Pheonix Mars Lander is Coming Together

Artist’s concept of Phoenix spacecraft. Image credit: NASA. Click to enlarge
NASA’s next mission to the Red Planet, the Phoenix Mars Lander, is coming together in preparation for its August 2007 launch. Engineers are now incorporating many of its subsystems, including the flight computer, power systems and science instruments. If all goes well, the spacecraft will land near Mars’ north polar ice cap, and analyze samples that it scoops up from the icy soil.

NASA’s Phoenix Mars Lander, the next mission to the surface of Mars, is beginning a new phase in preparation for a launch in August 2007.

As part of this “assembly, test and launch operations” phase, Phoenix team members are beginning to add complex subsystems such as the flight computer, power systems and science instruments to the main structure of the spacecraft. The work combines efforts of Lockheed Martin Space Systems, Denver; the University of Arizona, Tucson; and NASA’s Jet Propulsion Laboratory, Pasadena, Calif.

“All the subsystems and instruments from a wide range of suppliers are tested separately, but now we are beginning the vital stage of assembling them together and testing how they will function with each other,” said JPL’s Barry Goldstein, project manager for Phoenix.

Phoenix will land near the red planet’s north polar ice cap to analyze scooped-up samples of icy soil.

“We know there is plenty of water frozen into the surface layer of Mars at high latitudes. We’ve designed Phoenix to tell us more about this region as a possible habitat for life,” said the University of Arizona’s Peter Smith, principal investigator for the mission.

Phoenix is the first mission of NASA’s Mars Scout Program of competitively proposed, relatively low-cost missions to Mars. The program is currently soliciting proposals for a 2011 Scout mission.

The Phoenix proposal, selected in 2003, saves expense by using a lander structure, subsystem components and protective aeroshell originally built for a 2001 lander mission that was canceled while in development. The budget for the Phoenix mission, including launch, is $386 million.

The spacecraft will land using descent thrusters just prior to touchdown, rather than airbags like those used by the current Mars Exploration Rovers. As Phoenix parachutes through Mars’ lower atmosphere in May 2008, a descent camera will take images for providing geological context about the landing site.

The robotic arm being built for Phoenix will be about 2 meters (7 feet) long, jointed at the elbow and wrist, and equipped with a camera and scoop. It will dig as deep as about 50 centimeters (20 inches) and deliver samples to instruments on the spacecraft deck that will analyze physical and chemical properties of the ices and other materials. A stereo color camera will examine the landing site’s terrain and provide positioning information for the arm. The Canadian Space Agency is providing a suite of weather instruments for Phoenix.

“The propulsion system and the wiring harness have been added to the vehicle,” said Ed Sedivy, Phoenix program manager for Lockheed Martin. “We will be loading flight software onto the flight computer in the next few days. The flight software is much more mature than typical for a planetary program at this stage. As soon as the flight computer is mated up, we can apply external power to the vehicle.”

Navigation components, such as star trackers, and communication subsystems will become part of the spacecraft in coming weeks, followed by science instruments in the summer.

Phoenix will be shipped to NASA’s Kennedy Space Center, Florida, in May 2007, for final preparations leading up to launch. Before that, testing in Colorado will subject the spacecraft to expected operational environments. This includes thermal and vacuum tests simulating the 10-month trip to Mars and conditions on Mars’ surface. Meanwhile, the mission is preparing a test facility in Tucson for practicing and testing procedures for operating the spacecraft on Mars.

JPL, a division of the California Institute of Technology, Pasadena, manages Phoenix for NASA’s Science Mission Directorate.

For information about NASA and agency programs on the Web, visit http://www.nasa.gov . For information about the Phoenix Mission to Mars on the Web, visit http://phoenix.lpl.arizona.edu.

Original Source: NASA News Release

Nanedi Valles on Mars

This image, taken by ESA’s Mars Express spacecraft, shows the Nanedi Valles region of Mars. These steep sided channels range in width from a few hundred meters to more than 5km (3 miles) across, and look like they were formed by quickly flowing water. But their origin is debated by researchers. Some think that liquid flowed under the surface and the ground collapsed above it, while others think that water did once flow on the surface.

These images, taken by the High Resolution Stereo Camera (HRSC) on board ESA’s Mars Express spacecraft, show the Nanedi Valles valley system, a steep-sided feature that may have been formed in part by free-flowing water.

The HRSC obtained these images on 3 October 2004 during orbit 905 at a ground resolution of approximately 18 metres per pixel. The images have been rotated 90 degrees clockwise, so that north is to the right.

They show the region of Nanedi Valles, a roughly 800-kilometre valley extending southwest-northeast and lying at approximately 6.0 degrees North and 312 degrees East in the region of Xanthe Terra, southwest of Chryse Planitia.

In the colour image, Nanedi Valles ranges from approximately 0.8- to 5.0-kilometre wide and extends to a maximum of about 500 metres below the surrounding plains. This valley is relatively flat-floored and steep-sloped, and exhibits meanders and a merging of two branches in the north.

The origin of these striking features remains heavily debated.

***image4:left***Some researchers point to sapping (erosion caused by ground-water outflow), while others suggest that flow of liquid beneath an ice cover or collapse of the surface in association with liquid flow is responsible for the valley’s formation.

