster landing time that will figuratively knock your socks off.
To date SpaceX has successfully recovered 13 boosters; 5 by land and 8 by sea, over the past 18 months. It’s a feat straight out of science fiction but aimed at drastically slashing the high cost of access to space.
The recent BulgariaSat-1 and Iridium-2 missions counted as the eighth and ninth SpaceX launches of 2017.
CRS-12 marks the eleventh SpaceX launch of 2017 and will establish a new single year record.
In contrast to the prior CRS-11 mission which flew a recycled Dragon, the CRS-12 Dragon is newly built.
The CRS-12 Dragon will be the last newly built one, says NASA. The remaining SpaceX CRS mission will utilize reused spaceships.
The Falcon 9 is also new and will attempt a land landing back at the Cape at Landing Zone-1 (LZ-1).
If the Aug. 14 launch occurs as scheduled, the Dragon will reach its preliminary orbit about 10 minutes later and deploy its life giving solar arrays. Dragon then begins a 2 day orbital chase of the station via a carefully choreographed series of thruster firings that bring the commercial spacecraft to rendezvous with the space station on Aug. 16.
Dragon will be grappled with the station’s Canadian built robotic arm at approximately 7 a.m. EDT on Aug. 16 by astronauts Jack Fischer of NASA and Paolo Nespoli of ESA (European Space Agency). It then will be installed on the Harmony module.
The Dragon spacecraft will spend approximately one month attached to the space station, returning to Earth in mid-September with results of earlier experiments.
Dragon CRS-12 is SpaceX’s third contracted resupply mission to launch this year for NASA.
The prior SpaceX cargo ships launched on Feb 19 and June 3, 2017 on the CRS-10 and CRS-11 missions to the space station. CRS-10 is further noteworthy as being the first SpaceX launch of a Falcon 9 from NASA’s historic pad 39A.
SpaceX leased pad 39A from NASA in 2014 and after refurbishments placed the pad back in service this year for the first time since the retirement of the space shuttles in 2011.
Previous launches include 11 Apollo flights, the launch of the unmanned Skylab in 1973, 82 shuttle flights and five SpaceX launches.
Cargo Manifest for CRS-12:
TOTAL CARGO: 6415.4 lbs. / 2910 kg
TOTAL PRESSURIZED CARGO WITH PACKAGING: 3642 lbs. / 1652 kg
• Science Investigations 2019.4 lbs. / 916 kg
• Crew Supplies 485 lbs. / 220 kg
• Vehicle Hardware 747.4 lbs. / 339 kg
• Spacewalk Equipment 66.1 lbs. / 30 kg
• Computer Resources 116.8 lbs. / 53 kg
UNPRESSURIZED 2773.4 lbs. / 1258 kg
• Cosmic-Ray Energetics and Mass (CREAM) 2773.4 lbs. / 1258 kg
The CREAM instrument from the University of Maryland will be stowed for launch inside the Dragon’s unpressurized trunk. Astronauts will use the stations robotic arm to pluck it from the trunk and attach it to the exposed porch of the Japanese Experiment Module (JEM).
Here is a NASA description of CREAM:
The Cosmic Ray Energetics and Mass (CREAM) instrument, attached to the Japanese Experiment Module Exposed Facility, measures the charges of cosmic rays ranging from hydrogen to iron nuclei. The data collected from the CREAM instrument will be used to address fundamental science questions on the origins and history of cosmic rays. CREAM’s three-year mission will help the scientific community build a stronger understanding of the fundamental structure of the universe.
The LRRK2 experiment seeks to grow larger crystals of the protein to investigate Parkinson’s disease and help develop new therapies:
Here is a NASA description of LRRK2:
Crystallization of Leucine-rich repeat kinase 2 (LRRK2) under Microgravity Conditions (CASIS PCG 7) will use the orbiting laboratory’s microgravity environment to grow larger versions of this important protein, implicated in Parkinson’s disease. Developed by the Michael J. Fox Foundation, Anatrace and Com-Pac International, researchers will look to take advantage of the station’s microgravity environment which allows protein crystals to grow larger and in more perfect shapes than earth-grown crystals, allowing them to be better analyzed on Earth. Defining the exact shape and morphology of LRRK2 would help scientists to better understand the pathology of Parkinson’s and aid in the development of therapies against this target.
