Special Guest:
Nic DiPalma is the Founder and CEO of SpacetimeLabs, a ‘creative agency’ for science – a team of award-winning designers, producers, and developers creating brands, communication strategies, and digital content for the science community. With 20 years’ experience as a creative director, designer, and entrepreneur in educational media, public television, broadcast/cable news, corporate brand strategy, and experience design for web and mobile products, Nic is helping scientists and researchers engage the public to inspire a deeper connection and greater support.
We use a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!
If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!
If you’d like to join Fraser and Paul Matt Sutter on their tour to Iceland in February, 2018, you can find the information at astrotouring.com.
If you would like to sign up for the AstronomyCast Solar Eclipse Escape, where you can meet Fraser and Pamela, plus WSH Crew and other fans, visit our site here and sign up!
We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Universe Today, or the Universe Today YouTube page
Ask me my favorite object in the Solar System, especially to see through a telescope, and my answer is always the same: Saturn.
Saturn is this crazy, ringed world, different than any other place we’ve ever seen. And in a small telescope, you can really see the ball of the planet, you can see its rings. It’s one thing to see a world like this from afar, a tiny jumping image in a telescope. To really appreciate and understand a place like Saturn, you’ve got to visit.
And thanks to NASA’s Cassini spacecraft, that’s just what we’ve been doing for the last 13 years. Take a good close look at this amazing ringed planet and its moons, and studying it from every angle.
Throughout this article, I’m going to regale you with the amazing discoveries made by Cassini at Saturn. What it taught us, and what new mysteries it uncovered.
NASA’s Cassini spacecraft was launched from Earth on October 15, 1997. Instead of taking the direct route, it made multiple flybys of Venus, a flyby of Earth and a flyby of Jupiter. Each one of these close encounters boosted Cassini’s velocity, allowing it to make the journey with less escape velocity from Earth.
It arrived at Saturn on July 1st, 2004 and began its science operations shortly after that. The primary mission lasted 4 years, and then NASA extended its mission two more times. The first ending in 2010, and the second due to end in 2017. But more on that later.
Before Cassini, we only had flybys of Saturn. NASA’s Pioneer 11, and Voyagers 1 and 2 both zipped past the planet and its moons, snapping pictures as they went.
But Cassini was here to stay. To orbit around and around the planet, taking photos, measuring magnetic fields, and studying chemicals.
For Saturn itself, Cassini was able to make regular observations of the planet as it passed through entire seasons. This allowed it to watch how the weather and atmospheric patterns changed over time. The spacecraft watched lightning storms dance through the cloudtops at night.
Two highlights. In 2010, Cassini watched a huge storm erupt in the planet’s northern hemisphere. This storm dug deep into Saturn’s lower atmosphere, dredging up ice from a layer 160 kilometers below and mixing it onto the surface. This was the first time that astronomers were able to directly study this water ice on Saturn, which is normally in a layer hidden from view.
The second highlight, of course, is the massive hexagonal storm churning away in Saturn’s northern pole. This storm was originally seen by Voyager, but Cassini brought its infrared and visible wavelength instruments to bear.
Why a hexagon? That’s still a little unclear, but it seems like when you rotate fluids of different speeds, you get multi-sided structures like this.
Cassini showed how the hexagonal storm has changed in color as Saturn moved through its seasons.
This is one of my favorite images sent back by Cassini. It’s the polar vortex at the heart of the hexagon. Just look at those swirling clouds.
Now, images of Saturn itself are great and all, but there was so much else for Cassini to discover in the region.
Cassini studied Saturn’s rings in great detail, confirming that they’re made up of ice particles, ranging in size as small a piece of dust to as large as a mountain. But the rings themselves are actually quite thin. Just 10 meters thick in some places. Not 10 kilometers, not 10 million kilometers, 10 meters, 30 feet.
The spacecraft helped scientists uncover the source of Saturn’s E-ring, which is made up of fresh icy particles blasting out of its moon Enceladus. More on that in a second too.
Here’s another one of my favorite images of the mission. You’re looking at strange structures in Saturn’s B-ring. Towering pillars of ring material that rise 3.5 kilometers above the surrounding area and cast long shadows. What is going on here?
They’re waves, generated in the rings and enhanced by nearby moons. They move and change over time in ways we’ve never been able to study anywhere else in the Solar System.
Cassini has showed us that Saturn’s rings are a much more dynamic place than we ever thought. Some moons are creating rings, other moons are absorbing or distorting them. The rings generate bizarre spoke patterns larger than Earth that come and go because of electrostatic charges.
Speaking of moons, I’m getting to the best part. What did Cassini find at Saturn’s moons?
