Earth Surface Temperature

Sea temperature model

[/caption]
The average Earth surface temperature is 14° C. That’s 287 kelvin, or 57.2° F.

As you probably realize, that number is just an average. The Earth’s temperature can be much higher or lower than this temperature. In the hottest places of the planet, in the deserts near the equator, the temperature on Earth can get as high as 57.7° C. And then in the coldest place, at the south pole in Antarctica, the temperature can dip down to -89° C.

The reason the average temperature on Earth is so high is because of the atmosphere. This acts like a blanket, trapping infrared radiation close to the planet and warming it up. Without the atmosphere, the temperature on Earth would be more like the Moon, which rises to 116° C in the day, and then dips down to -173° C at night.

We’ve written several articles about the temperature of the planets. Here’s an article about the temperature of all the planets, and here’s an article about the temperature of the Moon.

If you’d like more information on the Earth, check out NASA’s Solar System Exploration Guide on Earth. And here’s a link to NASA’s Earth Observatory.

We’ve also recorded an entire episode of Astronomy Cast all about Earth. Listen here, Episode 51: Earth.

Venus Length of Day

Venus captured by Magellan.

[/caption]
The Venus length of day is 243 days.

But the story is a little stranger than that. Venus is actually rotating backwards compared to the rest of the planets in the Solar System. Seen from above the north pole, Venus is slowly rotating in a clockwise direction. Compare this to Earth and the rest of the planets, which rotate in a counter-clockwise direction.

And it gets even stranger, when you consider that a year on Venus only lasts 224.7 days. In other words, a day on Venus is actually longer than a year on Venus. If you could actually stand on the surface and see the Sun, you would see the Sun rise in the West, and pass through the sky over the course of 116.75 days and then set in the East. So a solar day on Venus is 116.75 days.

Astronomers aren’t sure why the length of day on Venus takes so long, and why Venus is rotating backwards. It’s possible that Venus was struck by a large object early on in its history, which flipped it over and caused its strange rotation.

We’ve written many articles about the day length of the planets, here’s an article about a day on Mars, and here’s an article about a day on Saturn.

If you’d like more info on Venus, check out Hubblesite’s News Releases about Venus, and here’s a link to NASA’s Solar System Exploration Guide on Venus.

We’ve also recorded an episode of Astronomy Cast all about Venus. Listen here, Episode 50: Venus.

Planets Fact Sheet

Mercury
Mass: 0.3302 x 1024 kg
Volume: 6.083 x 1010 km3
Average radius: 2439.7 km
Average diameter: 4879.4 km
Mean density: 5.427 g/cm3
Escape velocity: 4.3 km/s
Surface gravity: 3.7 m/s2
Visual magnitude: -0.42
Natural satellites: 0
Rings? – No
Semimajor axis: 57,910,000 km
Orbit period: 87.969 days
Perihelion: 46,000,000 km
Aphelion: 69,820,000 km
Mean orbital velocity: 47.87 km/s
Maximum orbital velocity: 58.98 km/s
Minimum orbital velocity: 38.86 km/s
Orbit inclination: 7.00°
Orbit eccentricity: 0.2056
Sidereal rotation period: 1407.6 hours
Length of day: 4222.6 hours
Discovery: Known since prehistoric times
Minimum distance from Earth: 77,300,000 km
Maximum distance from Earth: 221,900,000 km
Maximum apparent diameter from Earth: 13 arc seconds
Minimum apparent diameter from Earth: 4.5 arc seconds
Maximum visual magnitude: -1.9