Watch this Michael J. Fox video describing the LRRK2 crystallization experiment:
Video Caption: ISS National Lab SpaceX CRS-12 Payload Overview: Michael J. Fox Foundation. The Michael J. Fox Foundation is sending an experiment to the ISS National Lab to investigate the LRRK2 protein, a key target in identifying the makeup of Parkinson’s disease.
Watch for Ken’s continuing onsite CRS-12, TRDS-M, and ORS 5 and NASA mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Learn more about the upcoming SpaceX Dragon CRS-12 resupply launch to ISS on Aug. 14, ULA Atlas TDRS-M NASA comsat on Aug. 18, 2017 Solar Eclipse, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:
Aug 12-14: “SpaceX CRS-12 resupply launches to the ISS, Intelsat35e, BulgariaSat 1 and NRO Spysat, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, ULA Atlas/John Glenn Cygnus launch to ISS, SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity and Opportunity explore Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings
The first two missions of the unmanned Dream Chaser mini-shuttle carrying critical cargo to the International Space Station (ISS) for NASA will fly on the most powerful version of the Atlas V rocket and start as soon as 2020, announced Sierra Nevada Corporation (SNC) and United Launch Alliance (ULA).
“We have selected United Launch Alliance’s Atlas V rocket to launch our first two Dream Chaser® spacecraft cargo missions,” said SNC of Sparks, Nevada.
Dream Chaser will launch atop the commercial Atlas V in its most powerful configuration, dubbed Atlas V 552, with five strap on solid rocket motors and a dual engine Centaur upper stage while protectively tucked inside a five meter diameter payload fairing – with wings folded.
Blast off of Dream Chaser loaded with over 5500 kilograms of cargo mass for the space station crews will take place from ULA’s seaside Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida.
The unique lifting body design enables runway landings for Dream Chaser, similar to the NASA’s Space Shuttle at the Shuttle Landing Facility runway at NASA’s Kennedy Space Center in Florida.
The ULA Atlas V enjoys a 100% success rate. It has also been chosen by Boeing to ferry crews on piloted missions of their CST-100 Starliner astronaut space taxi to the ISS and back. The Centaur upper stage will be equipped with two RL-10 engines for both Dream Chaser and Starliner flights.
“SNC recognizes the proven reliability of the Atlas V rocket and its availability and schedule performance makes it the right choice for the first two flights of the Dream Chaser,” said Mark Sirangelo, corporate vice president of SNC’s Space Systems business area, in a statement.
“Humbled and honored by your trust in us,” tweeted ULA CEO Tory Bruno following the announcement.
Liftoff of the maiden pair of Dream Chaser cargo missions to the ISS are expected in 2020 and 2021 under the Commercial Resupply Services 2 (CRS2) contract with NASA.
“ULA is pleased to partner with Sierra Nevada Corporation to launch its Dream Chaser cargo system to the International Space Station in less than three years,” said Gary Wentz, ULA vice president of Human and Commercial Systems.
“We recognize the importance of on time and reliable transportation of crew and cargo to Station and are honored the Atlas V was selected to continue to launch cargo resupply missions for NASA.”
By utilizing the most powerful variant of ULA’s Atlas V, Dream Chaser will be capable of transporting over 5,500 kilograms (12,000 pounds) of pressurized and unpressurized cargo mass – including science experiments, research gear, spare part, crew supplies, food, water, clothing and more per ISS mission.
“In addition, a significant amount of cargo, almost 2,000 kilograms is directly returned from the ISS to a gentle runway landing at a pinpoint location,” according to SNC.
“Dream Chaser’s all non-toxic systems design allows personnel to simply walk up to the vehicle after landing, providing immediate access to time-critical science as soon as the wheels stop.”
“ULA is an important player in the market and we appreciate their history and continued contributions to space flights and are pleased to support the aerospace community in Colorado and Alabama,” added Sirangelo.
Under the NASA CRS-2 contract awarded in 2016, Dream Chaser becomes the third ISS resupply provider, joining the current ISS commercial cargo vehicle providers, namely the Cygnus from Orbital ATK of Dulles, Virginia and the cargo Dragon from SpaceX of Hawthorne, California.
