Second Black Hole at the Heart of the Milky Way

Using archived science verification data from the Hokupa?a/QUIRC Adaptive Optics system on Gemini North, a French/US team of astronomers led by Jean-Pierre Maillard of the Institut d?Astrophysique de Paris has confirmed the physical association of a cluster of massive stars in the infrared source IRS 13 near the center of the Milky Way galaxy.

The team also used data from Hubble Space Telescope, the Chandra X-Ray Observatory, the Canada-France-Hawai?i Telescope (CFHT), and the Very Large Array to provide broad spectral coverage to complement the Gemini data. The Gemini observations consisted of deconvolved H and Kp band images that identified the existence of two formerly undetected sources within IRS 13E. In all, seven individual massive stars appear to be associated with what the team believes was once a larger cluster of massive stars held together by a central intermediate-mass black hole of about 1,300 solar masses. (This black hole is distinct from the black hole at the galactic center which has a mass of about four million solar masses.) The seven individual stars of IRS 13E seen within a diameter of about 0.5″ (or projected 0.6 light-year across) are co-moving westward with a similar velocity of about 280 kilometers per second in the plane of the sky.

The compactness of the cluster and the common proper motion of the components suggest that they are kept together by a massive source, a stellar black hole at the center of IRS 13E. The size of the cluster allow to infer a mean orbit radius. The radial velocities (+/- 30 kilometers per second) of the individual stars derived from the BEAR Fourier Transform Spectrometer (CFHT) measurements can be used to estimate the average orbital velocity. The authors then explored a range of orbital assumptions and were able to constraint the mass of the holding black hole to about 1,300 solar masses rather robustly.

The team also speculates that this cluster was once located farther from the galactic center, where the stars could form away from the extreme gravitational influence of the central supermassive black hole. IRS 13E seems to be the wreckage or remnant core of a once larger cluster of stars that is now spiraling towards Sgr A* at the galactic center.

This theory also explains the existence of other massive stars around the galactic center, which are thought to be stars stripped from the cluster due to the gravitational environment around the galaxy?s central black hole.

The Gemini data for this work were obtained by a team led by Francois Rigaut (Gemini Observatory) as part of an adaptive optics demonstration run in July 2000. The results are published in Astronomy and Astrophysics, Volume 423, pgs 155-167 (2004)

Original Source: Gemini News Release

Triple Eclipse on Jupiter

At first glance, Jupiter looks like it has a mild case of the measles. Five spots – one colored white, one blue, and three black – are scattered across the upper half of the planet.

Closer inspection by NASA’s Hubble Space Telescope reveals that these spots are actually a rare alignment of three of Jupiter’s largest moons – Io, Ganymede, and Callisto – across the planet’s face.

In this image, the telltale signatures of this alignment are the shadows [the three black circles] cast by the moons. Io’s shadow is located just above center and to the left; Ganymede’s on the planet’s left edge; and Callisto’s near the right edge. Only two of the moons, however, are visible in this image. Io is the white circle in the center of the image, and Ganymede is the blue circle at upper right. Callisto is out of the image and to the right.

On Earth, we witness a solar eclipse when our Moon’s shadow sweeps across our planet’s face as it passes in front of our Sun. Jupiter, however, has four moons roughly the same size as Earth’s Moon. The shadows of three of them occasionally sweep simultaneously across Jupiter. The image was taken March 28, 2004, with Hubble’s Near Infrared Camera and Multi-Object Spectrometer.

Seeing three shadows on Jupiter happens only about once or twice a decade. Why is this triple eclipse so unique?

Io, Ganymede, and Callisto orbit Jupiter at different rates. Their shadows likewise cross Jupiter’s face at different rates. For example, the outermost moon Callisto orbits the slowest of the three satellites. Callisto’s shadow moves across the planet once for every 20 shadow crossings of Io. Add the crossing rate of Ganymede’s shadow and the possibility of a triple eclipse becomes even more rare. Viewing the triple shadows in 2004 was even more special, because two of the moons were crossing Jupiter’s face at the same time as the three shadows.