Venus
Mass: 4.8685 x 1024 kg
Volume: 92.843 x 1010 km3
Average radius: 6051.8 km
Average diameter: 12103.6 km
Mean density: 5.243 g/cm3
Escape velocity: 10.36 km/s
Surface gravity: 8.87 m/s2
Visual magnitude: -4.40
Natural satellites: 0
Rings? – No
Semimajor axis: 108,210,000 km
Orbit period: 224.701 days
Perihelion: 107,480,000 km
Aphelion: 108,940,000 km
Mean orbital velocity: 35.02 km/s
Maximum orbital velocity: 35.26 km/s
Minimum orbital velocity: 34.79 km/s
Orbit inclination: 3.39°
Orbit eccentricity: 0.0067
Sidereal rotation period: 5832.5 hours
Length of day: 2802.0 hours
Discovery: Known since prehistoric times
Minimum distance from Earth: 38,200,000 km
Maximum distance from Earth: 261,000,000 km
Maximum apparent diameter from Earth: 66.0 arc seconds
Minimum apparent diameter from Earth: 9.7 arc seconds
Maximum visual magnitude: -4.6

Earth
Mass: 5.9736 x 1024 kg
Volume: 108.321 x 1010 km3
Average radius: 6,371.0 km
Average diameter: 12,742 km
Mean density: 5.515 g/cm3
Escape velocity: 11.186 km/s
Surface gravity: 9.798 m/s2
Visual magnitude: -3.86
Natural satellites: 1
Rings? – No
Semimajor axis: 149,600,000 km
Orbit period: 365.256 days
Perihelion: 147,090,000 km
Aphelion: 152,100,000 km
Mean orbital velocity: 29.78 km/s
Maximum orbital velocity: 30.29 km/s
Minimum orbital velocity: 29.29 km/s
Orbit inclination: 0.00°
Orbit eccentricity: 0.0167
Sidereal rotation period: 23.9345 hours
Length of day: 24.0000 hours
Axial tilt: 23.45°

Mars
Mass: 0.64185 x 1024 kg
Volume: 16.318 x 1010 km3
Average radius: 3,389.5 km
Average diameter: 6,779 km
Mean density: 3.933 g/cm3
Escape velocity: 5.03 km/s
Surface gravity: 3.71 m/s2
Visual magnitude: -1.52
Natural satellites: 2
Rings? – No
Semimajor axis: 227,920,000 km
Orbit period: 686.980 days
Perihelion: 206,620,000 km
Aphelion: 249,230,000 km
Mean orbital velocity: 24.13 km/s
Orbit inclination: 1.850°
Orbit eccentricity: 0.0935
Sidereal rotation period: 24.6229 hours
Length of day: 24.6597 hours
Axial tilt: 25.19 °
Discovery: Known since prehistoric times
Minimum distance from Earth: 55,700,000 km
Maximum distance from Earth: 401,300,000 km
Maximum apparent diameter from Earth: 25.1 arc seconds
Minimum apparent diameter from Earth: 3.5 arc seconds
Maximum visual magnitude: -2.91

Jupiter
Mass: 1,898.6 x 1024 kg
Volume: 143,128 x 1010 km3
Average radius: 69,911 km
Average diameter: 139,822 km
Mean density: 1.326 g/cm3
Escape velocity: 59.5 km/s
Surface gravity: 24.79 m/s2
Natural satellites: 63
Rings? – Yes
Semimajor axis: 778,570,000 km
Orbit period: 4,332.589 days
Perihelion: 740,520,000 km
Aphelion: 816,620,000 km
Mean orbital velocity: 13.07 km/s
Orbit inclination: 1.304°
Orbit eccentricity: 0.0489
Sidereal rotation period: 9.9250 hours
Length of day: 9.9259 hours
Axial tilt: 3.13°
Discovery: Known since prehistoric times
Minimum distance from Earth: 588,500,000 km
Maximum distance from Earth: 968,100,000 km
Maximum apparent diameter from Earth: 50.1 arc seconds
Minimum apparent diameter from Earth: 29.8 arc seconds
Maximum visual magnitude: -2.94