NASA decided to plus up the number of ISS commercial cargo providers from two to three for the critical task of ensuring the regular delivery of critical science, crew supplies, provisions, spare parts and assorted gear to the multinational crews living and working aboard the massive orbiting outpost.
NASA’s CRS-2 contracts run from 2019 through 2024 and specify six cargo missions for each of the three commercial providers.
By adding a new third provider, NASA simultaneously gains the benefit of additional capability and flexibility and also spreads out the risk.
Both SpaceX and Orbital ATK suffered catastrophic launch failures during ISS resupply missions, in June 2015 and October 2014 respectively, from which both firms have recovered.
Orbital ATK and SpaceX both successfully launched ISS cargo missions this year. Indeed a trio of Orbital ATK Cygnus spacecraft have already launched on the Atlas V, including the OA-7 resupply mission in April 2017.
SpaceX has already launched a pair of resupply missions this year on the CRS-10 and CRS-11 flights in February and June 2017.
Unlike the Cygnus which burns up on reentry and Dragon which lands via parachutes, the reusable Dream Chaser is capable of low-g reentry and runway landings. This is very beneficial for sensitive scientific experiments and allows much quicker access by researchers to time critical cargo.
Dream Chaser has been under development for more than 10 years. It was originally developed as a manned vehicle and a contender for NASA’s commercial crew vehicles. When SNC lost the bid to Boeing and SpaceX in 2014, the company opted to develop this unmanned variant instead.
A full scale test version of the original Dream Chaser is currently undergoing ground tests at NASA’s Armstrong Flight Research Center in California. Approach and landing tests are planned for this fall.
Other current cargo providers to the ISS include the Russian Progress and Japanese HTV vessels.
Watch for Ken’s onsite space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Meanwhile the already berthed Orbital ATK Cygnus OA-7 supply ship departed the station on Sunday, June 4 after ground controllers detached it and maneuvered it into position for departure.
The commercial Dragon cargo freighter carrying nearly 3 tons of science and supplies for the multinational crew on the CRS-11 resupply mission reached the space stations vicinity Monday morning, June 5, after a two day orbital chase starting from the Kennedy Space Center and a flawless series of carefully choreographed thruster firings culminated in rendezvous.
Liftoff of the SpaceX Falcon 9 rocket carrying the unmanned Dragon cargo freighter from seaside Launch Complex 39A at KSC in Florida took place during an instantaneous launch window at 5:07 p.m. EDT Saturday, June 3, following a 48 hour delay due to a stormy weather scrub at the Florida Space Coast on Thursday, June 1.
The stunning Falcon 9 launch and landing events were captured by journalists and tourists gathered from around the globe to witness history in the making with their own eyeballs.
The Falcon 9 blastoff also counts as the 100th flight from KSC’s historic pad 39A which previously launched NASA’s Apollo astronauts on lunar landing missions and space shuttles for 3 decades
Check out the expanding gallery of eyepopping photos and videos from several space journalist colleagues and friends and myself – for views you won’t see elsewhere.
Click back as the gallery grows !
By 8:30 a.m. Monday morning ground controllers had maneuvered Dragon to within 250 meters of the station and the imaginary keep out sphere around the orbiting complex.
Engineers carefully assessed the health of the Dragon and its systems to insure its ability to slowly and safely move in closer for capture by the crew.
When Dragon reached a distance of 11 meters, it was grappled by Expedition 52 astronauts Peggy Whitson and Jack Fischer using the 57.7 foot long (17.6 meter long) Canadian-built robotic arm Monday morning at 9:52 a.m. EDT, a few minutes ahead of schedule.
“Capture complete,” radioed Whitson as Dragon was captured at its grapple pin by the grappling snares at the terminus of the Canadarm2 robotic arm.
Dragon’s capture took place as the ISS was orbiting 250 miles over the South Atlantic Ocean as it was nearing the East coast of Argentina.
“Complete complete. Go for capture configuration,” replied Houston Mission control.
“We want to thank the entire team on the ground that made this possible, both in Hawthorne and in Houston. Really around the whole world, from support in Canada for this wonderful robotic arm, Kennedy Space Center’s launch support, to countless organizations which prepared the experiments and cargo,” Fischer radioed in response.