Jupiter appears in pastel colors in this photo because the observation was taken in near-infrared light. Astronomers combined images taken in three near-infrared wavelengths to make this color image. The photo shows sunlight reflected from Jupiter’s clouds. In the near infrared, methane gas in Jupiter’s atmosphere limits the penetration of sunlight, which causes clouds to appear in different colors depending on their altitude.

Studying clouds in near-infrared light is very useful for scientists studying the layers of clouds that make up Jupiter’s atmosphere. Yellow colors indicate high clouds; red colors lower clouds; and blue colors even lower clouds in Jupiter’s atmosphere. The green color near the poles comes from a thin haze very high in the atmosphere. Ganymede’s blue color comes from the absorption of water ice on its surface at longer wavelengths. Io’s white color is from light reflected off bright sulfur compounds on the satellite’s surface.

“I’m increasingly aware that some of the most interesting things in astronomy and astrophysics, for instance, can change the way people understand the universe, how it got started and where it’s going. I found those Voyager pictures of the moons of Jupiter incredibly exciting, these beautiful color pictures showing volcanoes on the surface”. -Robert C. Richardson, Nobel Laureate, Physics, Cornell, (1996)

In viewing this rare alignment, astronomers also tested a new imaging technique. To increase the sharpness of the near-infrared camera images, astronomers speeded up Hubble’s tracking system so that Jupiter traveled through the telescope’s field of view much faster than normal. This technique allowed scientists to take rapid-fire snapshots of the planet and its moons. They then combined the images into one single picture to show more details of the planet and its moons.

Original Source: NASA Astrobiology

First Gamma Ray Image

A team of UK astronomers working with international partners has produced the first ever image of an astronomical object using high energy gamma rays, helping to solve a 100 year old mystery – the origin of cosmic rays. Their research, published in the Journal Nature on November 4th, was carried out using the High Energy Stereoscopic System (H.E.S.S.), an array of four telescopes, in Namibia, South-West Africa.

The astronomers studied the remnant of a supernova that exploded some 1,000 years ago, leaving behind an expanding shell of debris which, seen from the Earth, is twice the diameter of the Moon. The resulting image helps to solve a mystery that has been puzzling scientists for almost 100 years – the origin of cosmic rays. Cosmic rays are extremely energetic particles that continually bombard the Earth, thousands of them passing through our bodies every day. The production of gamma rays in this supernova shock wave tells us that it is acting like a giant particle accelerator in space, and thus a likely source of the cosmic rays in our galaxy.

Dr Paula Chadwick of the University of Durham said “This picture really is a big step forward for gamma-ray astronomy and the supernova remnant is a fascinating object. If you had gamma-ray eyes and were in the Southern Hemisphere, you could see a large, brightly glowing ring in the sky every night.”

Professor Ian Halliday, CEO of PPARC which funds UK participation in HESS said “These results provide the first unequivocal proof that supernovae are capable of producing large quantities of galactic cosmic rays – something we have long suspected, but never been able to confirm.”

Gamma rays are the most penetrating form of radiation we know, around a billion times more energetic than the X-rays produced by a hospital X-ray machine. This makes it very difficult to use them to create an image – they just pass straight through any surface which we might use to reflect them, for instance. However, luckily for life on Earth, gamma rays from objects in outer space are stopped by the atmosphere; when this happens, a faint flash of blue light is produced, lasting for a few billionths of a second. The astronomers used images of these flashes of light, called Cherenkov radiation, to make a gamma ray ‘image’ for the first time.

Original Source: PPARC News Release

Earth Will Be Watching When Huygens Arrives

Image credit: ESA
When ESA?s Huygens probe plunges into the atmosphere of Saturn?s largest moon, Titan, on 14 January 2005, telescopes on Earth will be watching the remote world.

Observations of Titan from Earth will help to understand the global condition of the atmosphere, while Huygens is passing through a tiny section of it. As Huygens drifts down, its instruments and cameras will be collecting vital information about the atmosphere and surface.

The Cassini mothership will be listening, so that it can later transmit the results to Earth but, while Cassini is pointing its high-gain antenna at Huygens, it cannot watch Titan with its cameras. So telescopes on Earth will try to do the job.

