Finding Dark Energy in a Supercomputer

mapofmatterintheuniversedarkenergyrelease.thumbnail.jpg

Dark energy is probably the most influential force in the cosmos, overwhelming the pull of dark matter, and absolutely dominating the meager impact of regular matter. And scientists have absolutely no idea what it is. But a new supercomputer simulation by cosmologists at Durham University might give astronomers a few places to look; to know how to measure this mysterious force.

When dark energy was discovered in 1998, it came as a complete surprise. By measuring the distance to supernovae, astronomers were hoping to calculate the rate at which the Universe’s expansion is slowing down. Instead of slowing down, though, they found that the expansion of the Universe is actually accelerating. Instead of coming together in a big crunch, it looks like dark energy will spread the Universe out faster and faster.

Physicists now believe that dark energy makes up 70% of the Universe, with the remaining amount made of mostly dark matter, and a sprinkling of regular matter. Since that discovery, astronomers haven’t been able to find the source of this dark energy.

So a new simulation, run on Durham University’s Cosmology Machine supercomputer could help astronomers in their search. The simulation looked at the tiny ripples in the distribution of matter in the Universe made by sound waves a few hundred thousand years after the Big Bang. These ripples have long since been destroyed by the 13.7 billion years of the lifetime of the Universe, but the simulations show they might have survived in some conditions.

By changing the nature of dark energy, the researchers found that the ripples changed in length. In other words, if astronomers can find the ripples in the real Universe, this can help constrain the parameters for dark energy.

Durham University Professor Carlos Frenk said, “the ripples are a gold standard. By comparing the size of the measured ripples to the gold standard we can work out how the Universe has expanded and from this figure out the properties of the dark energy.”

An upcoming ESA mission called the SPectroscopic All-sky Cosmic Explorer (SPACE) should have the capabilities to detect these ripples, and so help put some constraints on the nature of dark energy.

If all goes well, SPACE will launch in 2017.

Original Source: Durham University News Release

Podcast: How to Win a Nobel Prize

pamelafraserrecording2.thumbnail.jpg

Just a couple of shows ago, we showed you how to get a career in astronomy. Now that you’ve got your career in astronomy, obviously the next goal is to win a Nobel prize. We’re here at the American Astronomical Society meeting in Austin, which is just one tiny step that a person has to take before you get that Nobel prize. Before you get that call in the middle of the night from Sweden, you’re going to need to come with an idea, do some experiments, write a paper, get published and a bunch of other stuff. This week, we’ll tell you all about it.

Click here to download the episode

How To Win a Nobel Prize – Show notes and transcript

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

Red Dwarfs Have Teeny Tiny Habitable Zones

dn9704-1_450.thumbnail.jpg

As space telescopes get larger and more sensitive, the search for Earth-sized worlds surrounding other stars is about to get rolling. But astronomers are going to need to know where to look. A team of researchers are working on a survey of nearby stars, calculating the habitable zones around them. When the search begins, astronomers are going to want to study these regions.

The Research Consortium on Nearby Stars (RECONS) is a survey using relatively small telescopes to study the habitable zones in the nearby stars. The team uses measurements of various stars brightnesses at optical and infrared wavelengths matched with their distances to get a sense of the stars’ habitability.

After gathering together a big list of potential candidate stars, the researchers can then categorize stars by size and temperature to find ones that might harbour life.

“Once we have good values for the temperatures and sizes of the nearby stars, we can estimate how hot planets will be at different distances from the stars,” explains Justin Cantrell, a Doctoral Candidate in Astronomy at Georgia State University. “We consider those stars that would have surface temperatures suitable for liquid water to be in the traditional habitable zone.”

The researchers were looking for habitable zones around red dwarf stars, which can be 50-90% smaller than the Sun and much cooler. The comprise 70% of the stars in the Milky Way, but they’re harder to spot because they put out less light.

They were surprised to learn that these red dwarf stars have tiny habitable zones. When they added up the habitable zones of 44 red dwarf stars nearby the Sun, they found they didn’t add up to equal the habitable zone of a single Sun like star.