While the debate continues, it seems likely that some sort of continuous flow rather than a single flooding event created these features.

By studying Nanedi Valles, scientists hope to better understand the climatic evolution of the Red Planet. The stereo and colour capabilities of the HRSC camera enable scientists to study the planet’s morphology, while researchers can analyse reflected light at different wavelengths to better recognise the various geologic units within a scene.

The colour images have been derived from the three HRSC colour channels and the nadir channel. The anaglyph image was calculated from the nadir and one stereo channel.

Original Source: ESA Mars Express

Starburst Galaxy M82 by Hubble

Cigar galaxy M82 captured by Hubble. Image credit: NASA/ESA/STScI. Click to enlarge
To celebrate 16 years of observations by the Hubble Space Telescope, NASA and ESA have released this image of galaxy M82 (aka the Cigar Galaxy). Located 12 million light-years away in the constellation Ursa Major, it’s an amazing example of a starburst galaxy. New stars are being born at the heart of M82 at a rate of 10 times what we see in our own Milky Way galaxy. The combined solar winds from all these stars creates a galactic “superwind” that compresses gas further out in the disk and leads to even more star formation.

To celebrate the NASA-ESA Hubble Space Telescope’s 16 years of success, the two space agencies are releasing the sharpest wide-angle view ever obtained of Messier 82 (M82), a galaxy remarkable for its webs of shredded clouds and flame-like plumes of glowing hydrogen blasting out from its central regions.

Located 12 million light-years away, M82 appears high in the northern spring sky in the direction of the constellation Ursa Major, the Great Bear. It is also called the ‘Cigar Galaxy’ because of the elongated elliptical shape produced by the tilt of its starry disk relative to our line of sight.

As shown in this mosaic image, M82 is a magnificent starburst galaxy. Throughout its central region young stars are being born ten times faster than they are inside in our Milky Way Galaxy.

These numerous hot new stars not only emit radiation but also charged particles that form the so-called stellar wind. Stellar winds streaming from these stars combine to form a galactic ‘superwind’.

The superwind compresses enough gas to trigger the ignition of millions more stars and blasts out towering plumes of hot ionised hydrogen gas, above and below the disk of the galaxy (seen in red in the image).

In M82 young stars are crammed into star clusters. These then congregate by the dozen to make the bright patches or ‘starburst clumps’ seen in the central parts of M82. The individual clusters in the clumps can only be distinguished in the ultra-sharp Hubble images.

Most of the pale objects sprinkled around the main body of M82 that look like fuzzy stars are actually star clusters about 20 light-years across and containing up to a million stars.

The rapid rate of star formation in this galaxy will eventually be self-limiting. When star formation becomes too vigorous, it destroys the material needed to make more stars. So the starburst will eventually subside, probably in a few tens of millions of years.

The observation was made in March 2006 with the Advanced Camera for Surveys’ Wide Field Channel. Astronomers assembled the six-image composite mosaic by combining exposures taken with four coloured filters. These capture starlight from visible and infrared wavelengths as well as the light from the glowing hydrogen filaments.

Original Source: ESA News Release

Astrophoto: The Ring Nebula by Stefan Heutz

The Ring Nebula by Stefan Heutz. Click to enlarge
When stars similar to our Sun have exhausted their nuclear fuel, they release their outer layer into a beautiful expanding sphere that resembles a planet through a small telescope. The Ring Nebula, pictured here, is one of the most famous examples in the northern sky. But it’s not a sphere. There is another geometry that more accurately explains its beautiful appearance.

Riding high in the northern sky near the bright white star Vega, the Ring Nebula is one of the most favorite deep sky objects targeted visually by backyard stargazers. It can be seen through telescopes with apertures as small as four inches. But larger telescopes can reveal the faint planet sized central star that created this night sky spectacle. The Ring Nebula was discovered about 200 years ago by French astronomer Charles Messier, an avid comet hunter, and made its way into his catalog used to keep track of false comets as item number 57.

Recent imagery by the Hubble Space Telescope has confirmed that the Ring Nebula is not spherical in shape; it is more like a tube that is slightly constricted in the middle so that it resembles a stretched hourglass. By chance alone, Earth is positioned so that we can look almost straight through from one end. Tubular shapes like this are common throughout the universe because thick disks of gas tend to expand outward very slowly leaving the material free to become extended perpendicularly. One of the other more spectacular examples of this shape is exhibited by the Little Dumbbell Nebula. It’s located in the constellation of Perseus and is positioned so that we have a side view.

The diameter of the nebula’s walls is approximately one light year across. The view we see is actually quite ancient because the light reaching our eyes today departed for Earth about 2,000 years ago.

This beautiful image represents one of the best views taken from our planet’s surface. It was produced by German astro-photographer Stefan Heutz from his backyard imaging location though an eleven-inch Schmidt-Cassegrain telescope and a 1.5 mega-pixel camera. The light for this image was gathered on June 7, 2005 and represents 46 minutes of total exposure.

Do you have photos you’d like to share? Post them to the Universe Today astrophotography forum or email them, and we might feature one in Universe Today.