The telescopes located around the Pacific Ocean will be used because Titan will be in view from these areas at the time of the Huygens descent. An observation from space, by the NASA/ESA Hubble Space Telescope, is also planned.

The most exciting possibility is that the observations may show a tiny, bright speck at the moment Huygens enters the atmosphere.

This point of light will be the ?fireball?, created by friction as the probe?s heatshield hurtles through the denser parts of the moon?s atmosphere and the spacecraft shoots across Titan?s sky like a giant meteor.

Although the chances of seeing the fireball are faint, the best location to be looking from happens to coincide with the largest single telescope in the world: the 10-metre Keck telescope. Situated on the summit of the dormant volcano Mauna Kea, on Hawaii, Keck will be directly in line with Titan at the moment of the Huygens descent.

In addition to optical telescopes, a string of radio telescopes across America, Australia, China and Japan will team up to listen for the faint radio signal of Huygens itself. If they hear this tiny call, they will be able to help determine, after weeks of processing the Huygens amount of data that will be collected, the precise landing location for the probe on Titan?s surface.

Jean-Pierre Lebreton, Huygens Project Scientist, will be in ESA?s European Space Operations Centre (ESOC) at Darmstadt, Germany, during the descent of the probe. As any space scientist knows, planetary descents can be risky things. However, Lebreton says that preparations for the day of descent are going well, and adds, ?We have no time to get nervous, there is too much work to do.?

Original Source: ESA News Release

Alaskan Martian Update, Eclipse Photos, and More

It’s a bit of a slow news day today. I’m not sure why… some kind of election, or something. Anyway, I wanted to give you an update on Ray Collins, who shut himself in a greenhouse in Alaska to figure out how much space would be required to feed an astronaut. He ate the last of his potatoes, and exited Mars Base Zero on Tuesday. You can read his final update, and if you’re interested in getting involved, or sharing ideas, they’ve got some ambitious plans and I’m sure they’d love to hear from you.

Second, thanks to everyone who sent in your stories and pictures of last week’s lunar eclipse. It’s great to see how an event like this can really bring people together, and help encourage an appreciation for the beautiful night skies. So, check them out, and share your experience if you hadn’t already.

Finally, a reminder to head out in the next couple of morning and enjoy the Venus/Jupiter planetary conjunction. The two planets are already close together in the sky, and getting closer. It’s really beautiful.

Enjoy!

Fraser Cain
Publisher
Universe Today

Tithonium Chasma on Mars

This image, taken by the High Resolution Stereo Camera (HRSC) on board ESA?s Mars Express spacecraft, shows the western end of the Valles Marineris Canyon system on Mars.

The image was taken during orbit 442 with a ground resolution of approximately 52 metres per pixel. The displayed region is located at the beginning of the canyon system at about latitude 7? South and longitude 269? East.

The image shows the western end of the canyons Tithonium Chasma and Ius Chasma, part of the Valles Marineris canyon system, which are up to 5.5 kilometres deep.

The whole canyon system itself is the result of a variety of geological processes. Probably tectonic rifting, water and wind action, volcanism and glacial activity all have played major roles in its formation and evolution.

The canyon floors are covered by a dark, layered material, the so-called ?Interior Layered Deposits?. These deposits are marked by a system of polygonal cracks through which the underlying, lighter-coloured rock can be seen.

The Interior Layered Deposits are still a major topic of research. Parts of the deposits are most probably volcanic, while in other areas a sedimentary origin has been proposed.

The morphology of the valley flanks has been modified by ?slumping? and rockfalls. Slumping is when a substantial part of a mountain, cliff or hill ?breaks away? and slides more or less intact to the bottom of the slope.

Some of the major slumps here are more than thirty kilometres wide. The flanks are often covered to a large extent by their own ?talus?, or rock debris that has fallen from the sides of a cliff or steep slope.

The large, deeply eroded Crater Oudemans in the south of the area (bottom of the image) has a diameter of about 120 kilometres.

Around the central mount of the crater, large plains composed of dark rock can be seen. These plains are covered by lighter sediments, deposited through the action of the wind. Several systems of tectonic faults can be seen in the imaged area.