Let’s start with Titan, Saturn’s largest moon. Before Cassini, we only had a few low resolution images of this fascinating world. We knew Titan had a dense atmosphere, filled with nitrogen, but little else.
Cassini was carrying a special payload to assist with its exploration of Titan: the Huygens lander. This tiny probe detached from Cassini just before its arrival at Saturn, and parachuted through the cloudtops on January 14, 2005, analyzing all the way. Huygens returned images of its descent through the atmosphere, and even images of the freezing surface of Titan.
But Cassini’s own observations of Titan took the story even further. Instead of a cold, dead world, Cassini showed that it has active weather, as well as lakes, oceans and rivers of hydrocarbons. It has shifting dunes of pulverized rock hard water ice.
If there’s one place that needs exploring even further, it’s Titan. We should return with sailboats, submarines and rovers to better explore this amazing place.
We learned, without a shadow of a doubt, that Mimas absolutely looks like the Death Star. No question. But instead of a megalaser, this moon has a crater a third of its own size.
Cassini helped scientists understand why Saturn’s moon Iapetus has one light side and one dark side. The moon is tidally locked to Saturn, its dark side always leading the moon in orbit. It’s collecting debris from another Saturnian moon, Phoebe, like bugs hitting the windshield of a car.
Perhaps the most exciting discovery that Cassini made during its mission is the strange behavior of Saturn’s moon Enceladus. The spacecraft discovered that there are jets of water ice blasting out of the moon’s southern pole. An ocean of liquid water, heated up by tidal interactions with Saturn, is spewing out into space.
And as you know, wherever we find water on Earth, we find life. We thought that water in the icy outer Solar System would be hard to reach, but here it is, right at the surface, venting into space, and waiting for us to come back and investigate it further.
On September 15, 2017, the Cassini mission will end. How do we know it’s going to happen on this exact date? Because NASA is going to crash the spacecraft into Saturn, killing it dead.
That seems a little harsh, doesn’t it, especially for a spacecraft which has delivered so many amazing images to us over nearly two decades of space exploration? And as we’ve seen from NASA’s Opportunity rover, still going, 13 years longer than anticipated. Or the Voyagers, out in the depths of the void, helping us explore the boundary between the Solar System and interstellar space. These things are built to last.
The problem is that the Saturnian system contains some of the best environments for life in the Solar System. Saturn’s moon Enceladus, for example, has geysers of water blasting out into space.
Cassini spacecraft is covered in Earth-based bacteria and other microscopic organisms that hitched a ride to Saturn, and would be glad to take a nice hot Enceladian bath. All they need is liquid water and a few organic chemicals to get going, and Enceladus seems to have both.
NASA feels that it’s safer to end Cassini now, when they can still control it, than to wait until they lose communication or run out of propellant in the future. The chances that Cassini will actually crash into an icy moon and infect it with our Earth life are remote, but why take the risk?
For the last few months, Cassini has been taking a series of orbits to prepare itself for its final mission. Starting in April, it’ll actually cross inside the orbit of the rings, getting closer and closer to Saturn. And on September 15th, it’ll briefly become a meteor, flashing through the upper atmosphere of Saturn, gone forever.
Even in its final moments, Cassini is going to be sciencing as hard as it can. We’ll learn more about the density of consistency of the rings close to the planet. We’ll learn more about the planet’s upper atmosphere, storms and clouds with the closest possible photographs you can take.
And then it’ll all be over. The perfect finale to one of the most successful space missions in human history. A mission that revealed as many new mysteries about Saturn as it helped us answer. A mission that showed us not only a distant alien world, but our own planet in perspective in this vast Solar System. I can’t wait to go back.
How have the photos from Cassini impacted your love of astronomy? Let me know your thoughts in the comments.
Special Guest:
Dr. Alan Stern is the Principal Investigator on the New Horizons mission. He will be joining us today to update everyone on what we now know about Pluto now that all of the New Horizons data have been received.
We use a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!
If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!
If you’d like to join Fraser and Paul Matt Sutter on their tour to Iceland in February, 2018, you can find the information at astrotouring.com.
If you would like to sign up for the AstronomyCast Solar Eclipse Escape, where you can meet Fraser and Pamela, plus WSH Crew and other fans, visit our site here and sign up!
We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Universe Today, or the Universe Today YouTube page
If we look back into the geologic record of the Earth, it appears that our planet’s magnetic field flips polarity every few hundred thousand years or so. Why does this happen? When’s it supposed to happen next? Is it dangerous?
We usually record Astronomy Cast as a live Google+ Hangout on Air every Friday at 1:30 pm Pacific / 4:30 pm Eastern. You can watch here on Universe Today or from the Astronomy Cast Google+ page.