So even though these red dwarfs are common, they’re not great candidates for life. Earth-type stars would need to be perfectly positioned in their tiny habitable zones to be good candidates for life.

Original Source: Georgia State University News Release

Gas Cloud on Collision Course with the Milky Way

sci_jay.thumbnail.jpg

Don’t panic, but there’s a giant cloud of hydrogen gas on a collision course with the Milky Way. When it hits, 40 million years from now, it should generate vast regions of star formation. In fact, we don’t even need to wait; the leading edge of this gas cloud is already starting to interact with our galaxy. The fireworks are about to begin.

The cloud is called Smith’s Cloud, after the astronomer who discovered it in 1963. It’s 11,000 light-years long and 2,500 light-years wide, and contains enough hydrogen to make a million stars with the mass of the Sun.

Felix J. Lockman, of the National Radio Astronomy Observatory (NRAO) announced their latest observations of Smith’s Cloud at the Winter meeting of the American Astronomical Society in Austin, Texas. According to Lockman, the cloud is located 8,000 light-years from the Milky Way’s disk, and hurtling towards us at 240 km/second (150 miles/second).

“This is most likely a gas cloud left over from the formation of the Milky Way or gas stripped from a neighbor galaxy. When it hits, it could set off a tremendous burst of star formation. Many of those stars will be very massive, rushing through their lives quickly and exploding as supernovae. Over a few million years, it’ll look like a celestial New Year’s celebration, with huge firecrackers going off in that region of the galaxy,” Lockman said.

Until this latest research, astronomers were never sure if Smith’s Cloud was actually part of the Milky Way, being blown out of the galaxy, or something falling in.

Lockman and his colleagues made 40,000 individual pointings of the Green Bank radio telescope to pull together the data for their observations. This was necessary because the cloud is so vast.

“If you could see this cloud with your eyes, it would be a very impressive sight in the night sky,” Lockman said. “From tip to tail it would cover almost as much sky as the Orion constellation. But as far as we know it is made entirely of gas – no one has found a single star in it.”

Original Source: NRAO News Release

Fat Black Holes Can Lurk in Thin Galaxies

ssc2008-01b_medium.thumbnail.jpg

Supermassive black holes are thought to lurk at the heart of most galaxies. Scientists have long believed that only the galaxies with thick central bulges could pull together enough mass for a supermassive black hole to form. But NASA’s Spitzer Space Telescope has turned up evidence that even skinny galaxies, with no central bulge, can still form these galactic monsters.

Astronomers used the Spitzer Space Telescope to survey 32 flat and bulgeless galaxies, and still turned up supermassive black holes in their central cores. This means that galaxy bulges aren’t necessary to build up these black holes; instead, the mysterious and invisible dark matter might be necessary to bring them together.

“This finding challenges the current paradigm. The fact that galaxies without bulges have black holes means that the bulges cannot be the determining factor, said Shobita Satyapal of George Mason University, presenting her research at the American Astronomical Society’s Winter meeting in Austin. “It’s possible that the dark matter that fills the halos around galaxies plays an important role in the early development of supermassive black holes.”

Seen from edge on, our own Milky Way’s bulge would be clearly visible, with the thin spiral arms trailing away to the sides. And researchers know we have a supermassive black hole. Researchers used to think there was a direct connection between the size of the bulge, and the mass of the black hole.

But in 2003, astronomers discovered a relatively lightweight black hole in a galaxy without a bulge. And then earlier this year, Satyapal and her team found another example of this bulgeless black hole.

Since bulges don’t seem to matter, Satyapal suggests that a galaxy’s dark matter halo is the deciding factor to determine how massive a black hole can get.

“Maybe the bulge was just serving as a proxy for the dark matter mass – the real determining factor behind the existence and mass of a black hole in a galaxy’s center,” said Satyapal.