Written by R. Jay GaBany

What’s Up This Week – April 24 – April 30, 2006

M3 – Credit: S. Kalfa and K. Honeycutt/Indiana University/WIYN/NAOA/NSF

Greetings fellow SkyWatchers! If you haven’t had a chance to observe Comet 73/P Schwassmann-Wachmann yet, right now is a good time as it sweeps through Coma Berenices. This week hosts galaxy studies and meteor showers, so enjoy darker skies – because…

Here’s what’s up!

Monday, April 24 – Before dawn, Venus and the Moon have a very close encounter. Today in 1970, China launched its first satellite – the beginnings of a national space program that later saw its first “taikonaut” in space.

Tonight, let’s use our binoculars and telescopes and take a break from galaxy quest. An alternative is to find one of the best northern hemisphere globular clusters – M3. You can locate M3 easily by identifying Cor Caroli (Alpha Canes Venatici) and Arcturus. Sweep your binoculars along a line halfway between the two and you will uncover this condensed beauty just east of Beta Comae. With added inches and magnification, the stars are out to play!

Discovered by Charles Messier on May 3, 1764, this condensed ball of approximately a half million stars is one of the oldest formations in our galaxy. At 35-40,000 light years distant, this awesome globular cluster spans 220 light years and is believed to be 10 billion years old.

Tuesday, April 25 – Today marks the 15th anniversary of the deployment of the Hubble Space Telescope (HST). While everyone in the astronomical community is aware of what this magnificent telescope “sees,” did you know that you can see it with just your eyes? The HST as a satellite can be tracked and observed. Visit the website Heavens-Above and enter your location. This will provide you with a list of times for visible satellite passes from your locale. Although you can’t see a detailed view of the satellite itself from Earth, it’s great fun to use binoculars and watch the Sun glint off all those highly polished surfaces!

Keep a watch on the skies tonight as the Mu Virginid meteor shower reaches its peak of 7 to 10 visible trails per hour. With the dark skies this evening, you might catch one of these medium speed meteors radiating from a point near the constellation of Libra.

Tonight is another “Missed Messier” – 8.9 magnitude NGC 3521. Often ignored by observers because of its isolated location in southern Leo, this tilted galaxy is a “must see” and fine representative of the grand spiral tradition. A delight even in small instruments, the galaxy reveals definite spiral structure in larger scopes and has been compared to M63 in overall structure.

To locate NGC 3521, start at Sigma Leonis and head almost three degrees south to 10.3 magnitude NGC 3640. Power up for a view of this oval-shaped elliptical beauty – then resume your quest for NGC 3521 by heading south-southwest another 1.5 degrees to 75 Leonis. Continue a little more than a finger-width south-southwest to 69 Leonis. NGC 3521 is located a finger-width due west of 69 Leonis.

Now that’s “star hopping’!

Wednesday, April 26 – If you’re up before dawn this morning, be sure to look for Mercury just slightly south of the Moon! On this date in 1920, the Shaply-Curtis debate raged in Washington DC on the nature and distance of spiral nebulae. Shaply contended that all such were part of one huge galaxy – the Milky Way, while Curtis maintained that they were distant galaxies all their own.

Thirteen years later on the same date, Arno Penzias was born. Penzias went on to become a Nobel Prize winner for his part in the discovery of cosmic microwave background radiation (CMBR) through the use of a simple horn-shaped antenna. Their discovery helped further our understanding of cosmology in ways that Shaply and Curtis could have never dreamed!

By 1850, Lord Rosse had used the 72 inch speculum-mirrored “Leviathon at Parsontown” (Birr Castle, Ireland) to catalogue fourteen previously indecipherable glowing clouds in deep space as “spiral nebulae.” The very first one resolved was originally a discovery of Charles Messier – found while chasing a comet on the night of October 13, 1773. That discovery, M51, had to wait 72 years until large reflecting telescopes unveiled its spiral form. It would take another 75 years before M51’s extragalactic nature became an indisputable fact!

Interestingly, observers have now become so accustomed to seeing spiral structure in brighter galaxies that even mid-sized scopes can see M51 – the Whirlpool Galaxy – as a “Grand Spiral.” Tonight see what Rosse saw for yourself.

Start in Ursa Major by locating Mizar (Zeta) and Alkaid (Eta), then rotate the line between these two 90 degrees south using Eta as the pivot. With the line oriented to the southwest, cut it in half. With good conditions and a mid-sized scope, you can be initiated into the mystery of the spiral nebulae – nebulae whose individual stars had to await the development of very large professional scopes and long-exposure photography to reveal their stellar nature to the questing human imagination!

Thursday, April 27 -Tonight is New Moon and a great time to “go deep!”

Start with M87 and fade a degree west for the and neighboring M86. These two massive galaxies can be revealed with almost any optical aid. They appear as a matched set of isolated ellipticals – but on an exceptional night, even small scopes will show much more to this region. The western member of the pair ? the M84 – appears slightly brighter and visibly smaller than the M86 yet the nucleus of M86 is broader, and less intensely brilliant. In large scopes, these two galaxies “leap” out of the eyepiece even at modest magnifications yet reveal no additional structure.