We use a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!
If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!
If you would like to sign up for the AstronomyCast Solar Eclipse Escape, where you can meet Fraser and Pamela, plus WSH Crew and other fans, visit our site linked above and sign up!
We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Universe Today, or the Universe Today YouTube page<
Want to travel the world but you don’t have a lot of money? No problem, your continent is drifting across the surface of the Earth right now. In a few million years, you’ll reach your destination.
We usually record Astronomy Cast as a live Google+ Hangout on Air every Friday at 1:30 pm Pacific / 4:30 pm Eastern. You can watch here on Universe Today or from the Astronomy Cast Google+ page.
Special Guest:
Samuel Mason is the Director of the Tesla Science Foundation, NJ Chapter. The mission of the Tesla Science Foundation is to establish and promote the recognition and awareness of Nikola Tesla’s inventions, patents, theories, philosophies, lectures, and innovations. Guests:
We use a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!
If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!
If you would like to sign up for the AstronomyCast Solar Eclipse Escape, where you can meet Fraser and Pamela, plus WSH Crew and other fans, visit our site linked above and sign up!
We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Universe Today, or the Universe Today YouTube page
There are regular volcanoes, and then there are the supervolcanoes. Massive calderas of hot magma of incomprehensible size. Bad news, these things explode randomly and catastrophically. Worse news, there are a bunch around the Earth.
We usually record Astronomy Cast as a live Google+ Hangout on Air every Friday at 1:30 pm Pacific / 4:30 pm Eastern. You can watch here on Universe Today or from the Astronomy Cast Google+ page.
We use a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!
If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!
If you would like to sign up for the AstronomyCast Solar Eclipse Escape, where you can meet Fraser and Pamela, plus WSH Crew and other fans, visit our site linked above and sign up!
We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Universe Today, or the Universe Today YouTube page<
When I look at the Sun, I don’t see a warm life-giving orb, nourishing all living creatures here on Earth. No, I see that fiery ball as a cosmic garbage compactor. A place I can dump all my household garbage, to make room for new impulse purchases.
I mean, the Sun is right there, not doing anything right? It’s hotter than any garbage incinerator, and it’s the gravitational well at the heart of the Solar System. Get me a rocket, let’s blast that waste into oblivion.
Okay, I suspect it’s going to get expensive, so let’s just start with the worst garbage on Earth: nuclear waste. You know, the byproduct of nuclear reactors that generate electricity for many parts of the world. This stuff is highly toxic and it’s going to be around for hundreds of thousands of years.
It’s also pretty dense, maybe it does make sense to get this stuff off Earth and into the Sun? Let’s run the numbers.
Nuclear waste, or radioactive waste, of course, is anything leftover material that still has radioactivity. For the most part, we get this as the leftover material from nuclear power reactors, but it’s also generated by hospitals, and nuclear weapons manufacturing. We’ve got leftover nuclear waste from uranium mining, radium processing, and various civil and military research projects.
For example, when you mine uranium from the ground, you get leftover radium and radioactive rock, soil, and even the water. When you power a nuclear reactor, the spent fuel rods are still highly radioactive and dangerous. In the United States alone, there are hundreds of different sites which are heavily contaminated, over thousands of acres.
According to the World Nuclear Association, OPEC nations generate 300 million tonnes of toxic waste every year. We’re talking about poisonous chemicals, medical waste, coal dust. Really anything that you don’t want anywhere near you, or inside you.
Just to give you a sense of scale, that’s a cube of toxic poisons nearly a kilometer to a side, assuming the stuff is a little more dense than water.
Out of this, only 97,000 tonnes of nuclear waste is generated across the planet every year. This is radioactive wastes of all types. That’s only .03% of all the toxic waste.
But for the purpose of our calculations, I’m going to zero in on the most toxic, most radioactive material we’re dealing with: the high-level waste produced by nuclear reactors. Now we’re merely talking about 12,000 tonnes per year, or 12% of the nuclear waste showing up on our planet every year.
Now, let’s look at launch costs. Most rocket companies are going to charge you $10,000 to $20,000 per kilogram to blast a payload into Low Earth Orbit. The best deal on the market right now is SpaceX at around $4,000 USD per kilogram. And if they get the Falcon Heavy flying this year, it could bring the price down to around $2,500 per kilogram.
If all we wanted to do was blast all this waste into Low Earth Orbit, the calculations are pretty simple. 12,000 tonnes is 12 million kilograms. Multiply that by $2,500 per kilogram, and you get 30 billion dollars. You’re looking at 240 Falcon Heavy launches per year. Almost a launch every single day carrying a payload of high-level nuclear waste. Out of sight, out of mind.