“These people have supplied us with a vast amount of science and supplies, really fuel for the engine of innovation we get to call home, the International Space Station. We have a new generation of vehicles now, led by commercial partners like SpaceX, as they build the infrastructure that will carry us into the future of exploration.”
“It’s also the first second mission to the ISS which was previously here as CRS-4. The last returned visitor was space shuttle Atlantis on the STS-135 mission,” Fischer said.
A little over two hours after it was captured by Expedition 52 Flight Engineers Jack Fischer and Peggy Whitson, ground teams maneuvered the unpiloted SpaceX Dragon cargo craft for attachment to the Earth-facing port of the station’s Harmony module.
“Ground controllers at Mission Control, Houston reported that Dragon was bolted into place at 12:07 p.m. EDT as the station flew 258 statute miles over central Kazakhstan,” NASA reported.
The berthing of Dragon to Harmony was not broadcast live on NASA TV.
Dragon CRS-11 marks SpaceX’s eleventh contracted commercial resupply services (CRS) mission to the International Space Station for NASA since 2012.
Check out these exquisite videos from a wide variety of vantage points including remote cameras at the pad and Cape Canaveral media viewing site – including an A/V compilation of sonic booms from the propulsive ground landing.
Video Caption: CRS-11 Launch from KSC Pad 39A with the first re-used Dragon capsule. SpaceX Falcon 9 launch of the CRS-11 mission to take supplies, equipment and experiments to the ISS, followed by the first stage landing at LZ-1 on the Cape Canaveral Air Force Station. Credit: Jeff Seibert
Video Caption: SpaceX Falcon 9/Dragon CRS 11 Launch 3 June 2017. Launch of SpaceX Falcon 9 on June 3, 2017 from pad 39A at the Kennedy Space Center, FL carrying 1st recycled Dragon supply ship bound for the International Space Station on the CRS-11 mission loaded with 3 tons of science and supplies – as seen in this remote video taken at the pad under cloudy afternoon skies. Credit: Ken Kremer/kenkremer.com
Video Caption: Sonic booms from the return of the CRS-11 booster to LZ-1 on June 3, 2017. Triple sonic booms signal the return of the Falcon 9 first stage to LZ-1 after launching the CRS-11 Dragon spacecraft to the ISS. Credit: Jeff Seibert
The gumdrop shaped 20-foot high, 12-foot-diameter Dragon is carrying almost 5,970 pounds of science experiments and research instruments, crew supplies, food water, clothing, hardware, gear and spare parts to the million pound orbiting laboratory complex.
The CRS-11 cargo ship will support over 62 of the 250 active research investigations and experiments being conducted by Expedition 52 and 53 crew members.
The flight delivered investigations and facilities that study neutron stars, osteoporosis, solar panels, tools for Earth-observation, and more.
40 new micestonauts are also aboard inside the rodent research habitat for a first of its kind osteoporosis science study – that seeks to stem the loss of bone density afflicting millions of people on Earth and astronauts crews in space by testing an experimental drug called NELL-1. The therapy will also examine whether bone can be regenerated for the first time. No drug exists for bone regeneration.
The unpressurized trunk of the Dragon spacecraft also transported 3 payloads for science and technology experiments and demonstrations.
The truck payloads include the Roll-Out Solar Array (ROSA) solar panels, the Multiple User System for Earth Sensing (MUSES) facility which hosts Earth-viewing instruments and tools for Earth-observation and equipment to study neutron stars with the Neutron Star Interior Composition Explorer (NICER) payload.
NICER is the first ever space mission to study the rapidly spinning neutron stars – the densest objects in the universe. The launch coincidentally comes nearly 50 years after they were discovered by British astrophysicist Jocelyn Bell.
A second objective of NICER involves the first space test attempting to use pulsars as navigation beacons through technology called Station Explorer for X-Ray Timing and Navigation (SEXTANT).
NASA decided to use the SpaceX weather related launch delay to move up the departure of the “SS John Glenn” Cygnus cargo ship by over a month since it was already fully loaded and had completed its mission to deliver approximately 7,600 pounds of supplies and science experiments to the orbiting laboratory and its Expedition 51 and 52 crew members for Orbital ATK’s seventh NASA-contracted commercial resupply mission called OA-7.