The most fascinating characteristic of the area becomes apparent when looking around M84 and M86. Within the same low power field, no less than five additional galaxies may be made out in a 6″ scope. Forming an easy triangle with the two Messiers, lies southern NGC 4388. At magnitude 11, this edge-on spiral shows a dim star-like core, and reveals classic edge-on structure at double the aperture. In the midst of the triangle formed by the two Messiers and NGC 4388, is 12th magnitude NGC 4387. This dim galaxy will only display a faintly stellar nucleus at mid-aperture, while larger scopes will see a very small face-on spiral with a bright nucleus. Just north of M86 is even dimmer NGC 4402. Like NGC 4388, NGC 4402 demands higher magnifications for positive identification through modest aperture scopes, and at large power you may notice a dust lane with the central core as a curved “bar” of light.

We’ve now gone as “deep” as we can. East of M86 are two brighter NGC galaxies – 4435 and 4438. Through a 6″ scope, NGC 4435 is easily picked out at low power with its simple star-like core and wispy round mantle. NGC 4438 is dim, but even with large aperture elliptical galaxies tend to be rather uninteresting creatures. The beauty of? NGC 4435 and? 4438 are simply their proximity to each other. NGC 4435 shows true elliptical structure, evenly illuminated and visibly faded toward the edges. But, 4438 is quite a different story! This elliptical is much more elongated. A highly conspicuous wisp of galactic material can be seen stretching back toward the brighter, nearby galaxy pair M84/86.

Friday, April 28 – Today was a busy day in astronomical history. Isaac Newton published his Principia in 1686. Newton was an obscure mathematician and early physicist who developed a new form of mathematics to describe planetary motion. In 1774, Francis Baily was born. Baily went on to revise star catalogs and explain the phenomenon now known as “Baily’s Beads” – seen at the start and end of a total solar eclipse. 1900 saw the birth of Jan Hendrick Oort, who quantified the Milky Way’s rotation and envisioned a vast, spherical area of comets outside the solar system now called the Oort Cloud. Today (in 1906) was also the birth date of Bart Jan Bok who studied the structure and dynamics of the Milky Way galaxy and like Oort had a class of objects – Bok Globules – named after him.

And the Milky Way is nowhere to be found! This is the reason we can see so many galaxies during the spring season. The great realm of galaxies we call the “Coma-Virgo Galaxy Cluster” has more in common with our own galaxy than simply not being hidden by the vast array of stars, gas, and dust. Our galaxy and its neighbors (making up the “Local Group”) are inexorably being drawn toward this massive assemblage of island universes based on forces first described by Isaac Newton. Yes, we are slipping. Slipping into a vast gravity well whose center is the giant elliptical galaxy M87!

For skywatchers, no equipment is necessary to enjoy the Alpha Bootid meteor shower tonight. Pull up a comfortable seat and face toward orange Arcturus climbing skyward in the east. These slow meteors have a fall rate of 6 to 10 per hour and leave very fine trails, making an evening of quiet contemplation most enjoyable.

Saturday, April 29 -Tonight see if you can spot the tender beginnings of the Moon after sunset. Observers take pleasure in sweeping the sky with small scopes and binoculars in hopes of finding the thinnest possible lunar crescent. This technique is also employed to turn up “the inferior planets” – Venus and Mercury. But both planets rise just before the Sun! If you rise early, look for them both about an hour before dawn.

Tonight let’s take advantage of dark sky and track down one of the most distant observable studies in the Universe that can be seen in amateur equipment – 2 billion light year distant quasar 3C273. You will need aperture – at least 8″ – and a star chart showing the detailed field in which the quasar is located. This study is so distant that we can only see its super-luminous radiant core looking precisely like a faint 13th magnitude blue star!

Start by re-locating M61 and drop 2.5 degrees southeast for the approximate location of a quasar 3c273 – the incredibly luminous core of a brilliant galaxy possessed of a super-supermassive black hole of more than 500 million solar masses. A galaxy whose brilliance is such that it would almost outshine our own Sun were it placed 33 light years (1 parsec) away and outshine all the light of the Milky Way galaxy 100 times over!

To verify 3C273, you will need a detailed star chart. But knowing you’re looking at one of the most distant objects an amateur can see makes it worth the hunt!

Sunday, April 30 – Karl Frederich Gauss was born on this day in 1777. Known as the “Prince of Mathematics,” Gauss contributed to the field of astronomy in many ways – from computing asteroid orbits to inventing the heliotrope. Out of Gauss’ many endeavors, he is most recognized for his work in magnetism. We understand the term “gauss” as a magnetic unit – a refrigerator magnet carries about 100 gauss while an average sunspot might go up to a 4000. On the most extreme ends of the magnetic scale, the Earth produces about 0.5 gauss at its poles, while a magnetar can produce as much as 10 to the 15th power in gauss units!

While we cannot directly observe a magnetar, those living in the Southern Hemisphere can view a region of the sky where magnetars are known to exist – the Large Magellanic Cloud. Located in the constellation of Dorado, this unaided eye gem is visible even during full moonlight. It’s stuffed with wonderful features such as the Tarantula Nebula – the largest diffuse nebula known in the Universe. It also holds many star clusters, so get out those telescopes and binoculars and explore for your friends in the northern hemisphere!

May all your journeys be at light speed… ~Tammy Plotner with Jeff Barbour.