Original Source: Spitzer News Release

Super-Neutron Stars are Possible

122042main_shy_star_burst_lgweb.thumbnail.jpg

When a star like our Sun dies, it’ll end up as a white dwarf. And if a star contains 1.4 times the mass of the Sun, it’ll have enough gravity to turn into a neutron star. Much bigger stars turn into black holes. But now it turns out, neutron stars can be much more massive than astronomers previously believed – and making black holes might be much more difficult.

Astronomers working with the Arecibo Observatory in Puerto Rico have increased the mass limit you need for a neutron star to turn into a black hole.

Paulo Freire, an astronomer from Arecibo presented his latest research at the Winter meeting of the American Astronomical Society, “the matter at the center of a neutron star is highly incompressible. Our new measurements of the mass of neutron stars will help nuclear physicists understand the properties of super-dense matter. It also means that to form a black hole, more mass is needed than previously thought. Thus, in our universe, black holes might be more rare and neutron stars slightly more abundant.

When these massive stars run out of fuel, they collapse down and then explode as a supernova. The core of the star is instantly compressed into a neutron star; an extreme object with a radius of roughly 10 to 16 km across and a density of billions of tonnes per cubic centimetre. A neutron star acts like a single, giant atomic nucleus.

Astronomers used to think that neutron stars needed between 1.6 and 2.5 times the mass of the Sun to collapse – any bigger and you’d get a neutron star. But the new evidence from Arecibo pushes this limit up to 2.7 times the mass of the Sun.

Although that sounds like a slight amount, it can actually have a significant impact on the ratio of neutron stars to black holes in the Universe.

In fact, scientists don’t fully understand how dense neutron stars can really be, and when they might actually switch over to become black holes, “the matter at the center of neutron stars is the densest in the Universe. It is one to two orders of magnitude denser than matter in the atomic nucleus. It is so dense we don’t know what it is made out of,” said Freire. “For that reason, we have at present no idea of how larger or how massive neutron stars can be.”

Original Source: Cornell University

Galaxy’s Arms are Rotating Backwards

ngc4622_full.thumbnail.jpg

As galaxies rotate, their spiral arms usually sweep back, trailing behind the rotation of the galaxy. But astronomers have found a galaxy that defies this convention, with its arms opening outward in the same direction as the rotation of the galaxy’s disk.

The galaxy, known as NGC 4622, lies 200 million light years away in the constellation Centaurus. A team of American astronomers analyzed images of the galaxy, and discovered that it has a previously hidden inner counter clockwise pair of spiral arms.

“Contrary to conventional wisdom, with both an inner counter-clockwise pair and an outer clockwise pair of spiral arms, NGC 4622 must have a pair of leading arms,” said Dr. Gene Byrd from the University of Alabama. “With two pairs of arms winding in opposite directions, one pair must lead and one pair must trail. Which way is which depends on the disk’s rotation. Alternatively, the inner counter clockwise pair must be the leading pair if the disk turns counter clockwise.”

This isn’t the first time the team announced their findings that NGC 4622 had a leading pair of spiral arms. Other astronomers were skeptical of the result, since the galaxy disk is only tilted 19 degrees from face-on, and clumpy clouds of dust could confuse the results.

The researchers came back and used two different independent techniques to verify the direction the arms are spinning.

Further observations are coming, since images from the Hubble Space Telescope revealed a dark dust lane in the centre of the galaxy. This suggests that NGC 4622 may have consumed a smaller companion galaxy, and this could help explain where the additional spiral arms came from.

Original Source: University of Alabama News Release

Death Echos of Material Destroyed Near a Black Hole

207546main_blackhole_art.thumbnail.jpg

Greedy black holes can only consume so much material. The leftover matter backs up into an accretion disk surrounding the black hole. The pull of the black hole is so strong that flashes of radiation emitted from this accretion disk might need to make several orbits around the black hole before it can actually escape the gravitational pull. And these echoes might serve as a probe, allowing astronomers to understand the nature of the black hole itself.

Keigo Fukumura and Demosthenes Kazanas from NASA’s Goddard Space Flight Center revealed their theoretical research at the Winter meeting of the American Astronomical Society.

