Special Guest:
Dr. Pamela Gay of CosmoQuest will be discussing and demonstrating the new citizen science project Image Detective, where people can help identify locations in space and on Earth in photos taken by astronauts on the ISS and spacecraft.
Announcements:
If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!
We record the Weekly Space Hangout every Wednesday at 5:00 pm Pacific / 8:00 pm Eastern. You can watch us live on Universe Today, or the Weekly Space Hangout YouTube page – Please subscribe!
It’s time to do a little shameless self promotion for our tireless staff writer Matt Williams. In addition to pumping out an astonishing amount of space news here on Universe Today, Matt is also a science fiction author, having written 10! books. But in the last week, he’s reached a bit of a special milestone: he’s a published science fiction author, thanks to Castrum Press.
Matt’s new book is called The Cronian Incident, and it’s part 1 of a new series called the Formist Series.
Here’s the blurb:
Just another convict?
A disgraced investigator who once worked the Martian beat, Jeremiah Ward now serves his sentence in a mining colony on Mercury.
His golden opportunity arises when a member of a powerful faction on Titan vanishes and Ward is promised, in exchange for investigating this man’s disappearance, a clean slate and a second chance.
Unwittingly, Ward becomes embroiled in a conspiracy centuries in the making and begins to realise his one shot at redemption may cost him his life.
From terraforming to colonisation, to the Technological Singularity and the future of space exploration; The Cronian Incident is a must read for fans of mystery science fiction.
I haven’t read it yet, but it’s on my list. But I just wanted to give a huge congratulations to Matt. Setting aside the time to write an entire novel is an enormous achievement. To do it while you’re already working a full time job where you write all day? That’s hurculean.
And I know that much of Matt’s work here on Universe Today informed the science he’s using in his stories, especially some of the ideas about terraforming, exotic forms of propulsion, and the future of humanity in space.
Special Guest:
This week’s special guest is Dr. Jason Schneiderman, a neuroscientist focused on the effects of spaceflight including microgravity, isolation, confinement, and stress on the brain and behavior. He’s currently working on HERA Mission with simulated asteroid retrieval. https://www.nasa.gov/analogs/hera
Announcements:
If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!
We record the Weekly Space Hangout every Wednesday at 5:00 pm Pacific / 8:00 pm Eastern. You can watch us live on Universe Today, or the Weekly Space Hangout YouTube page – Please subscribe!
In Spring of 2017, NASA revealed their plans for what the massive Space Launch System (SLS) rocket would be used for: to build the Deep Space Gateway, a space station in cis-lunar orbit that’ll serve as a stepping stone to the exploration of the Solar System. Until today, it was assumed that this would be a NASA project, with the agency constructing the station over the course of several launches of the SLS from 2021 through 2026, delivering the 4 major modules. The details were hazy, though, with the various components in development with various contractors.
Today, however, NASA and the Russian Space Agency Roscosmos announced that they’ll be building the Deep Space Gateway together. They signed an agreement in Australia at the 68th International Astronautical Congress in Adelaide, Australia, and announced the news to the world.
What will Russia be contributing? According to TASS, Russian officials said that they’d be providing one to three modules for the station, as well as the docking mechanism that spacecraft would use when approaching the station. Russia also offered to carry some of the station parts on their new super heavy lift rocket. They didn’t specify the rocket, but that sounds like the Angara rocket which is in development, and is expected to make its first flights over the next few years.
The Deep Space Gateway will serve as the primary destination for NASA’s human space exploration efforts, once the SLS and Orion Crew Module are completed. The first launch of SLS will carry an unmanned Orion capsule on a trans-lunar flight in 2018. Then SLS will be used to blast the Europa Clipper off to the Jovian system. Their original strategy was to launch some time between 2021 and 2023 carrying the Solar Power Electric Bus module to the station, followed by the Habitation Module in 2024, the Logistics Module in 2025 and finally the Airlock Module in 2026.
At this point, NASA has solicited proposals from various aerospace contractors for the development of the Power Module, and Habitation System, and they didn’t indicate that Russia’s involvement would have any impact on the construction of these modules.
With the Russians announcing their involvement, we don’t really know how this’ll impact the structure of the station or its configuration of modules. This might also be an incentive for other space agencies (like the newly announced Australian Space Agency) to come on board.