Cloud of Debris Around Beta Pictoris

A scientifically accurate model of Beta Pictoris and its disk. Image credit: NAOJ. Click to enlarge
The disks of gas and dust that surround newborn stars are known as proto-planetary disks; which are thought to be regions where planets will eventually form. These disks disappear as the stars mature, but some stars can still be seen with a cloud of material around them called debris disks. One of the most famous of these is the disk surrounding Beta Pictoris, located only 60 light years away.

Planets form in disks of gas and dust that surround new born stars. Such disks are called proto-planetary disks. The dust in these disks become rocky planets like Earth and the inner cores of giant gas planets like Saturn. This dust is also a repository of elements that form the basis of life.

Proto-planetary disks disappear as stars mature, but many stars have what are called debris disks. Astronomers hypothesize that once objects such as asteroids and comets are born from the proto-planetary disk, collisions among them can produce a secondary dust disk.

The most well-known example of such dust disks is the one surrounding the second brightest star in the constellation Pictor, meaning “painter’s easel”. This star, known as Beta Pictoris or Beta Pic, is a very close neighbor of the Sun, only sixty light years away, and therefore easy to study in great detail.

Beta Pic is twice as bright as the Sun, but the light from the disk is much fainter. Astronomers Smith and Terrile were the first to detect this faint light in 1984, by blocking the light from the star itself using a technique called coronagraphy. Since then, many astronomers have observed the Beta Pic disk using ever better instruments and ground and space-based telescopes to understand in detail the birth place of planets, and hence life.

A team of astronomers from the National Astronomical Observatory of Japan, Nagoya University and Hokkaido University combined several technologies for the first time to obtain an infrared polarization image of the Beta Pic disk with better resolution and higher contrast than ever before: a large aperture telescope (the Subaru telescope, with its large 8.2 meter primary mirror), adaptive optics technology, and a coronagraphic imager capable of taking images of light with different polarizations (Subaru’s Coronagraphic Imager with Adaptive Optics,CIAO).

A large aperture telescope, especially with Subaru’s great imaging quality, allows faint light to be seen at high resolution. Adaptive optics technology reduces Earth’s atmosphere’s distorting effects on light, allowing higher resolution observations. Coronagraphy is a technique for blocking light from a bright object such as a star, to see fainter objects near it, such as planets and dust surrounding a star. By observing polarized light, reflected light can be distinguished from light coming directly from its original source. Polarization also contains information about the size, shape, and alignment of dust reflecting light.

With this combination of technologies, the team succeeded in observing Beta Pic in infrared light two micrometers in wavelength at a resolution of a fifth of an arcsecond. This resolution corresponds to being able to see an individual grain of rice from one mile away or a mustard seed from a kilometer away. Achieving this resolution represents a huge improvement over comparable previous polarimetric observations from the 1990’s that had only resolutions of about one and a half arcseconds.

The new results strongly suggest that Beta Pic’s disk contains planetesimals, asteroid or comet-like objects, that collide to generate dust that reflects starlight.

The polarization of the light reflected from the disk can reveal the physical properties of the disk such as composition, size, and distribution. An image of all the two micrometer wavelength light shows the long thin structure of the disk seen nearly edge on. The polarization of the light shows that ten percent of the two micrometer light is polarized. The pattern of polarization indicates that the light is a reflection of light that originated from the central star.

An analysis of how the brightness of the disk changes with distance from the central shows a gradual decrease in brightness with a small oscillation. The slight oscillation in brightness corresponds to variations in the density of the disk. The most likely explanation is that denser regions correspond to where planetesimals are colliding. Similar structures have been seen closer to the star in earlier observations at longer wavelengths using Subaru’s COoled Mid-Infrared Camera and Spectrograph (COMICS) and other instruments.

A similar analysis of how the amount of polarization changes with distance from the star shows a decrease in polarization at a distance of one hundred astronomical units (an astronomical unit is the distance between Earth and the Sun). This corresponds to a location where the brightness also decreases, suggesting that at this distance from the star there are fewer planetesimals.

As the team investigated models of the Beta Pic disk that can explain both the new and old observations, they found that the dust in Beta Pic’s disk is more than ten times larger than typical grains of interstellar dust. Beta Pics dust disk is probably made of micrometer sized loose clumps of dust and ice like miniscule bacteria-size dust bunnies.

Together, these results provide very strong evidence that the disk surrounding Beta Pic is generated by the formation and collision of planetesimals. The level of detail of this new information solidifies our understanding of the environment in which planets form and develop.

Motohide Tamura who leads the team says “few people have been able to study the birth place of planets by observing polarized light with a large telescope. Our results show that this is a very rewarding approach. We plan on extending our research to other disks, to get a comprehensive picture of how dust transforms into planets.”

These results were published in the April 20, 2006, edition of the Astrophysical Journal.

Team Members: Motohide Tamura, Hiroshi Suto, Lyu Abe (NAOJ), Misato Fukagawa (Nagoya University, California Institute of Technology), Hiroshi Kimura, Tetsuo Yamamoto (Hokkaido University)

This research was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan through a Grant-in-Aid for Scientific Research on Priority Areas for the “Development of Extra-solar Planetary Science.”

