Supernova

Crab Nebula

[/caption]
A supernova is the explosion of a star. In an instant, a star with many times the mass of our own Sun can detonate with the energy of a billion suns. And then, within just a few hours or days, it dims down again. Some explode into a spray of gas and dust, while others become exotic objects like neutron stars or black holes.

Astronomers have classified supernovae into two broad classifications: Type I and Type II. Type I supernovae occur in binary systems, where one star pulls off mass from a second star until it reaches a certain amount of mass. This causes it to explode as a supernova. Type II supernovae are the explosions of massive stars which have reached the end of their lives.

All of the elements heavier than iron were created in supernova explosions. As a massive star runs out of hydrogen fuel, it starts to fuse together heavier and heavier elements. Helium into carbon and oxygen. And then oxygen into heavier elements. It goes up the periodic table this way, fusing heavier elements until it reaches iron. Once a star reaches iron, it’s no longer able to extract energy from the fusion process. The core collapses down into a black hole, and the material around it is fused together into the elements heavier than iron. If you’re wearing any gold jewelry, that was created in a supernova.

In 1054 Chinese astronomers saw a supernova explosion that was so bright it was visible in the middle of the day. The explosion of gas and dust is now visible as the Crab Nebula (that’s the picture at the top of this article). The most recent powerful supernova explosion occurred in 1987, when a star exploded in the Large Magellanic Cloud.

Astronomers use Type I supernovae to judge distances in the Universe. This is because they always explode with approximately the same amount of energy. When a white dwarf star collected approximately 1.4 times the mass of the Sun, it can’t support its mass and collapses. This amount is called the Chandrasekhar Limit. When an astronomer sees a Type I supernova, they know how bright it is, and so they can measure how far away it is.

We’ve written many articles about supernovae for Universe Today. Here’s an article about a slow motion supernova, and here’s an article about a theoretical supernova that was actually found to exist.

If you’d like to see a gallery of supernova photographs, check out this section of the Hubble Space Telescope site, and here’s NASA’s Photo Gallery of Nebulae.

We’ve also recorded several episodes of Astronomy Cast about supernovas. Check out this one, Episode 14: We’re All Made of Supernovae.

References:
http://www.cfa.harvard.edu/supernova//newdata/supernovae.html
http://en.wikipedia.org/wiki/Chandrasekhar_limit

Helix Nebula

Helix Nebula

[/caption]
The Helix Nebula is one of the most familiar nebulae in astronomy, and it’s been nicknamed the “Eye of God”. Its official designation is NGC 7293, the Helix Nebula is located inside the constellation of Aquarius. The Helix Nebula is one of the closest examples of a planetary nebula. Astronomers have estimated its distance to only be 700 light-years away.

The central star of the Helix Nebula was once a star very similar to our own Sun. As the star neared the end of its life, it expanded into a red giant and puffed away its outer layers. The central star is destined to become a white dwarf star, as it slowly cools down. It’s no longer actively fusing hydrogen, and only shines with the remaining heat from when it was once a star.

The Helix Nebula that we see today is actually just a momentary phase in the death of the star. The inner layers of gas and dust expanding away from the central star were probably released about 6,500 years ago, with the outer layer released about 12,000 years ago. We can see them because they’re illuminated by the central star. But eventually they’ll get far enough away that they’re no longer bright enough to see. From that point on we’ll just see the central white dwarf star.

Because the Helix Nebula is so close, images from the Hubble Space Telescope revealed knots of material in the expanding shells of gas and dust. There are more than 20,000 of these knots in the nebula, and they have cometlike tails stretching away from the central star.

We’ve written many articles about the Eye of God nebula for Universe Today. Here’s an article about a new view into the Helix Nebula, and here’s an article about comets colliding inside the Helix Nebula.

Here’s a nice photograph of the Helix Nebula taken by the Hubble Space Telescope.

We’ve also recorded an episode of Astronomy Cast all about nebulae. Listen here, Episode 111: Nebulae.