Saturn
Mass: 568.46 x 1024 kg
Volume: 82,713 x 1010 km3
Average radius: 58,232 km
Average diameter: 116,464 km
Mean density: 0.687 g/cm3
Escape velocity: 35.5 km/s
Surface gravity: 10.44 m/s2
Natural satellites: 60
Rings? – Yes
Semimajor axis: 1,433,530,000 km
Orbit period: 10,759.22 days
Perihelion: 1,352,550,000 km
Aphelion: 1,514,500,000 km
Mean orbital velocity: 9.69 km/s
Orbit inclination: 2.485°
Orbit eccentricity: 0.0565
Sidereal rotation period: 10.656 hours
Length of day: 10.656 hours
Axial tilt: 26.73°
Discovery: Known since prehistoric times
Minimum distance from Earth: 1,195,500,000 km
Maximum distance from Earth: 1,658,500,000 km
Maximum apparent diameter from Earth: 20.1 arc seconds
Minimum apparent diameter from Earth: 14.5 arc seconds
Maximum visual magnitude: 0.43

Uranus
Mass: 86.832 x 1024 kg
Volume: 6,833 x 1010 km3
Average radius: 25,362 km
Average diameter: 50,724 km
Mean density: 1.270 g/cm3
Escape velocity: 21.3 km/s
Surface gravity: 8.87 m/s2
Natural satellites: 27
Rings? – Yes
Semimajor axis: 2,872,460,000 km
Orbit period: 30,685.4 days
Perihelion: 2,741,300,000 km
Aphelion: 3,003,620,000 km
Mean orbital velocity: 6.81 km/s
Orbit inclination: 0.772°
Orbit eccentricity: 0.0457
Sidereal rotation period: 17.24 hours
Length of day: 17.24 hours
Axial tilt: 97.77°
Discovery: 13 March 1781
Minimum distance from Earth: 2,581,900,000 km
Maximum distance from Earth: 3,157,300,000 km
Maximum apparent diameter from Earth: 4.1 arc seconds
Minimum apparent diameter from Earth: 3.3 arc seconds
Maximum visual magnitude: 5.32

Neptune
Mass: 102.43 x 1024 kg
Volume: 6,254 x 1010 km3
Average radius: 24,622 km
Average diameter: 49,244 km
Mean density: 1.638 g/cm3
Escape velocity: 23.5 km/s
Surface gravity: 11.15 m/s2
Natural satellites: 13
Rings? – Yes
Semimajor axis: 4,495,060,000 km
Orbit period: 60,189 days
Perihelion: 4,444,450,000 km
Aphelion: 4,545,670,000 km
Mean orbital velocity: 5.43 km/s
Orbit inclination: 1.769°
Orbit eccentricity: 0.0113
Sidereal rotation period: 16.11 hours
Length of day: 16.11 hours
Axial tilt: 28.32°
Discovery: 23 September 1846
Minimum distance from Earth: 4,305,900,000 km
Maximum distance from Earth: 4,687,300,000 km
Maximum apparent diameter from Earth: 2.4 arc seconds
Minimum apparent diameter from Earth: 2.2 arc seconds
Maximum visual magnitude: 7.78

We’ve written many articles about the Solar System. Here’s an article about how many moons there are in the Solar System, and here’s an article about the formation of the Solar System.

If you’d like more info on the Solar System, check out NASA’s Planetary Fact Sheet.

We’ve recorded several episodes of Astronomy Cast about the Solar System. Start here, Episode 49: Mercury.

Pluto Fact Sheet

Pluto's temperature makes it one of the coldest places in the Solar System.

The following Pluto fact sheet is based on NASA’s excellent planetary fact sheets. Pluto is no longer a planet, but a dwarf planet.