Original Source: NAOJ News Release

The Birth of the Biggest Stars

Massive star forming region as seen by ISO. Image credit: ESA. Click to enlarge
Astronomers have used ESA’s Infrared Space Observatory to peer at the biggest stars being born. These stars form from the collapse of enormous clouds of gas, and can shine more than 100,000 times as bright as our own Sun. The images were captured as a bonus, taken while the space observatory was slowly turning from one target to another. A team of astronomers built up a vast web of images comprised from 10,000 of these telescope repositionings, and then identified potential star forming regions from the data.

Scientists have secured their first look at the birth of monstrous stars that shine 100 000 times more brightly than the Sun, thanks to ESA’s Infrared Space Observatory (ISO).

The discovery allows astronomers to begin investigating why only some regions of space promote the growth of these massive stars.

Space is littered with giant clouds of gas. Occasionally, regions within these clouds collapse to form stars. “One of the major questions in the field of study is why do some clouds produce high- and low-mass stars, whilst others form only low-mass stars?” asks Oliver Krause, Max-Planck-Institut fur Astronomie, Heidelberg and Steward Observatory, Arizona.

The conditions necessary to form high-mass stars are difficult to deduce because such stellar monsters form far away and are shrouded behind curtains of dust. Only long wavelengths of infrared radiation can escape from these obscuring cocoons and reveal the low temperature dust cores that mark the sites of star formation. This radiation is exactly what ISO’s ISOPHOT far-infrared camera has collected.

Stephan Birkmann, Oliver Krause and Dietrich Lemke, all of the Max-Planck-Institut f?r Astronomie, Heidelberg, used ISOPHOT’s data to zero-in on two intensely cold and dense cores, each containing enough matter to form at least one massive star. “This opens up a new era for the observations of the early details of high-mass star formation,” says Krause.

The data was collected in the ISOPHOT Serendipity Survey (ISOSS), a clever study pioneered by Lemke. He realised that when ISO was turning from one celestial object to another, valuable observing time was being lost. He organised for ISOPHOT’s far-infrared camera to continuously record during such slews and beam this data to Earth.

During the ISO mission, which lasted for two and a half years during 1995?98, the spacecraft made around 10 000 slews, providing a web of data across the sky for the previously unexplored window of infrared emission at 170 micrometres. This wavelength is 310 times longer than optical radiation and reveals cold dust down to just 10K (-263 degrees Celsius). A catalogue was produced of the cold sites in the survey.

Birkmann and his colleagues investigated this catalogue and found fifty potential places of high-mass stellar birth. A campaign of follow-up observations using ground-based telescopes revealed that object ISOSS J18364-0221 was in fact two cold dense cores that looked suspiciously like those associated with the birth of low-mass stars, but containing much more mass.

The first core is at 16.5 Kelvin (?256.5 degrees Celsius). It contains seventy-five times the mass of the Sun and shows signs of gravitational collapse. The second one is around 12K (?261 degrees Celsius) and contains 280 solar masses. The team are currently studying the other potential sites.

Original Source: ESA Portal

A History of the Universe Written in Gamma Rays

Effects of the extragalactic background light on the gamma emission by a quasar before reaching Earth. Image credit: HESS Collaboration. Click to enlarge
When astronomers look into the sky, they see bright objects, but also a diffuse glow coming from objects across the Universe in many different wavelengths. This glow could serve like a fossil record, to help astronomers untangle the different stages the Universe went through from the beginning, to the current day. Research teams are using very high energy gamma rays, generated in the most violent objects in the Universe – quasars – as a probe to understand this background light.

The light emitted from all objects in the Universe during its entire history – stars, galaxies, quasars etc. forms a diffuse sea of photons that permeates intergalactic space, referred to as “diffuse extragalactic background light” (EBL). Scientists have long tried to measure this fossil record of the luminous activity in the Universe in their quest to decipher the history and evolution of the Cosmos, but its direct determination from the diffuse glow of the night sky is very difficult and uncertain.

Very high energy (VHE) gamma-rays, some 100,000,000,000 times more energetic than normal light, offer an alternative way to probe this background light, and UK researchers from Durham University in collaboration with international partners used the High Energy Stereoscopic System (HESS) gamma-ray telescopes in the Khomas Highlands of Namibia to observe several quasars (the most luminous VHE gamma-ray sources known) with this goal in mind. The results, to be published in the April 20 issue of Nature, turned out to be rather striking.

Gamma-rays, which are produced in the most violent objects in the Universe, are absorbed in their journey from distant objects to Earth if they happen to hit a photon of “normal” background light. This fog of light in which the Universe is bathed is a fossil record of all the light emitted in the Universe over its lifetime, from the glare of the first stars and galaxies up to the present time. So, using the distant quasars as a probe and studying the effect of the fossil light on the energy distribution of the initial gamma-rays, astrophysicists used HESS to derive a limit on the maximum amount of this ‘extragalactic background light’, which is remarkably lower than what previous estimates had suggested.