Mars Video

Here’s a cool Mars video.

This is a Mars video that shows you how you can use Google Mars to explore the red planet.


This is a video of the Mars Exploration Rover program. It shows an animation of the rovers launching and landing on the surface of Mars.


Here’s a cool animation of the Mars Science Laboratory, renamed to the Curiosity Rover.


And this is an animation of the Phoenix Mars Lander which successfully touched down on the surface of Mars in 2008.

We’ve written many articles about Mars for Universe Today. Here’s an article about why Mars is red, and here’s an article about the gravity on Mars.

If you’d like more info on Mars, check out Hubblesite’s News Releases about Mars, and here’s a link to the NASA Mars Exploration home page.

We’ve also recorded several episodes of Astronomy Cast about Mars. Listen here, Episode 52: Mars.

Mars Exploration Rover

Mars Rover. Image credit: NASA/JPL

[/caption]

One of the most successful mission ever sent to Mars is the Mars Exploration Rover program, with the two rovers Spirit and Opportunity. They were launched separately to Mars in 2003 and landed safely several months later. They were supposed to last about 3 months on the surface of Mars, but have now survived more than 5 years.

Spirit and Opportunity used technology developed with the Mars Pathfinder mission. They used an airbag system to land on the surface of Mars without using retrorockets to touch down gently. They also use the rover technology first used with the Sojourner rover, but instead of operating from a base, Spirit and Opportunity were designed to be completely independent, able to communicate directly back to Earth.

The purpose of the Mars Exploration Rover mission (MER) was to search the surface of Mars for evidence of past water on the surface of Mars. Spirit landed in the huge Gusev Crater on Mars, a region that could have been an ancient lake on Mars. Opportunity touched down on the other side of the planet in a region called Meridiani Planum.

Both Spirit and Opportunity are equipped with solar panels that supply electricity to let them crawl around the surface of Mars, as well as their scientific instruments that let them study the surface of Mars and its rocks. They’re also equipped with a grinding tool that lets them scrape away the outer layer of rocks and see the material underneath.

Within just a few months of arriving on Mars, both Spirit and Opportunity fulfilled their mission objectives, and discovered evidence that large quantities of water used to be on the surface of Mars. Spirit discovered hints that water had acted on a rock called Humphrey, while Opportunity found layers of sedimentary rock that would have been formed by deposits in water. Both rovers continued to find additional evidence for the presence of water.

Over the course of their mission on the surface of Mars, both rover traveled several kilometers. Spirit climbed a small mountain, and Opportunity crawled into a large crater to sample the walls for evidence of past water. And both rovers continued to perform quite well, for many years beyond their original estimate life spans.

We have written many articles about the Mars Exploration Rovers for Universe Today. Here’s an article about the troubles for the Spirit rover, and here’s an article about Martian weather.

If you’d like more info on the rovers, you should check out the Mars Exploration Rover homepage from NASA.

We’ve also recorded several episodes of Astronomy Cast about the exploration of Mars. Start here, Episode 92: Missions to Mars, Part 1.

Source: NASA

Mars and Venus

Mars and Venus are the two terrestrial planets most similar to Earth. One orbits closer to the Sun, and one orbits more distant to the Sun. But both are visible with the unaided eye, and two of the brightest objects in the night sky.

Venus orbits at an average distance of only 108 million km from the Sun, while Mars is an average of 228 million km. Venus gets as close to Earth as 38 million km, and Mars gets as close as 55.7 million km.

In terms of size, Venus is almost a twin planet of Earth. Its diameter is 12,104 km, which is 95% the diameter of Earth. Mars is much smaller, with a diameter of only 6,792 km. And again, in terms of mass, Venus is almost Earth’s twin. It has 81% the mass of Earth, while Mars only has 10% the mass of Earth.

The climates of Mars and Venus are very different, and very different from Earth as well. Temperatures on the surface of Venus average 461 °C across the entire planet. That’s hot enough to melt lead. While the average temperature on Mars is a chilly -46 °C. This temperature difference comes from the fact that Venus is closer to the Sun, but also because it has a thick atmosphere of heat trapping carbon dioxide. The atmosphere on Venus is nearly 100 times thicker than Earth’s atmosphere at sea level, while the atmosphere on Mars is 1% the thickness of Earth.

Mars is the most studied planet in the Solar System (after the Earth). There have been dozens of missions sent to Mars, including orbiters and rovers. Although many missions have been lost, there have been several that have successfully orbited the planet and several that have landed on the surface. Missions have also been sent to Venus, and you might be surprised to know that the Soviets sent a series of landers called Venera that actually reached the surface of Venus and survived long enough to send back a few photographs.

Mars has two moons, Phobos and Deimos, while Venus has no moons. And neither planet has rings.

We’ve written many articles about Mars and Venus for Universe Today. Here’s an article about how the atmospheres of Mars and Venus leak into space, and a look at Venus wet past.

If you’d like more information on those two planets, here’s a link to NASA’s Solar System Exploration Guide on Venus, and Hubblesite’s News Releases about Mars.

We’ve also recorded several episodes of Astronomy Cast about the planets. Listen here, Episode 50: Venus and Episode 52: Mars.

Reference:
NASA

Mars Pathfinder

Mars pathfinder

[/caption]
Mars Pathfinder was NASA mission to Mars, which launched on December 4th, 1996 and landed on the surface of Mars on July 4, 1997. Unlike the missions that went before it, the Pathfinder lander was also equipped with a tiny rover called Sojourner, which could venture away from the lander, crawl around the surface of Mars and study rocks up close. It was a relatively inexpensive mission that tested out many of the technologies build into later missions, like the Mars Exploration rovers Spirit and Opportunity.

The purpose of Pathfinder was to prove that the concept of “faster, better and cheaper” missions would work. Pathfinder only cost $150 million and was developed in under 3 years. It was also sent to study the surface of Mars, including the geochemistry of the rocks, the magnetic properties of the surface and the structure of the planet’s atmosphere.

When the Pathfinder mission arrived at Mars, it entered the atmosphere and deployed a parachute. Instead of using retrorockets to land gently on the surface, however, Pathfinder used an airbag system. This allowed it to save fuel; instead of landing gently, it was dropped from an altitude of about 100 meters onto the Martian surface. It bounced several times and came to a rest before opening up like the petals of a flower. Once everything checked out, the tiny Sojourner Rover was deployed onto the surface of Mars.

The area around the Pathfinder site had many rocks, large and small, and the NASA scientists gave them unique names like “Barnacle Bill” and “Yogi”. Sojourner was able to crawl around and study these rocks up close. It was able to study the chemical makeup of the rocks, and confirmed that they formed from past volcanic activity. Over the course of the entire mission, Pathfinder and Sojourner returned 16,500 images and made millions of measurements of the Martian atmosphere.

Pathfinder stopped communicating with Earth after 83 days on the surface of Mars. Its battery was only designed to be recharged 40 times, and once its battery stopped working, the spacecraft was unable to keep its electronics heated in the cold Martian night. After it stopped communicating, NASA decided to name the lander after Carl Sagan. It became The Carl Sagan Memorial Station.

We have written many articles abut the Mars Pathfinder mission for Universe Today. Here’s an article about photos of Mars Pathfinder taken from orbit, and research about a cold and wet early Mars.

Here’s a link to the original mission homepage for the Mars Pathfinder.

We’ve recorded several episodes of Astronomy Cast about missions to Mars. Start here, Episode 92: Missions to Mars, Part 1.

Source: NASA

What Color is Venus?

Venus. Image Credit: NASA/courtesy of nasaimages.org



Here’s a question: what color is Venus? With the unaided eye, Venus just looks like a very bright star in the sky. But spacecraft have sent back images of the cloud tops of Venus, and some have even returned images from the surface of Venus.