Mass: 0.0125 x 1024 kg
Volume: 0.715 x 1010 km3
Average radius: 1,195 km
Average diameter: 2,390 km
Mean density: 1.750 g/cm3
Escape velocity: 1.2 km/s
Surface gravity: 0.58 m/s2
Natural satellites: 3
Rings? – No
Semimajor axis: 5,906,380,000 km
Orbit period: 90,465 days
Perihelion: 4,436,820,000 km
Aphelion: 7,375,930,000 km
Mean orbital velocity: 4.72 km/s
Orbit inclination: 17.16°
Orbit eccentricity: 0.2488
Sidereal rotation period: 153.2928 hours
Length of day: 153.2820 hours
Axial tilt: 122.53°
Discovery: 18 February 1930
Minimum distance from Earth: 4,284,700,000 km
Maximum distance from Earth: 7,528,000,000 km
Maximum apparent diameter from Earth: 0.11 arc seconds
Minimum apparent diameter from Earth: 0.06 arc seconds
Maximum visual magnitude: 13.65

We’ve written many articles about Pluto for Universe Today. Here’s an article about why Pluto isn’t a planet any more, and here’s an article about the distance to Pluto.

If you’d like more info on Pluto, check out Hubblesite’s News Releases about Pluto, and here’s a link to NASA’s Solar System Exploration Guide to Pluto.

We’ve also recorded an entire episode of Astronomy Cast just about Pluto. Listen here, Episode 64: Pluto.

Neptune Fact Sheet

Neptune

[/caption]
The following Neptune fact sheet is based on NASA’s excellent planetary fact sheets. Neptune is the 8th planet from the Sun, and it requires a telescope to be able to see it.

Mass: 102.43 x 1024 kg
Volume: 6,254 x 1010 km3
Average radius: 24,622 km
Average diameter: 49,244 km
Mean density: 1.638 g/cm3
Escape velocity: 23.5 km/s
Surface gravity: 11.15 m/s2
Natural satellites: 13
Rings? – Yes
Semimajor axis: 4,495,060,000 km
Orbit period: 60,189 days
Perihelion: 4,444,450,000 km
Aphelion: 4,545,670,000 km
Mean orbital velocity: 5.43 km/s
Orbit inclination: 1.769°
Orbit eccentricity: 0.0113
Sidereal rotation period: 16.11 hours
Length of day: 16.11 hours
Axial tilt: 28.32°
Discovery: 23 September 1846
Minimum distance from Earth: 4,305,900,000 km
Maximum distance from Earth: 4,687,300,000 km
Maximum apparent diameter from Earth: 2.4 arc seconds
Minimum apparent diameter from Earth: 2.2 arc seconds
Maximum visual magnitude: 7.78

We’ve written many articles about Neptune for Universe Today. Here’s an article about the color of Neptune, and here’s an article about the atmosphere of Neptune.

If you’d like more info on Neptune, check out Hubblesite’s News Releases about Neptune, and here’s a link to NASA’s Solar System Exploration Guide to Neptune.

We’ve also recorded an entire episode of Astronomy Cast just about Neptune. Listen here, Episode 63: Neptune.

Uranus Fact Sheet

Uranus, seen by Voyager 2. Image credit: NASA/JPL

[/caption]
The following Uranus fact sheet is based on NASA’s excellent planetary fact sheets. Uranus is the 7th planet from the Sun, and it requires a telescope to be able to see it.

Mass: 86.832 x 1024 kg
Volume: 6,833 x 1010 km3
Average radius: 25,362 km
Average diameter: 50,724 km
Mean density: 1.270 g/cm3
Escape velocity: 21.3 km/s
Surface gravity: 8.87 m/s2
Natural satellites: 27
Rings? – Yes
Semimajor axis: 2,872,460,000 km
Orbit period: 30,685.4 days
Perihelion: 2,741,300,000 km
Aphelion: 3,003,620,000 km
Mean orbital velocity: 6.81 km/s
Orbit inclination: 0.772°
Orbit eccentricity: 0.0457
Sidereal rotation period: 17.24 hours
Length of day: 17.24 hours
Axial tilt: 97.77°
Discovery: 13 March 1781
Minimum distance from Earth: 2,581,900,000 km
Maximum distance from Earth: 3,157,300,000 km
Maximum apparent diameter from Earth: 4.1 arc seconds
Minimum apparent diameter from Earth: 3.3 arc seconds
Maximum visual magnitude: 5.32

We’ve written many articles about Uranus for Universe Today. Here’s an article about the atmosphere of Uranus, and here’s an article about a blue ring around Uranus.