This result, published in the April 20 issue of Nature, has important consequences for our understanding of galaxy formation and evolution, and expands the horizon of the gamma-ray Universe which is clearly more transparent to gamma-rays than previously believed

Commenting in the findings, Dr Lowry McComb of Durham University, said, “HESS has in the last few years achieved a number of important discoveries concerning high-energy gamma-ray sources in our own Galaxy and has revolutionized high-energy gamma-ray astronomy. These new HESS results illustrate the power of the instrument for extragalactic astronomy and cosmology. The discovery of lower levels of intergalactic starlight has the interesting side effect that the Universe becomes more transparent to gamma rays and that the telescopes can look deeper into the cosmos, increasing their reach for further discoveries!”

Original Source: PPARC News Release

Astro Apocalypse Won’t Happen Here

The afterglow of GRB 030329 (white dot in center of image). Image credit: ESA/NASA. Click to enlarge
Since gamma ray bursts release a torrent of radiation visible across the Universe, it goes without saying that we wouldn’t one to blow up near us. Well, don’t worry. According to researchers at Ohio State University, our Milky Way is the just wrong type of galaxy for potential bursts – they almost always happen within small, misshapen galaxies that lack heavy chemical elements. That’s good news, since a burst within 3,000 light years of the Earth would give us a lethal dose of radiation.

Are you losing sleep at night because you’re afraid that all life on Earth will suddenly be annihilated by a massive dose of gamma radiation from the cosmos?

Well, now you can rest easy.

Some scientists have wondered whether a deadly astronomical event called a gamma ray burst could happen in a galaxy like ours, but a group of astronomers at Ohio State University and their colleagues have determined that such an event would be nearly impossible.

Gamma ray bursts (GRBs) are high-energy beams of radiation that shoot out from the north and south magnetic poles of a particular kind of star during a supernova explosion, explained Krzysztof Stanek, associate professor of astronomy at Ohio State. Scientists suspect that if a GRB were to occur near our solar system, and one of the beams were to hit Earth, it could cause mass extinctions all over the planet.

The GRB would have to be less than 3,000 light years away to pose a danger, Stanek said. One light year is approximately 6 trillion miles, and our galaxy measures 100,000 light years across. So the event would not only have to occur in our galaxy, but relatively close by, as well.

In the new study, which Stanek and his coauthors submitted to the Astrophysical Journal, they found that GRBs tend to occur in small, misshapen galaxies that lack heavy chemical elements (astronomers often refer to all elements other than the very lightest ones — hydrogen, helium, and lithium — as metals). Even among metal-poor galaxies, the events are rare — astronomers only detect a GRB once every few years.

But the Milky Way is different from these GRB galaxies on all counts — it’s a large spiral galaxy with lots of heavy elements.

The astronomers did a statistical analysis of four GRBs that happened in nearby galaxies, explained Oleg Gnedin, a postdoctoral researcher at Ohio State. They compared the mass of the four host galaxies, the rate at which new stars were forming in them, and their metal content to other galaxies catalogued in the Sloan Digital Sky Survey.

Though four may sound like a small sample compared to the number of galaxies in the universe, these four were the best choice for the study because astronomers had data on their composition, Stanek said. All four were small galaxies with high rates of star formation and low metal content.

Of the four galaxies, the one with the most metals — the one most similar to ours — hosted the weakest GRB. The astronomers determined that the odds of a GRB occurring in a galaxy like that one to be approximately 0.15 percent.

And the Milky Way’s metal content is twice as high as that galaxy, so our odds of ever having a GRB would be even lower than 0.15 percent.

“We didn’t bother to compute the odds for our galaxy, because 0.15 percent seemed low enough,” Stanek said.

He figures that most people weren’t losing sleep over the possibility of an Earth-annihilating GRB. “I wouldn’t expect the stock market to go up as a result of this news, either,” he said. “But there are a lot of people who have wondered whether GRBs could be blamed for mass extinctions early in Earth’s history, and our work suggests that this is not the case.”

Astronomers have studied GRBs for more than 40 years, and only recently determined where they come from. In fact, Stanek led the team that tied GRBs to supernovae in 2003.

He and Gnedin explained that when a very massive, rapidly rotating star explodes in a supernova, its magnetic field directs gamma radiation to flow only out of the star’s north and south magnetic poles, forming high-intensity jets.

Scientists have measured the energies of these events and assumed — rightly so, Stanek said — that such high-intensity radiation could destroy life on a planet. That’s why some scientists have proposed that a GRB could have been responsible for a mass extinction that occurred on Earth 450 million years ago.

Now it seems that gamma ray bursts may not pose as much a danger to Earth or any other potential life in the universe, either, since they are unlikely to occur where life would develop.

Planets need metals to form, Stanek said, so a low-metal galaxy would probably have fewer planets, and fewer chances for life.

He added that he didn’t originally intend to address the question of mass extinctions. The study grew out of a group discussion during the Ohio State Department of Astronomy’s “morning coffee” — a daily half-hour where faculty and students review new astronomy journal articles that have been posted to Internet preprint servers overnight. In February, Stanek published a paper on a GRB he had observed, and during coffee someone asked whether he thought it was just a coincidence that these events seem to happen in small, metal-poor galaxies.

“My initial reaction was that it’s not a coincidence, and everyone just knows that GRBs happen in metal-poor galaxies. But then people asked, ‘Is it really that well known? Has anybody actually proven it to be true?’ And we realized that nobody had.”