Of course, the Russians were involved in the construction of the International Space Station. They provided the Zarya module for propulsion and navigational guidence, then the Zvezda for living quarters, and the Pirs, Poisk and Rassvet docking modules. They’ve also provided half the support of the station, including astronauts, and provide the only way to get humans up to the station, on their Soyuz rockets. Until recently, Russia had been threatening to pull their support of the International Space Station, before it was ready for retirement. But earlier this year, they agreed to support ISS until 2024, and even to 2028 if necessary. They’ve also been continuing work on their Multi-Purpose Laboratory Module (MLM), which was originally planned for launch in 2007, and is now expected to be attached to the station some time in 2018.
Before announcing their involvement with the Deep Space Gateway, Russia had said that they’d probably be investing in the development of their own orbital space station once the ISS mission was over. They’re also apparently working on a robotic lunar orbiter and lander mission.
This isn’t the only announcement involving the Deep Space Gateway. It might also get a solar sail. Engineers from the Canadian Space Agency proposed attaching a small solar sail to the Gateway, which could serve in re-orienting the space station without needing propellant. It would have a surface area of about 50-meters, and would save hundreds of kilograms of hydrozine fuel which would normally be used over the lifespan of the Deep Space Gateway. Check out Anatoly Zak’s excellent reporting on this development for the Planetary Society.
I don’t have to tell you that the vision of human space exploration in the Solar System has kind of stalled. Half a century ago, humans set foot on the Moon, and we haven’t been back since. Instead, we’ve thoroughly explored every cubic meter of low Earth orbit, going around and around the Earth. In fact, back in 2016, the International Space Station celebrated 100,000 orbits around the Earth.
The space shuttle was the last US vehicle capable of taking humans up into orbit, and it was retired back in 2011. So things look pretty bleak for sending humans out to explore the Solar System.
Earlier this year, however, NASA announced their next great step in their human space exploration efforts: the Deep Space Gateway. And if all goes well, we’ll see humans living and working farther from Earth, and for longer periods than ever before.
After the space shuttle program was wrapped up, NASA had a bunch of challenges facing it. Perhaps the greatest of these, was what to do with the enormous workforce that built and maintained the space shuttle fleet. Thousands were laid off, and moved to other aerospace jobs and other industries, but the space agency worked to develop the next big launch system after the shuttle.
Originally there were the Ares rockets, as part of the Constellation Program, but these were canceled and replaced with the Space Launch System. We’ve done a whole episode on the SLS, but the short version is that this new rocket will be capable of lifting more cargo into orbit than any rocket ever.
The first version, known as the Block 1 will be capable of lofting 70,000 kg into low-Earth orbit, while the upcoming Block 2 will be able to carry 130,000 kg into LEO – more than the mighty Saturn V rocket.
What are you going to do with a rocket this powerful? Launch new space telescopes, robotic missions to the outer Solar System, and put humans into space, of course.
In addition to the SLS, NASA is also working on a new capsule, known as the Orion Crew Module. This Apollo-esque capsule will be capable of carrying a crew of 4 astronauts out beyond low-Earth orbit, and returning them safely back to Earth.
But if you can send astronauts out beyond low-Earth orbit, where will they go?
The plan is to put a brand new space station into a cis-lunar orbit. Specifically, it’s known as a near-rectilinear halo orbit. It won’t actually be orbiting the Moon, but it’ll be on an orbit that allows it to serve as a stepping stone to the Moon. Sort of a bridge between Lagrange points. This station will range in distance from 1,500 to 70,000 km from the Moon in a way that keeps it relatively easy to reach.
From the outside, it’ll look like a smaller version of the International Space Station, with a group of 4 pressurized modules connected together: a power module, habitation module, cargo logistics pod, and an EVA module.
Space inside the Gateway will be cramped, with astronauts needing to share their living quarters, reconfiguring the space as necessary. Seriously, the ISS is going to feel like a luxury hotel after spending time in the Gateway.
The station will be solar powered, with arrays providing 40 kW of energy. It’ll also have 12 kW ion thrusters which will be used for station keeping, as well as traditional hydrazine thrusters. The first habitation module will be capable of supplying the astronauts for 30-60 days, but a later cargo logistics pod will extend the length of missions.
Right now, there are a group of contractors being considered to build the Deep Space Gateway. The designs I’m showing you come from Lockheed Martin, but things could change.
The goal of the Deep Space Gateway will be to keep humans alive in space outside the Earth’s protective magnetosphere for at least a year, studying the effects of deep space on the human body.