The most prominent is the system of Valles Marineris itself, running east-west. South of Crater Oudemans, smaller tectonic ?grabens? running from the south-west to the north-east can be seen. To the north of the large canyons, there are more fault systems.

The Valles Marineris region is one of the most studied areas on Mars. The canyon system is one of the major keys to the tectonic and volcanic history of this planet. Research on the sedimentary rocks and the products of erosion can also provide major insights into its climatic evolution.

Due to the stereo capability of the HRSC, the new image data gained can provide new insights into the geology of Mars. This will lead to a new, more precise reconstruction of Martian geological history.

Original Source: ESA News Release

Swift Prepares for Flight

Image credit: NASA
By the end of this day, somewhere in the visible universe a new black hole will have formed. Gamma-ray bursts (GRBs), the most distant and powerful explosions known, are likely the birth cries of these new black holes.

NASA’s Swift mission is dedicated to studying the gamma-ray burst/black hole connection. The Swift spacecraft, an international collaboration, is scheduled to lift off in November aboard a Delta II rocket from Cape Canaveral Air Force Station, Fla.

“Swift caps off a 30-year hunt to understand the nature of gamma-ray bursts, flashes of light that burn as brightly as a billion billion suns,” said Dr. Anne Kinney, Director of the Universe Division, NASA Headquarters, Washington. “Swift is fine-tuned to quickly locate these bursts and study them in several different wavelengths before they disappear forever. Swift is a little satellite with a big appetite,” she said.

Gamma-ray bursts are fleeting events, lasting only a few milliseconds to a few minutes, never to appear in the same spot again. They occur from our vantage point about once a day. Some bursts appear to be from massive star explosions that form black holes.

The Swift observatory comprises three telescopes, which work in tandem to provide rapid identification and multi-wavelength follow-up of GRBs and their afterglows. Within 20 to 75 seconds of a detected GRB, the observatory will rotate autonomously, so the onboard X-ray and optical telescopes can view the burst. The afterglows will be monitored over their durations, and the data will be rapidly released to the public.

The afterglow phenomenon follows the initial gamma-ray flash in most bursts. It can linger in X-ray light, optical light and radio waves for hours to weeks, providing great detail. The crucial link here, however, is having a precise location to direct other telescopes. Swift is the first satellite to provide this capability with both great precision and speed. “We expect to detect and analyze over 100 gamma-ray bursts a year,” said Dr. Neil Gehrels, Swift’s Principal Investigator at NASA’s Goddard Space Flight Center (GSFC) in Greenbelt, Md. “Swift will lead to a windfall of discovery on these most powerful explosions in the universe.”

While the link between some bursts and massive star explosions appears firm, other bursts may signal the merger of neutron stars or black holes orbiting each other in exotic binary star systems. Swift will determine whether there are different classes of gamma-ray bursts associated with a particular origin scenario. Swift will be fast enough to identify afterglows from short bursts, if they exist. Afterglows have only been seen for bursts lasting longer than two seconds.

“Some bursts likely originate from the farthest reaches, and hence earliest epoch, of the universe,” said Swift Mission Director John Nousek. He is a professor of astronomy and astrophysics at Penn State’s University Park, Pa., campus. “They act like beacons shining through everything along their paths, including the gas between and within galaxies along the line of sight,” he said.

Swift notifies the community, which includes museums, general public, and scientists at world-class observatories, via the GSFC-maintained Gamma-ray Burst Coordinates Network (GCN). A network of dedicated ground-based robotic telescopes distributed around the world awaits Swift-GCN alerts. The Swift Mission Operations Center, located at Penn State’s University Park campus, controls the Swift observatory and provides continuous burst information.

Swift, a medium-class explorer mission, is managed by GSFC. Swift is a NASA mission with participation of the Italian Space Agency and the Particle Physics and Astronomy Research Council in the United Kingdom. It was built in collaboration with national laboratories, universities and international partners, including Penn State University; Los Alamos National Laboratory in New Mexico; Sonoma State University, Rohnert Park, Calif.; Mullard Space Science Laboratory in Dorking, Surrey, England; the University of Leicester, England and the Brera Observatory in Milan, Italy.