If you could actually fly out to Venus and look at it with your own eyes, you wouldn’t see much more than a bright white-yellowish ball with no features. You wouldn’t actually be able to see any of the cloud features that you can see in photographs of Venus. That’s because those photos are taken using different wavelengths of light, where differences in the cloud layers are visible. For example, the photo that accompanies this story was captured in the ultraviolet spectrum.

Although the atmosphere of Venus is almost entirely made up of carbon dioxide, the clouds that obscure our view to the surface are made of sulfur dioxide. These are opaque to visible light, and so we can’t see through them to the surface of Venus. These clouds actually rain droplets of sulfuric acid.

Surface of Venus by Venera.
Surface of Venus by Venera.

If you could get down beneath the cloud tops of Venus, you wouldn’t be able to see much either. That’s because the clouds are so thick that most of the light from the Sun is blocked before it reaches the surface. You would see a dim landscape, like you might see at twilight. The surface of the planet is littered with brownish-red volcanic rocks. The bright red color you see in the Soviet Venera images of Venus have been brightened to show more surface detail.

So, what color is Venus? Yellowish-white.

We’ve written several articles about the color of the planets for Universe Today. Here’s an article about the color of Mercury, and here’s an article about the color of Pluto.

If you’d like more info on Venus, check out Hubblesite’s News Releases about Venus, and here’s a link to NASA’s Solar System Exploration Guide on Venus.

We’ve also recorded an entire episode of Astronomy Cast all about Venus. Listen here, Episode 50: Venus.

When Was Pluto Discovered?

Clyde Tombaugh

[/caption]
Five of the planets are visible with the unaided eye and have been known about for thousands of years. Uranus was discovered in 1781, and Neptune was found in 1846. but when was Pluto discovered?

Pluto was discovered February 18th, 1930 by Clyde Tombaugh at the Lowell Observatory in Flagstaff, Arizona. Now that Uranus and Neptune had been discovered, astronomers were certain that there were more planets in the outer Solar System. The director of the Lowell Observatory, Vesto Melvin Slipher, handed the job of finding this next planet, dubbed “Planet X” to the 23-year old Tombaugh.

Tombaugh used a tool called a “blink comparator” to compare two photographs of the night sky. He worked methodically, comparing two photographic plates, looking for any object that jumped from one night to another night. And finally on February 18th, 1930, Tombaugh discovered Pluto; a faint object in the right orbit.

The name for Pluto was chosen by an 11-year old British school girl named Venetia Burney. This continued the tradition of naming planets after Roman gods. Pluto was the Roman god of the underworld, the same as Hades in Greek mythology. It also matched the first initials of Percival Lowell, who the observatory was named after. Lowell died in 1916, and so he never saw the discovery of Pluto.

We have written many articles about the discovery of planets in the Solar System for Universe Today. Here’s an article about when Uranus was discovered, and here’s an article about when Neptune was discovered.

If you’d like more info on Pluto, check out Hubblesite’s News Releases about Pluto, and here’s a link to NASA’s Solar System Exploration Guide to Pluto.

We’ve also recorded a couple of episodes of Astronomy Cast about Pluto. Here’s a good one, Episode 64: Pluto and the Icy Outer Solar System.

When Was Jupiter Discovered?

Jupiter's Red Spot

[/caption]
Were you wondering when was Jupiter discovered? Well, there’s no way to know. Jupiter is one of the 5 planets visible with the unaided eye. If you go outside and Jupiter is up in the sky, it’s probably the brightest object up there, brighter than any star; only Venus is brighter. So the ancient people have known about Jupiter for thousands of years, and there’s no way to know when the first person noticed the planet.

Perhaps a better question to ask is, when did we realize that Jupiter was a planet? In ancient times, astronomers used to think that the Earth was the center of the Universe. This was the geocentric model. The Sun, the Moon, the planets, and even the stars all orbited around the Earth in a series of crystal shells. But one thing that was hard to explain was the strange movements of the planets. They would move in one direction, then stop and go backwards in a retrograde motion. Astronomers created ever more elaborate models to explain these bizarre movements.