But in the long term, the Gateway will serve as a stepping stone to Mars. The astronauts will assemble the future Deep Space Transport, a spacecraft that will carry humans to the Red Planet. But more on that later.
On the International Space Station, astronauts are protected by the Earth’s magnetosphere from solar radiation and cosmic rays. But on board the Deep Space Gateway, there’ll be no such protection. Instead, the station will need to be reinforced with radiation protection. At the same time, the region actually has less space junk, so it won’t need to same kind of micrometeorite protection.
In addition to being a science platform, the DSG will serve as a base of operations for exploring the Moon. In the near term, NASA is planning new lander and rover missions to the Moon. The Gateway could serve as a dock for missions blasting off from the Moon, where astronauts could unload science samples, and refurbish a rover for another mission down on the lunar surface.
Another intriguing idea is that the Deep Space Gateway could be used as a place to study samples from Mars without a risk of contaminating Earth. Under the current planetary contamination guidelines, samples from Mars need to be sterilized before they can be brought to Earth.
It’s hard to search for life in your samples, when you need to kill all life in your samples. But I’m sure the astronauts would be willing to take the risk of catching Martian flu for a chance to discover there’s life on Mars.
When will we actually see the Deep Space Gateway?
Not for a few years, sadly. Building the Gateway is going to require a few launches of the SLS, and there are already a bunch of missions queued up to use this new launcher.
The first launch of SLS will be an uncrewed test with an Orion capsule, sometime in 2019, known as EM-1. This will be followed by the launch of the Europa Clipper mission, also in 2019.
Once those missions are out of the way, the first crewed launch with SLS blasts off some time between 2021 and 2023. Designated as EM-2, this is when the construction of the Deep Space Gateway begins. 4 astronauts will spend 3 weeks beyond low Earth orbit, delivering the first module to the Deep Space Gateway: the Solar Power Electric Bus.
In 2024, EM-3 will have another crew of 4 blast off with the Deep Space Gateway’s Habitation Module. EM-4 should lift off by 2025 with the Logistics module. Finally, some time around 2026, mission EM-5 will deliver the station’s Airlock module.
What comes next? After the Deep Space Gateway, there’ll be the Deep Space Transport. If you’ve seen The Martian, think of the Hermes spacecraft that ferries the crew to and from Mars. The details are thin right now, but if all goes well, the pieces of the Transport will launch to the Gateway by 2027.
The various components will be assembled by the astronauts over the course of several launches, and once completed, the Deep Space Transport would make a series of 1-3 year missions to and from Mars. It’ll carry a crew of a six astronauts in a large habitation module and keep them alive for the journey.
The first mission could head out in 2033, with a human flyby of Mars. Side note, wouldn’t it be heartbreaking to get that close to Mars, and not actually be able to set foot on the surface? Anyway, future missions to Mars will include landings, and perhaps a visit to the SpaceX luxury Martian hotel where the astronauts can relax and apologize to each other for what they did when they all got space madness.
But this is so far in the future, it’s pretty hard to even wrap my mind around it yet.
Of course, these are all long term plans. And as I’ve mentioned in previous episodes, long term plans have a tendency of getting canceled. Who knows if the Deep Space Gateway actually get constructed, or if NASA will shift its support to private missions to Mars.
Special Guest:
This week’s guests are Dr Brad Tucker (@btucker22) and Dr Anais Möller (@anais_moller) of ANU Citizen Science Project for Supernovae. Brad is an Astrophysicist/Cosmologist, and currently a Research Fellow at the Research School of Astronomy and Astrophysics, Mt. Stromlo Observatory at the Australian National University. Anais is a cosmologist based in the Australian National University with an expertise in type Ia supernova cosmology. She has worked at low and high redshift supernovae surveys with the goal to study the effect of dark energy in our Universe.
Announcements:
If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!
We record the Weekly Space Hangout every Wednesday at 5:00 pm Pacific / 8:00 pm Eastern. You can watch us live on Universe Today, or the Weekly Space Hangout YouTube page
The more that planetary astronomers study asteroids, they more they’re realizing just how varied and different they can be. Some, like 16 Psyche are made of solid nickel and iron, while others are made of rock. Some asteroids have been found with moons, rings, and some icy objects really blur the line between comet and asteroid. In order to truly understand their nature, it would take dozens or maybe hundreds of individual missions on the scale of Rosetta or New Horizons.
Or maybe not.