Named after legendary Mercury and shuttle astronaut John Glenn – 1st American to orbit the Earth – the supply ship had spent 44 days at the station.
The “SS John Glenn” will now remain in orbit a week to conduct the third SAFFIRE fire experiment as well as deploy four small Nanoracks satellites before Orbital ATK flight controllers send commands June 11 to deorbit the spacecraft for its destructive reentry into the Earth’s atmosphere over the Pacific Ocean.
Watch for Ken’s onsite CRS-11 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
In 2011, Microsoft co-founder Paul G. Allen and Scaled Composites founder Burt Rutan announced the launch of their private space venture. Known as Stratolaunch Systems, this Seattle-based company was founded with the intention of developing air-launch-to-orbit systems. Similar to Virgin Galactic’s SpaceShipTwo, this concept involves a large air carrier flying rockets to launch altitude as cost-effective means of delivering small payloads to orbit.
On Thursday, May 31st, the company unveiled their launch vehicle, the Scaled Composites Model 351 (aka. the “Roc”). Consisting of two 747 hulls mated together, this aircraft is the the largest in the world – spanning 117 meters (385 ft) from one wingtip to the other and weighing 226,796 kg (500,000 lbs). This plane will make its first test flight in a few days time, and the company hopes to make its first commercial launch by 2019.
The rollout of the Roc – which took place at the company’s hangar facility at the Mojave Air and Space Port in California – was a media circus. In addition to being the first time that the public got to see the aircraft since construction began, the occasion marked the beginning of several tests which will take place over the coming days – including fueling tests, engine runs, taxi tests, and its first test flight.
“We’re excited to announce that Stratolaunch aircraft has reached a major milestone in its journey toward providing convenient, reliable, and routine access to low Earth orbit. Today, we’re moving the Stratolaunch aircraft out of the hangar – for the first time ever – to conduct aircraft fueling tests. This marks the completion of the initial aircraft construction phase and the beginning of the aircraft ground and flight testing phase.”
Measuring about 72.5 meters (238 ft) from nose to tail, the aircraft also stands 15.24 meters (50 ft) tall, measured from the ground to the top of the vertical tail. It has a maximum takeoff weight of 589,670 kg (1.3 million lbs), meaning that it is capable of airlifting payloads of up to 249,476 kg (550,000 lbs). These kinds of payloads mean that it will be capable of flying rockets and heavy space planes to launch altitude.
Last fall, the company announced their plan to conduct a launch using a single Orbital ATK Pegasus XL vehicle, a three-stage rocket used to deploy small satellites to Low-Earth Orbit (LEO). This agreement was part of a multi-year collaboration between the two companies, which would see the former combining their aircraft with the latter’s extensive air-launch experience.
First unveiled in 1990, the Pegasus XL quickly established itself as a cost-effective means for launching small payloads to LEO. These typically would consist of small satellites weighing up to 443 kg (977 lbs) from beneath a NASA B-52 aircraft. Since then, the Pegasus has carried out 43 space launch missions and successfully placed a total of 94 satellites into orbit for various reasons – ranging from scientific research and communications to defense.
In time, the company plans to explore a wide range of launch vehicles that can provide flexibility in terms of missions and payloads. But in the meantime, they will be conducting ground and flight line testing from the Mojave Air and Space Port to ensure that Roc is capable of doing all it was designed for. If all goes well, they plan to make their first commercial launch by 2019.
“This marks a historic step in our work to achieve Paul G. Allen’s vision of normalizing access to low Earth orbit,” said Floyd. “It is proud day for us at Stratolaunch, for our partners at Scaled Composites, and for our founder Paul Allen. We have a lot of exciting activity ahead as we enter the testing process, and we look forward to sharing our progress during the coming months.”
One of the hallmarks of the commercial aerospace (aka. NewSpace) industry has been the development of cost-saving measures. Whereas companies like SpaceX and Blue Origin has looked to reusable rocket technology, other companies have sought to reduce costs with Single-Stage-to-Orbit (SSTO) rockets and plug-in payloads. Air-launch-to-orbit systems are just another way in which space is becoming more accessible.
And be sure to check out this video of the Roc’s unveiling: