What are the Different Kinds of Supernovae?

What are the Different Kinds of Supernovae?

There are a few places in the Universe that defy comprehension. And supernovae have got to be the most extreme places you can imagine. We’re talking about a star with potentially dozens of times the size and mass of our own Sun that violently dies in a faction of a second.

Faster than it take me to say the word supernova, a complete star collapses in on itself, creating a black hole, forming the denser elements in the Universe, and then exploding outward with the energy of millions or even billions of stars.

But not in all cases. In fact, supernovae come in different flavours, starting from different kinds of stars, ending up with different kinds of explosions, and producing different kinds of remnants.

There are two main types of supernovae, the Type I and the Type II. I know this sounds a little counter intuitive, but let’s start with the Type II first.

These are the supernovae produced when massive stars die. We’ve done a whole show about that process, so if you want to watch it now, you can click here.

Our eyes would never see the Crab Nebula as this Hubble image shows it. Image credit: NASA, ESA, J. Hester and A. Loll (Arizona State University)
Our eyes would never see the Crab Nebula as this Hubble image shows it. Image credit: NASA, ESA, J. Hester and A. Loll (Arizona State University)

But here’s the shorter version.

Stars, as you know, convert hydrogen into fusion at their core. This reaction releases energy in the form of photons, and this light pressure pushes against the force of gravity trying to pull the star in on itself.

Our Sun, doesn’t have the mass to support fusion reactions with elements beyond hydrogen or helium. So once all the helium is used up, the fusion reactions stop and the Sun becomes a white dwarf and starts cooling down.

But if you have a star with 8-25 times the mass of the Sun, it can fuse heavier elements at its core. When it runs out of hydrogen, it switches to helium, and then carbon, neon, etc, all the way up the periodic table of elements. When it reaches iron, however, the fusion reaction takes more energy than it produces.

The outer layers of the star collapses inward in a fraction of a second, and then detonates as a Type II supernova. You’re left with an incredibly dense neutron star as a remnant.

But if the original star had more than about 25 times the mass of the Sun, the same core collapse happens. But the force of the material falling inward collapses the core into a black hole.

Extremely massive stars with more than 100 times the mass of the Sun just explode without a trace. In fact, shortly after the Big Bang, there were stars with hundreds, and maybe even thousands of times the mass of the Sun made of pure hydrogen and helium. These monsters would have lived very short lives, detonating with an incomprehensible amount of energy.

Artist's impression of a supernova
Artist’s impression of a supernova

Those are Type II. Type I are a little rarer, and are created when you have a very strange binary star situation.

One star in the pair is a white dwarf, the long dead remnant of a main sequence star like our Sun. The companion can be any other type of star, like a red giant, main sequence star, or even another white dwarf.

What matters is that they’re close enough that the white dwarf can steal matter from its partner, and build it up like a smothering blanket of potential explosiveness. When the stolen amount reaches 1.4 times the mass of the Sun, the white dwarf explodes as a supernova and completely vaporizes.

In a Type Ia supernova, a white dwarf (left) draws matter from a companion star until its mass hits a limit which leads to collapse and then explosion. Credit: NASA
In a Type Ia supernova, a white dwarf (left) draws matter from a companion star until its mass hits a limit which leads to collapse and then explosion. Credit: NASA

Because of this 1.4 ratio, astronomers use Type Ia supernovae as “standard candles” to measure distances in the Universe. Since they know how much energy it detonated with, astronomers can calculate the distance to the explosion.

There are probably other, even more rare events that can trigger supernovae, and even more powerful hypernovae and gamma ray bursts. These probably involve collisions between stars, white dwarfs and even neutron stars.

As you’ve probably heard, physicists use particle accelerators to create more massive elements on the Periodic Table. Elements like ununseptium and ununtrium. It takes tremendous energy to create these elements in the first place, and they only last for a fraction of a second.

But in supernovae, these elements would be created, and many others. And we know there are no stable elements further up the periodic table because they’re not here today. A supernova is a far better matter cruncher than any particle accelerator we could ever imagine.

Next time you hear a story about a supernova, listen carefully for what kind of supernova it was: Type I or Type II. How much mass did the star have? That’ll help your imagination wrap your brain around this amazing event.

Weekly Space Hangout – Mar. 11, 2016: Dr. Sarah M. Milkovich

Host: Fraser Cain (@fcain)

Guests: Dr. Sarah M. Milkovich, Planetary Geologist and current Science Systems Engineer at JPL working on Mars 2020 Rover. She has also worked on MRO (HiRISE), MSL, Cassini (UVIS), and Mars Phoenix Mission.

Guests:
Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg)
Dave Dickinson (www.astroguyz.com / @astroguyz)
Paul Sutter (pmsutter.com / @PaulMattSutter)
Alessondra Springmann (@sondy)

Their stories this week:

InSight lives.. But at what cost?

Blue Origin targeting 2018 debut of space tourism

Amazing Views of This Weeks Eclipse

New planets around old stars?

Drilling into Chicxulub crater

We’ve had an abundance of news stories for the past few months, and not enough time to get to them all. So we’ve started a new system. Instead of adding all of the stories to the spreadsheet each week, we are now using a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Google+, Universe Today, or the Universe Today YouTube page.

You can also join in the discussion between episodes over at our Weekly Space Hangout Crew group in G+!

Weekly Space Hangout – Mar. 4, 2016: Dr. Michelle Thaller

Host: Fraser Cain (@fcain)

Guests: Dr. Michelle Thaller, the assistant director for Science Communication at NASA’s Goddard Space Flight Center. From 1998 to 2009 she was a staff scientist at the Infrared Processing and Analysis Center, and later Manager of the Education and Public Outreach program for the Spitzer Space Telescope, at the California Institute of Technology.

Kimberly Cartier (@AstroKimCartier )
Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg)
Dave Dickinson (www.astroguyz.com / @astroguyz)
Jolene Creighton (fromquarkstoquasars.com / @futurism)
Nicole Gugliucci (cosmoquest.org / @noisyastronomer)
Carolyn Collins Petersen (thespacewriter.com / space.about.com / @spacewriter )

Their stories this week:
Scott Kelly reruns to Earth after nearly a year in space

Fast Radio Bursts, now with more repeating

NASA commissions a new supersonic jet

Searching for Ice-Bound life on Earth to find it on other planets and moons

A New Look at the Ancient History of Mars

Temperature on Titan

ESA Planning to Build an International Village on the Moon!

Finally going back to Venus

Remember that FRB from last week? Might be a false alarm…

We’ve had an abundance of news stories for the past few months, and not enough time to get to them all. So we’ve started a new system. Instead of adding all of the stories to the spreadsheet each week, we are now using a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Google+, Universe Today, or the Universe Today YouTube page.

You can also join in the discussion between episodes over at our Weekly Space Hangout Crew group in G+!

Weekly Space Hangout – Feb. 26, 2016: Fast Radio Bursts & Missing Baryons

Host: Fraser Cain (@fcain)

Guests:

Kimberly Cartier (@AstroKimCartier )
Dave Dickinson (www.astroguyz.com / @astroguyz)
Jolene Creighton (fromquarkstoquasars.com / @futurism)
Nicole Gugliucci (cosmoquest.org / @noisyastronomer)

Their stories this week:
Mysterious Fast Radio Bursts Solve Missing Baryon Problem

Search Narrows for Planet Nine

WFIRST Unveiled

Double Shadow Transit Season Begins

Pulsar “Web” search for gravitational waves

Milky Way Survey of Gas and Dust Completed

Mars in 3 days? Hm.

Scott Kelly to return to Earth on March 1 – why was he in space for a year?

We’ve had an abundance of news stories for the past few months, and not enough time to get to them all. So we’ve started a new system. Instead of adding all of the stories to the spreadsheet each week, we are now using a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Google+, Universe Today, or the Universe Today YouTube page.

You can also join in the discussion between episodes over at our Weekly Space Hangout Crew group in G+!

Weekly Space Hangout – Feb. 19, 2016: Rebecca Roth

Host: Fraser Cain (@fcain)

Special Guest: Rebecca Roth, Imaging Coordinator & Social Media Specialist at NASA’s Goddard Space Flight Center; responsible for sharing imagery with the media, as well as sharing those images with the public, mainly through social media such as Instagram and Flickr.

Guests:

Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg )
Kimberly Cartier (@AstroKimCartier )
Dave Dickinson (www.astroguyz.com / @astroguyz)
Jolene Creighton (fromquarkstoquasars.com / @futurism)

Their stories this week:
New X-ray observatory takes to the skies

Hubble Directly Measures Rotation of Cloudy “Super-Jupiter”

Possible Hidden Layer of Meteorites in Antarctica

ESA says Goodbye to Philae

China to Displace Thousands for New Radio Telescope

Visible light and gravitational waves

We’ve had an abundance of news stories for the past few months, and not enough time to get to them all. So we’ve started a new system. Instead of adding all of the stories to the spreadsheet each week, we are now using a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Google+, Universe Today, or the Universe Today YouTube page.

You can also join in the discussion between episodes over at our Weekly Space Hangout Crew group in G+!

First Woman to Ever Win Canada’s Top Science Award is Astrophysicist Victoria Kaspi

Dr. Victoria Kaspi speaking at the Perimeter Institute
Dr. Victoria Kaspi speaking at the Perimeter Institute

This is a big week in Canadian astrophysics. Dr. Victoria Kaspi, an astrophysics professor at McGill University, just won the Gerhard Herzberg Gold Medal. This is a $1 million prize (CDN, of course) awarded for “sustained excellence and overall influence of research work conducted in Canada in the natural sciences or engineering.”

And for the last 25 years, the award has gone to men. Chemistry men, biology men and even physics and astronomy men. It’s good to see that the cycle has been broken, and a woman has taken the award… finally.

For those of you who don’t know who Dr. Kaspi is, she’s one of the world’s leading researchers on neutron stars. We’ve written about her work many times.

The timing of this announcement couldn’t be more ideal. Much of Dr. Kaspi’s work has been to pin down Einstein’s predictions about gravitational waves through the interactions of binary pulsars and neutron stars. Now that gravitational waves have been detected directly by LIGO, the two research paths can start to share notes.

If you want more info on Dr. Kaspi and the award, check out this great article from Ivan Semeniuk.

But I think the best way to celebrate is just to watch her speak for an hour about how pulsars are the cosmic gifts that just keep on giving.