If you’d like more info on Uranus, check out Hubblesite’s News Releases about Uranus. And here’s a link to the NASA’s Solar System Exploration Guide to Uranus.

We’ve also recorded an entire episode of Astronomy Cast just about Uranus. Listen here, Episode 62: Uranus.

Saturn Fact Sheet

Saturn. Image credit: Hubble

[/caption]
The following Saturn fact sheet is based on NASA’s excellent planetary fact sheets. Saturn is the 6th planet from the Sun, and the second largest planet in the Solar System.

Mass: 568.46 x 1024 kg
Volume: 82,713 x 1010 km3
Average radius: 58,232 km
Average diameter: 116,464 km
Mean density: 0.687 g/cm3
Escape velocity: 35.5 km/s
Surface gravity: 10.44 m/s2
Natural satellites: 60
Rings? – Yes
Semimajor axis: 1,433,530,000 km
Orbit period: 10,759.22 days
Perihelion: 1,352,550,000 km
Aphelion: 1,514,500,000 km
Mean orbital velocity: 9.69 km/s
Orbit inclination: 2.485°
Orbit eccentricity: 0.0565
Sidereal rotation period: 10.656 hours
Length of day: 10.656 hours
Axial tilt: 26.73°
Discovery: Known since prehistoric times
Minimum distance from Earth: 1,195,500,000 km
Maximum distance from Earth: 1,658,500,000 km
Maximum apparent diameter from Earth: 20.1 arc seconds
Minimum apparent diameter from Earth: 14.5 arc seconds
Maximum visual magnitude: 0.43

We’ve written many articles about Saturn for Universe Today. Here’s an article about the rotation of Saturn, and here’s an article about the atmosphere of Saturn.

If you’d like more info on Saturn, check out Hubblesite’s News Releases about Saturn. And here’s a link to the homepage of NASA’s Cassini spacecraft, which is orbiting Saturn.

We’ve also recorded an entire episode of Astronomy Cast just about Saturn. Listen here, Episode 59: Saturn.

Why Are There So Many Celestron Reviews?

Collimation
Collimation

I’ve had a couple of readers write me, wondering what was going on with all the Celestron telescope reviews. Are we sponsored by Celestron, or something? Nope. Let me just make this clear. We don’t get any money from any of the telescope manufacturers, or any kind of sponsorship at all. If and when we do, I’ll let you know.

So far, Celestron, Vixen and Sky Watcher are the only telescope manufacturers willing to send out a telescope for us to review, and then willing to pay for the return shipping to take it back off our hands again. If I have to pay to receive a telescope, or ship it back, we can’t afford to review it on Universe Today.

I know that really sets the bar pretty low. Universe Today received almost 2 million visitors last month, with 50,000 people subscribed to the RSS feed and daily email newsletter. Many of them are very interested in owning a telescope and would love to read about all the telescopes on the market. But I’m honestly exhausted trying to justify this to the manufacturers.

But so we’re clear, we’re not paid to give Celestron good reviews. If Tammy comes across as kind of enthusiastic in her reviews, well… that’s Tammy; she’s an enthusiastic force of nature. The manufacturers pay to ship the telescopes to and from our reviewers (well, Tammy), and then I pay Tammy for her reviews. If the telescope companies advertise on Universe Today, through Google, or through direct advertising, it doesn’t influence what Tammy has to say about them.

And if you’re a telescope manufacturer who wants to join this elite club of companies getting reviews on Universe Today, you just need to pay for the shipping. And if you want to advertise on Universe Today, just drop me an email.

P.S. I picked up a Celestron First Scope for the, uh, kids, and I really like it. Thanks to Tammy for the review, and thanks to the IYA for helping get it built.

How Old is Venus?