A team of researchers with the Finnish Meteorological Institute announced today that the best way to explore the varied objects in the asteroid belt would be with a fleet of tiny nanosatellites – 50 ought to do the trick to explore 300 separate asteroids, bringing the individual costs down to a few hundred thousand dollars per asteroid. During a presentation they made at the European Planetary Science Congress (EPSC) 2017 in Riga on Tuesday, the researchers showed how these tiny satellites could travel out to the asteroid belt, gather data on individual asteroids, and return to Earth to download their data.
The 50 satellites could be launched together in a single vehicle, and then separate once in space, or they could fill extra space in existing launches. The exact launch orbit doesn’t matter, as long as the spacecraft can get outside the Earth’s protective magnetosphere, where they can catch a ride on the solar wind.
Once in space, 5-kg spacecraft would deploy a 20 km-long wire tether that would catch the solar wind; the constantly flowing particles coming off the Sun, imparting a tiny thrust. This is known as an “E-sail” or electric sail. Unlike a solar sail, which depends on the momentum of photons coming from the Sun, electric sails harvest the momentum of charged protons.
Researchers are still figuring out if this is an effective propulsion system for spacecraft. An Estonian prototype satellite was launched back in 2015, but its onboard motor failed to reel out its tether. The Finnish Aalto-1 satellite launched in June, 2017, and will test out a prototype electric sail in addition to several other experiments over the course of the next year. Even more advanced versions have been proposed, such as Heliopause Electrostatic Rapid Transit System (or HERTS), a mission which could reach 100 astronomical units in 10-15 years by deploying a huge electrified net in space.
In the case of this asteroid mission, each satellite’s electric sail would only give it a change in velocity of only one millimeter per second, but over the course of a 3.2 year mission, it would allow the spacecraft to reach the asteroid belt and return to Earth.
In fact, the spacecraft would use their tethers to maneuver within the asteroid belt, flying past as many targets as they can with this minuscule thrust. Each satellite should be able to reach at least 6-7 numbers asteroids, and maybe even more smaller ones.
Each satellite would be equipped with a telescope with only a 40 mm aperture. That’s the size of a small spotting scope or half a pair of binoculars, but it would be enough to resolve features on the surface of an asteroid as large as 100 meters across from 1,000 km away. In addition to taking visual images of the asteroid targets, the spacecraft would be equipped with an infrared spectrometer to determine its meteorology.
Because the spacecraft are so small, they won’t be capable of carrying a transmitter to send their data back to Earth. Instead, they’d store all their scientific findings on a memory card, and then dump their data when their orbit brings them back close to Earth.
The researchers estimate that development of the mission would probably cost about 60 million Euros, or $70 million dollars, bringing the cost per asteroid down to about 200,000 Euros or $240,000.
Special Guest:
This week’s guest is Dr. Claudia Lagos (@CDPLagos).
Claudia is the Research Assistant at the International Centre for Radio Astronomy Research, in the University of Western Australia. Dr. Lagos is one of the core researchers for the Cosmic Dawn Centre (DAWN). Her expertise is in modelling of physical processes in galaxies, such as gas accretion onto galaxies, star formation, stellar feedback, gas accretion onto black holes, among other similar mechanisms.
Their stories this week:
We use a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!
Announcements:
If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!
We record the Weekly Space Hangout every Wednesday at 5:00 pm Pacific / 8:00 pm Eastern. You can watch us live on Universe Today, or the Weekly Space Hangout YouTube page
There’s a supermassive black hole at the center of almost every galaxy in the Universe. How did they get there? What’s the relationship between these monster black holes and the galaxies that surround them?
Every time astronomers look farther out in the Universe, they discover new mysteries. These mysteries require all new tools and techniques to understand. These mysteries lead to more mysteries. What I’m saying is that it’s mystery turtles all the way down.
One of the most fascinating is the discovery of quasars, understanding what they are, and the unveiling of an even deeper mystery, where do they come from?
As always, I’m getting ahead of myself, so first, let’s go back and talk about the discovery of quasars.
Back in the 1950s, astronomers scanned the skies using radio telescopes, and found a class of bizarre objects in the distant Universe. They were very bright, and incredibly far away; hundreds of millions or even billion of light-years away. The first ones were discovered in the radio spectrum, but over time, astronomers found even more blazing in the visible spectrum.