As a result, the list of coauthors on the paper includes astronomers across a broad range of expertise, which Stanek said is somewhat unusual in these days of specialized research. The coauthors were among faculty gathered for coffee that day, plus a few friends they recruited to help them: Stanek and Gnedin; John Beacom, assistant professor of physics and astronomy; Jennifer Johnson, assistant professor of astronomy; Juna Kollmeier, a graduate student; Andrew Gould, Marc Pinsonneault, Richard Pogge, and David Weinberg, all professors of astronomy at Ohio State; and Maryam Modjaz, a graduate student at the Harvard-Smithsonian Center for Astrophysics.

This work was sponsored by the National Science Foundation.

Original Source: Ohio State University

Tumbling Neutron Star

Pulsar RX J0720.4-3125 captured by XMM-Newton. Image credit: ESA/MPE. Click to enlarge
ESA’s orbiting X-ray telescope, the XMM-Newton space observatory, has located a neutron star that’s out of control. Researchers found that its temperature rose steadily for more than four years, but now it’s starting to decrease again. The object’s overall temperature isn’t changing, it’s just tumbling, and slowly displaying different areas to observers here on Earth – like a wobbling top. These observations will help astronomers understand some of the internal processes that govern these kinds of objects.

Using data from ESA’s XMM-Newton X-ray observatory, an international group of astrophysicists discovered that one spinning neutron star doesn’t appear to be the stable rotator scientists would expect. These X-ray observations promise to give new insights into the thermal evolution and finally the interior structure of neutron stars.

Spinning neutron stars, also known as pulsars, are generally known to be highly stable rotators. Thanks to their periodic signals, emitted either in the radio or in the X-ray wavelength, they can serve as very accurate astronomical ‘clocks’.

The scientists found that over the past four and a half years the temperature of one enigmatic object, named RX J0720.4-3125, kept rising. However, very recent observations have shown that this trend reversed and the temperature is now decreasing.

According to the scientists this effect is not due to a real variation in temperature, but instead to a changing viewing geometry. RX J0720.4-3125 is most probably ‘precessing’, that is it is slowly tumbling and therefore, over time, it exposes to the observers different areas of the surface.

Neutron stars are one of the endpoints of stellar evolution. With a mass comparable to that of our Sun confined into a sphere of 20-40 km diameter, their density is even somewhat higher than that of an atomic nucleus – a billion tonnes per cubic centimetre. Soon after their birth in a supernova explosion their temperature is of the order of 1 000 000 degrees celsius and the bulk of their thermal emission falls in the X-ray band of the electromagnetic spectrum. Young isolated neutron stars are slowly cooling down and it takes a million years before they become too cold to be observable in X-rays.

Neutron stars are known to possess very strong magnetic fields, typically several trillion times stronger than that of the Earth. The magnetic field can be so strong that it influences the heat transport from the stellar interior through the crust leading to hot spots around the magnetic poles on the star surface.

It is the emission from these hotter polar caps which dominates the X-ray spectrum. There are only a few isolated neutron stars known from which we can directly observe the thermal emission from the surface of the star. One of them is RX J0720.4-3125, rotating with a period of about eight and a half seconds. “Given the long cooling time scale it was therefore highly unexpected to see its X-ray spectrum changing over a couple of years,” said Frank Haberl from the Max-Planck-Institute for Extraterrestrial Physics in Garching (Germany), who led the research group.

“It is very unlikely that the global temperature of the neutron star changes that quickly. We are rather seeing different areas of the stellar surface at different times. This is also observed during the rotation period of the neutron star when the hot spots are moving in and out of our line of sight, and so their contribution to the total emission changes,” Haberl continued.

A similar effect on a much longer time scale can be observed when the neutron star precesses (similarly to a spinning top). In that case the rotation axis itself moves around a cone leading to a slow change of the viewing geometry over the years. Free precession can be caused by a slight deformation of the star from a perfect sphere, which may have its origin in the very strong magnetic field.

During the first XMM-Newton observation of RX J0720.4-3125 in May 2000, the observed temperature was at minimum and the cooler, larger spot was predominantly visible. On the other hand, four years later (May 2004) the precession brought into view mostly the second, hotter and smaller spot, that made the observed temperature increase. This likely explains the observed variation in temperature and emitting areas, and their anti-correlation.

In their work Haberl and colleagues developed a model for RX J0720.4-3125 which can explain many of the peculiar characteristics which have been a challenge to explain so far. In this model the long-term change in temperature is produced by the different fractions of the two hot polar caps which enter into view as the star precesses with a period of about seven to eight years.

In order for such a model to work, the two emitting polar regions need to have different temperatures and sizes, as it has been recently proposed in the case of another member of the same class of isolated neutron stars.

According to the team, RX J0720.4-3125 is probably the best case to study precession of a neutron star via its X-ray emission directly visible from the stellar surface. Precession may be a powerful tool to probe the neutron star interior and learn about the state of matter under conditions which we can not produce in the laboratory.

Additional XMM-Newton observations are planned to further monitor this intriguing object. “We are continuing the theoretical modelling from which we hope to learn more about the thermal evolution, the magnetic field geometry of this particular star and the interior structure of neutron stars in general,” Haberl concluded.

Original Source: ESA Portal