Solar nebula. Image credit: NASA

[/caption]
How old is Venus? Scientists actually think that everything in the Solar System was formed at the same time, about 4.6 billion years ago.

Before that point, our entire Solar System was just a vast cloud of hydrogen, helium and other trace elements. Some event, like a nearby supernova, caused the cloud to collapse through its mutual gravity. As the ball collapsed down, it started to spin because of the conservation of momentum from all the atoms in the cloud. As it spun, it flattened out into a disk. The Sun formed out of a bulge in the middle, and the planets formed in the disk.

The planet started out as nothing more than dust, but then these dust particles collided together, forming larger grains, pebbles, rocks, boulders and eventually planetoids. For the first few millions years, the Solar System was a dangerous place with these planetoids constantly crashing into one another. Life wouldn’t stand a chance to survive.

Eventually the number of objects in the Solar System was cleared out; they were either swept up into the planets, or kicked out of the Solar System by gravity. And we were left with the planets we have today.

Astronomers know that everything in the Solar System (including Venus) is roughly 4.6 billion years old through radioactive dating of meteorites. They can tell that all the meteorites in the Solar System were formed at the same time because of the percentages of radioactive elements they contain. And they’re able to determine how much of these radioactive elements have decayed over time, to determine their age.

So, how old is Venus? 4.6 billion years old, just like everything else in the Solar System.

We’ve written many articles about the age of objects in the Universe. Here’s an article about the age of the Universe, and here’s an article about the age of the Milky Way.

If you’d like more info on Venus, check out Hubblesite’s News Releases about Venus, and here’s a link to NASA’s Solar System Exploration Guide on Venus.

We’ve also recorded an episode of Astronomy Cast all about Venus. Listen here, Episode 50: Venus.

Venus Exploration

The first color pictures taken of the surface of Venus by the Venera-13 space probe. Credit: NASA
The first color pictures taken of the surface of Venus by the Venera-13 space probe. The Venera 13 probe lasted only 127 minutes before succumbing to Venus's extreme surface environment. Part of building a longer-lasting Venus lander is figuring out how to power it. Credit: NASA

[/caption]
Venus has been know to humanity since we first looked up into the sky; it’s the brightest object in the night sky after the Sun and the Moon, so it’s pretty hard to miss. But Venus exploration really began with the invention of the telescope.

Although he didn’t invent the telescope, Galileo Galilei was the first to point it at the heavens and make detailed observations of what he saw. In 1610 he discovered that Venus goes through phases, like the Moon. This is because Venus is closer to the Sun than the Earth, and so we’re seeing different amounts of the planet illuminated by the Sun. This provided more evidence that the Solar System orbits around the Sun, and not the Earth.

But even with bigger and better telescopes, astronomers weren’t able to penetrate the thick clouds that shroud Venus and see the terrain below. They imagined a warm rainforest jungle world, but astronomers eventually worked out that Venus is really covered in a thick atmosphere of carbon dioxide, and the ground below is heated to hundreds of degrees.

The first spacecraft to arrive at Venus was NASA’s Mariner 2, which flew past Venus in 1962. It was followed by spacecraft from Russia, including several that actually landed on the surface of Venus, and survived up to a few hours in the horrendous heat. NASA’s Magellan spacecraft was equipped with a radar instrument that could pierce through the atmosphere of Venus and reveal the terrain below. It showed that Venus has evidence of volcanism, and impact craters, but no plate tectonics. This helps contribute to its runaway greenhouse effect.

The most recent spacecraft sent to Venus is the European Space Agency’s Venus Express. It arrived at Venus in 2006, and has been making continuous observations of the planet ever since.

We’ve written many articles about the exploration of the planets in the Solar System. Here’s an article about the benefits of space exploration, and here’s an article about the Mars Exploration Rover.

If you’d like more information on the exploration of Venus, check out the homepage for ESA’s Venus Express, and here’s a link to the Venera Program.

We’ve also recorded an entire episode of Astronomy Cast all about Venus. Listen here, Episode 50: Venus.