The astronomer Hong-Yee Chiu coined the term “quasar”, which stood for quasi-stellar object. They were like stars, shining from a single point source, but they clearly weren’t stars, blazing with more radiation than an entire galaxy.
Over the decades, astronomers puzzled out the nature of quasars, learning that they were actually black holes, actively feeding and blasting out radiation, visible billions of light-years away.
But they weren’t the stellar mass black holes, which were known to be from the death of giant stars. These were supermassive black holes, with millions or even billions of times the mass of the Sun.
As far back as the 1970s, astronomers considered the possibility that there might be these supermassive black holes at the heart of many other galaxies, even the Milky Way.
In 1974, astronomers discovered a radio source at the center of the Milky Way emitting radiation. It was titled Sagittarius A*, with an asterisk that stands for “exciting”, well, in the “excited atoms” perspective.
This would match the emissions of a supermassive black hole that wasn’t actively feeding on material. Our own galaxy could have been a quasar in the past, or in the future, but right now, the black hole was mostly silent, apart from this subtle radiation.
Astronomers needed to be certain, so they performed a detailed survey of the very center of the Milky Way in the infrared spectrum, which allowed them to see through the gas and dust that obscures the core in visible light.
They discovered a group of stars orbiting Sagittarius A-star, like comets orbiting the Sun. Only a black hole with millions of times the mass of the Sun could provide the kind of gravitational anchor to whip these stars around in such bizarre orbits.
Further surveys found a supermassive black hole at the heart of the Andromeda Galaxy, in fact, it appears as if these monsters are at the center of almost every galaxy in the Universe.
But how did they form? Where did they come from? Did the galaxy form first, and cause the black hole to form at the middle, or did the black hole form, and build up a galaxy around them?
Until recently, this was actually still one of the big unsolved mysteries in astronomy. That said, astronomers have done plenty of research, using more and more sensitive observatories, worked out their theories, and now they’re gathering evidence to help get to the bottom of this mystery.
Astronomers have developed two models for how the large scale structure of the Universe came together: top down and bottom up.
In the top down model, an entire galactic supercluster formed all at once out of a huge cloud of primordial hydrogen left over from the Big Bang. A supercluster’s worth of stars.
As the cloud came together it, it spun up, kicking out smaller spirals and dwarf galaxies. These could have combined later on to form the more complex structure we see today. The supermassive black holes would have formed as the dense cores of these galaxies as they came together.
If you want to wrap your mind around this, think of the stellar nursery that formed our Sun and a bunch of other stars. Imagine a single cloud of gas and dust forming multiple stars systems within it. Over time, the stars matured and drifted away from each other.
That’s top down. One big event that leads to the structure we see today.
In the bottom up model, pockets of gas and dust collected together into larger and larger masses, eventually forming dwarf galaxies, and even the clusters and superclusters we see today. The supermassive black holes at the heart of galaxies were grown from collisions and mergers between black holes over eons.
In fact, this is actually how astronomers think the planets in the Solar System formed. By pieces of dust attracting one another into larger and larger grains until the planet-sized objects formed over millions of years.
Bottom up, small parts coming together.
Shortly after the Big Bang, the entire Universe was incredibly dense. But it wasn’t the same density everywhere. Tiny quantum fluctuations in density at the beginning evolved over billions of years of expansion into the galactic superclusters we see today.
I want to stop and let this sink into your brain for a second. There were microscopic variations in density in the early Universe. And these variations became the structures hundreds of millions of light-years across we see today.
Imagine the two forces at play as the expansion of the Universe happened. On the one hand, you’ve got the mutual gravity of the particles pulling one another together. And on the other hand, you’ve got the expansion of the Universe separating the particles from one another. The size of the galaxies, clusters and superclusters were decided by the balance point of those opposing forces.
If small pieces came together, then you’d get that bottom up formation. If large pieces came together, you’d get that top down formation.
When astronomers look out into the Universe at the largest scales, they observe clusters and superclusters as far as they can see – which supports the top down model.
On the other hand, observations show that the first stars formed just a few hundred million years after the Big Bang, which supports bottom up.
The key is that gravity moves at the speed of light, which means that the gravitational interactions between particles spreading away from each other needed to catch up, going the speed of light.
In other words, you wouldn’t get a supercluster’s worth of material coming together, only a star’s worth of material. But these first stars were made of pure hydrogen and helium, and could grow much more massive than the stars we have today. They would live fast and die in supernova explosions, creating much more massive black holes than we get today.