But then in the 1500s Nicolaus Copernicus developed his model of a Sun-centered, or heliospheric model of the Solar System. The Sun was center of the Solar System, and the planets, including Earth and Jupiter orbited around it. This nicely explained the strange movements of the planets in the sky. They were really following a circular path around the Sun, but the Earth was also traveling around the Sun, and this created different speeds based on our perspective.

The first person to actually view Jupiter in a telescope was Galileo. Even with his rudimentary telescope, he was able to see bands across the planet, and the 4 large Galilean moons that have been named after him. The moons clearly were orbiting Jupiter, which broke the theory that everything in the Universe was orbiting the Earth.

With bigger telescopes, astronomers were able to see more details in Jupiter’s cloud tops and discover more moons. But it wasn’t until the space age that scientists got to really study Jupiter close up. NASA’s Pioneer 10 was the first spacecraft to fly past Jupiter in 1973. It passed within 34,000 km of the cloud tops.

We’ve written several articles about when the planets of the Solar System were discovered. Here’s an article about the discovery of Uranus, and here’s an article about the discovery of Neptune.

If you’d like more information on Jupiter, check out Hubblesite’s News Releases about Jupiter, and here’s a link to NASA’s Solar System Exploration Guide to Jupiter.

We’ve also recorded an entire episode of Astronomy Cast just about Jupiter. Listen here, Episode 56: Jupiter.

Reference:
NASA

Who Discovered Saturn?

Saturn. Image credit: Hubble

[/caption]
Were you wondering who discovered Saturn? Well, nobody knows. Here’s the problem. Saturn is one of the 5 planets that you can see with the unaided eye. In fact, if you’re seeing a bright star in the sky, there’s a good chance it’s Saturn. It takes a telescope to see the rings, but anybody can find Saturn, even in a bright city.

So perhaps a better question might be to ask, when did astronomers realize that Saturn was a planet? The ancient astronomers believed in the geocentric model of the Universe. The Earth was at the center of the Universe, and everything else orbited around it in crystal shells: the Sun, the Moon, the planets and the stars. One problem with this model was the strange movements of the planets. They would sometimes slow down, stop and even travel backwards in the sky. And to explain this, astronomers had to create elaborate models for the planets where the orbited inside spheres within spheres.

Anyway, this model was turned on its ear by Nicolaus Copernicus in the 1500s. He placed the Sun at the center of the Solar System, and had all the planets orbiting around it. This nicely explained the strange movements of the planets. They weren’t going backwards, it was just a change in perspective, since the Earth is also going around the Sun.

The first person to actually look at Saturn in a telescope was Galileo. He saw a strange oval-shaped planet. He thought the planet might have ears, or two small balls on either side. Later observations showed that these were actually Saturn’s grand ring system. Galileo also discovered Saturn’s moon Titan.

Better observations of Saturn by Giovanni Cassini turned up 4 additional moons of Saturn, as well a division in the rings that would later be named after him: the Cassini division.

But it wouldn’t be until 1979 that the first spacecraft flew past Saturn. NASA’s Pioneer 11 spacecraft made the journey, getting within 20,000 km of the planet’s cloud tops. This was followed by the Voyager spacecraft, and eventually NASA’s Cassini spacecraft that’s orbiting the planet today. All of our best images of Saturn were sent back by orbiting spacecraft.

We have written many articles about the discovery of planets for Universe Today. Here’s an article about the discovery of Uranus, and here’s an article about the discovery of Neptune.

If you’d like more info on Saturn, start with the NASA Cassini mission homepage. That’s where you’ll see all the latest news and photos sent back from Saturn. Then check out Hubblesite’s News Releases about Saturn.

We’ve also recorded an entire episode of Astronomy Cast just about Saturn. Check it out here, Episode 59: Saturn.

Reference:
NASA