That’s a lot of money, but in theory, the world could afford it if they wanted to stop having wars, or something. If they wanted to blast off all the nuclear waste, it would be more like 250 billion. Again. An incomprehensible amount of money, but still within the realm of possibility, assuming that SpaceX gets the Falcon Heavy launching, lofting payloads of nuclear waste 50 tonnes at a time.
But this is Low Earth Orbit, and we don’t want to go there. Anything in LEO still experiences friction from the Earth’s atmosphere, and eventually it’s going to return back to Earth. Imagine regular meteor showers of highly radioactive plutonium. That would be bad.
It would be more safer to launch this stuff into Geostationary Orbit, where the television satellites are broadcasting from. Material in this orbit can be expected to hang around for a long long time.
You’re looking at twice the price to blast off to GEO, so go ahead and double your costs to put that stuff safely out into space. 60 billion dollars for high-level waste. 500 billion for all the nuclear waste.
I’m sure SpaceX will give you a volume discount. And there might be smarter orbits where the waste has totally decayed into something safer by the time it re-enters the Earth’s atmosphere. What I’m saying is, there might be some cost savings.
Let’s say we’ve run all these numbers, and the cost is still worth it. But here’s the problem, rockets fail on a regular basis. They explode on the launch pad, or on their way to orbit. One bad explosion could spray highly toxic plutonium across a huge swath of the planet.
For one rocket, there’s a pretty low risk. Rockets are about 95% reliable, which means that 1 in 20 is going to fail somehow. If you’re only launching 240 rockets, you’re looking at 12 failure, some of which will be detonations on the launch pad, or explosions at a high altitude. At that rate, we’re guaranteed that it’ll always be cloudy with a chance of plutonium rain somewhere on Earth.
If having thousands of tonnes of nuclear waste hanging over your head makes you nervous, then you’re going to want to hear about more, permanent options. Let’s crash that stuff into the Sun.
It turns out, blasting it into the Sun is much much more expensive. Here’s why: You’d think that just blasting your waste into space means that it would just fall into the Sun, but your waste is still orbiting the Sun at the Earth’s velocity – 30 m/s sideways.
In order to actually get it to drop into the Sun, you need to cancel out the orbital velocity. In other words, you need to give your rocket about 31.7 m/s in velocity, to account for the atmosphere drag of Earth, and then cancel out the orbital velocity.
NASA’s New Horizons spacecraft needed 16.1 m/s to reach Pluto, so you’re talking about double the velocity.
To be fair, New Horizons and other spacecraft use gravitational slingshots to steal velocity from Jupiter and other planets, so it’s possible you could perform some complicated trajectory sweeping past the various planets to get the change in velocity you need. I haven’t done the math, but let’s just assume, there could be savings.
If you don’t cancel out that motion, your nuclear waste is going to just orbit the Sun forever, like an asteroid of garbage.
There’s another path you could take. Instead of trying to drop down into the Sun, you fly outwards until you’ve almost escaped the pull of the Sun. Where the angular momentum, that sideways motion, is almost zero. Cancel that out with a little thrust, and then let the Sun’s gravity pull your waste back down to its doom.
It’ll take hundreds or even thousands of years, but there would be cost savings. Then you only need to gain about 16.5 m/s in velocity.
Rockets need to carry more of their payload as fuel if they’re going to gain higher velocities. A Falcon Heavy can carry more than 54 tonnes to Low Earth Orbit, but only 2.9 tonnes to Pluto.
In other words, using the most efficient trajectory, you’d still need about 20 times more rockets to blast your fuel into the Sun. In other words, multiple your costs by a factor of 20.
$1.2 trillion to launch the high-level waste into the Sun on a trajectory that takes a long long time.
The bottom line is that blasting our nuclear waste off into space, into the Sun, is just too expensive – by several orders of magnitude. Not to mention incredibly dangerous for the inevitable rocket failures that will compound the problem.
No, we need to learn how to recycle nuclear waste, to make it less toxic. We need to be willing to spend the resources to properly clean up contaminated sites, and we need to careful consider the long term consequences of how we generate our energy. Not just with nuclear power, but with any polluting form of energy generation.
But you know what idea I like even better? I agree with Jeff Bezos when he says that we’re eventually going to want to move all heavy industry and manufacturing off Earth and out into space.
Instead of cleaning the waste out of our environment, let’s mine it, refine it and manufacture it out in space in the first place. Then we can send the products back to Earth, and skip most of the pollution.
Now I’ve done the numbers, what do you think? Still worth it to launch nuclear waste into space? Let me know your thoughts in the comments.