“The light echoes come about because of the severe warping of spacetime predicted by Einstein,” said Fukumura. “If the black hole is spinning fast, it can literally drag the surrounding space, and this can produce some wild special effects.”

Black holes are surrounded by a disk of searing hot gas rotating at close to the speed of light. A black hole can only consume material so quickly, so any additional matter backs up into this accretion disk. The material in these disks can form hot spots which emit random bursts of X-rays.

When the researchers accounted for the predictions made by Einstein’s general theory of relativity, they realized that the severe warp of spacetime can actually change the path X-rays take as they escape the grasp of the black hole. The X-rays can actually be delayed, depending on the position of the black hole, the position of the flare, and Earth.

If the black hole is rotating at the most extreme speeds, photons can actually make several orbits around the black hole before escaping.

“For each X-ray burst from a hot spot, the observer will receive two or more flashes separated by a constant interval, so even a signal made up from a totally random collection of bursts from hot spots at different positions will contain an echo of itself,” says Kazanas.

Astronomers watching these flashes will have a powerful observational tool they can use to probe the nature of the black hole. The frequency of the flashes would provide astronomers with an accurate way to measure the mass of the black hole.

Original Source: NASA News Release

Black Holes Seen Spinning at the Limits Predicted by Einstein

bh_spin_comp.thumbnail.jpg

The supermassive black holes that lurk at the hearts of the most massive galaxies might be spinning faster than astronomers ever thought. In fact, they might be spinning at the very limits predicted by Einstein’s theory of relativity. Perhaps it’s this extreme rotational speed that generates the energetic jets that blast out of the most massive and active galaxies.

Astronomers used NASA’s Chandra X-Ray Observatory to study 9 giant galaxies that seem to contain rapidly spinning supermassive black holes. These galaxies have large disturbances in their gaseous atmosphere, so the researchers calculated that these black holes must be spinning at near their maximum rates.

“We think these monster black holes are spinning close to the limit set by Einstein’s theory of relatively, which means that they can drag material around them at close to the speed of light,” said Rodrigo Nemmen, a visiting graduate student at Penn State University.

According to Einstein, when a black hole rotates at extreme speeds, it can actually catch up the surrounding space time and make that rotate as well. This effect, linked with the inflowing streams of gas can produce rotating, tightly wound towers of powerful magnetic fields. These fields channel the energy and inflowing gas into powerful jets which blast away from the black hole at nearly the speed of light.

It’s believed that black holes can acquire these extreme rotational speeds when galaxies merge. Fresh material falling onto the black hole just boosts its speed higher and higher until it reaches the hard limits allowed by relativity.

And it’s this extreme rate of spin that forms the power source for the jets. With the number of powerful jets seen pouring out of many galaxies, it might be that most supermassive black holes are spinning at extreme rates; we just haven’t detected them yet.

Supermassive black holes can be very disruptive to their local environments. The jets pump enormous amounts of energy into their surroundings, heating up gas. Since stars can only form when there are large clouds of cold gas, these process of heating can stall star formation in the host galaxy.

Astronomers want to work out the relationship between supermassive black holes and the rates of star formation in the most massive galaxies in the Universe.

Original Source: Chandra News Release

Carnival of Space #36

quadrantids_vaubaillon.thumbnail.jpg

While we’re here blogging our little hearts away at the 211th meeting of the American Astronomical Society, Steinn Sigurdsson is back at home herding all the dynamic news cats we left behind. This week he’s the lucky host for the 36th Carnival of Space, and has pulled together a compelling list of interesting stories for your reading pleasure.

Get the scoop on India’s space plans, read reviews of 200 lunar exploration stories, and see what the quadrantids looked like out the window of an airplane.

Click here to visit the Carnival of Space #36.

And if you’re interested in looking back, here’s an archive to all the past carnivals of space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, let me know if you can be a host, and I’ll schedule you into the calendar.

Finally, if you run a space-related blog, please post a link to the carnival of space. Help us get the word out.