The first protogalaxies came together, collecting together these first monster black holes and the massive stars surrounding them. And then, over millions and billions of years, these black holes merged again and again, accumulating millions and even billions of times the mass of the Sun. This was how we got the modern galaxies we see today.
There was a recent observation that supports this conclusion. Earlier this year, astronomers announced the discovery of supermassive black holes at the center of relatively tiny galaxies. In our own Milky Way, the supermassive black hole is 4.1 million times the mass of the Sun, but accounts for only .01% of the galaxy’s total mass.
But astronomers from the University of Utah found two ultra compact galaxies with black holes of 4.4 million and 5.8 million times the mass of the Sun respectively. And yet, the black holes account for 13 and 18 percent of the mass of their host galaxies.
The thinking is that these galaxies were once normal, but collided with other galaxies earlier on in the history of the Universe, were stripped of their stars and then were spat out to roam the cosmos.
They’re the victims of those early merging events, evidence of the carnage that happened in the early Universe when the mergers were happening.
We always talk about the unsolved mysteries in the Universe, but this is one that astronomers are starting to puzzle out.
It seems most likely that the structure of the Universe we see today formed bottom up. The first stars came together into protogalaxies, dying as supernova to form the first black holes. The structure of the Universe we see today is the end result of billions of years of formation and destruction. With the supermassive black holes coming together over time.
Once telescopes like James Webb get to work, we should be able to see these pieces coming together, at the very edge of the observable Universe.
If you’re still riding that high from seeing the recent total solar eclipse and you want to keep the party going, now’s your chance to see another of the night sky’s wonders: an aurora. That said, a totally full Moon is going to try and wreck the party.
NASA announced that two powerful flares were just emitted on the surface of the Sun, casting coronal mass ejections in our direction. Over the course of the next couple of days, this should generate aurora activity in the sky outside the regular viewing areas. In other words, if you normally don’t see the Northern Lights where you live, you might want to spend a few hours outside tonight and tomorrow. Look up, you might see something.
The first flare, an X2.2 event, peaked on September 6 at 5:10 am EDT and the second X9.3 flare went off at 8:02 am. Both of which came from the sunspot group AR 2673. If you’ve still got those eclipse glasses, take a look at the Sun, and you should be able to see the sunspot group right now. There are two groups of sunspots close to one another, AR 2673 and AR 2674. This follows up the X4 flare emitted on September 4th.
Solar astronomers measure flares using a similar scale to other natural events, with a series of designations. The smallest are A-class, then B, C, M and finally X. Each level within the rating accounts for double the strength; it’s exponential. So, and X2 is twice as powerful as an X1, etc. The most powerful flare ever recorded was an X28 in 2003, so today’s flare is still comparatively weak to that monster.
But, measuring in at X9.3, today’s flare is the strongest in almost a decade. The last one this strong was back in 2008. And NOAA is predicting that this flare could cause radio blackouts across the sun-facing side of the Earth. If you’re out at sea and depending on your radio transmissions, don’t be surprised if you’re getting a lot of static today.
How do you stand the best chance of seeing auroras? My favorite tool comes from NOAA’s 3-day aurora forecast. It shows you a 3-day predictive simulation for what the solar storm should do as it buffets the Earth’s magnetosphere. You can run the simulation backwards and forwards, and you’re looking glowing green areas to come across your part of the world.
But even if it doesn’t look like you’re going to see the auroras, I still think it’s worth trying. Even if you don’t get an aurora directly overhead, you can sometimes see it on the horizon, and it can be surprisingly beautiful.
Here’s my timelapse video of auroras on the horizon.
The big problem, of course, is the Moon. Tonight is also a full Moon, which means that awful glowing ball is going to rise just after sunset and blaze across the sky all night. You’re going to have a rough time seeing all but the brightest auroras. But I still think it’s worth trying.
If you want to maximize your chances of seeing an aurora, check out the Space Weather site on a regular basis. There are also services that’ll send you a text message when there’s a powerful aurora going on in your area (just Google “aurora alert text messages”. And of course, there are handy apps that’ll make your phone beep boop when there are auroras overhead. I use an app called Aurora Alert.
We’ve had three powerful flares in the last couple of days, which means that the Sun is feeling a little frisky. There could be more, and they could happen after the full Moon is over, and we’ve got some alone time with the dark sky. So stay on top of the current space weather, spend time outside, and keep your eyes on the sky. You might get a shot at seeing an aurora.