More information about Swift is available on the Internet at:
http://swift.gsfc.nasa.gov

Original Source: NASA News Release

Beagle 2 Just Didn’t Have the Money to Succeed

This inquiry focussed upon the way in which the UK Government supported the Beagle 2 consortium in the development of a lander for the European Space Agency’s (ESA) Mars Express mission and the implications of the project for future Government space policy.

We found that the Government was admirably enthusiastic about this exciting but high risk project. However, it was unable to respond to its relatively sudden emergence to find the guaranteed financial backing that was needed to support the development of a lander against extremely tight time and mass constraints. As a result of this, and the failure of sponsorship income to materialise, the project could not proceed to its development and testing phases as early as it should, with a consequent detrimental impact on its chances of success. We have called for improvements in the Government’s capacity to respond to major financial commitments at short notice.

The decision for the lander to be developed separately from the orbiter has been acknowledged to be wrong. It reduced the scope for flexible and co-ordinated management of the mission. It also contributed to tensions in the relationship between the Beagle 2 consortium, ESA and other contractors, which increased as technical difficulties with the lander created doubts in some quarters at ESA about the viability of the lander. The decision was in line with existing ESA policy. It was also reinforced by a desire on the UK side for the lander to be distinctively British and a reluctance by ESA Member States to take any financial responsibility for a UK-led project. These concerns must be overcome in future, ESA-managed, missions.

We found that oversight of the Beagle 2 project, both by ESA and the UK Government, was lacking. When the project ran into difficulties, both sides belatedly intervened to introduce more certainty to the financial and management arrangements, but failed to ensure that the most important weaknesses in the mission were adequately addressed.

The Beagle 2 project had wider goals than the search for life on Mars. Technologies developed by UK teams have potential uses in other fields, such as medicine. We welcome the emphasis the Government has given to the science in society and educational objectives behind its support for the project, which helped justify the financial commitment made. The Beagle 2 project also placed the UK in a strong position to contribute to future ESA space exploration missions. These benefits should not be wasted. In this context, we welcome the Particle Physics and Astronomy Research Council’s (PPARC) decision to fund early UK participation in ESA’s Aurora space exploration programme. Long term participation will be expensive however. In view of the benefits accruing to the wider scientific community and UK science more generally, we have recommended that the Government does not leave it to PPARC alone to fund future UK involvement.

Original Source: Beagle 2 Failure Report

Stromlo Opens Up Again After the Fire

A new page is set to be written in Australian scientific history with the establishment of new buildings at Mt Stromlo Observatory.

Staff at the ANU Research School of Astronomy and Astrophysics are celebrating not just the commencement of the $36 million first stage of the historic observatory?s redevelopment; but also the announcement that the site will re-open to the public on Saturday, 30 October 2004, with self-guided tours of the site and a night sky viewing program.

?After getting an average of 70,000 visitors per year and conducting some of the world?s leading astronomical research from Mt Stromlo, the fires of January 2003 were a huge blow not just for our staff, but for the global astronomical community,? the Research School?s Director, Professor Penny Sackett, said.

?Now, 21 months after the fire, it is really exciting to commence construction of the first stage of the new Stromlo. This stage will involve the construction of an Advanced Instrumentation Technology Centre, the rebuild of a destroyed multi-million dollar optical instrument and the construction of a new telescope. Plans for the second stage of redevelopment are already well advanced.

?A huge volume of work has preceded this moment. Plans for each building have had to comply with heritage considerations and with much data about the history of the site lost in the fires, that process has taken quite a lot of time.

?We are also hopeful that insurance issues will be settled soon, enabling us to plan for the full redevelopment of the Observatory.

?It is vital to recognise that despite the fires and subsequent delays in reconstruction, Mt Stromlo has continued to be a major international centre for astronomical research. Our staff have used telescopes at the ANU Siding Spring Observatory near Coonabarabran and other telescopes around the world for their research and continue to make some of the most exciting discoveries in astronomy and astrophysics.?

The 2003 fires destroyed a superbly-equipped workshop complex, seven houses, five telescopes and a historic administration building. Demolition of parts of several buildings was allowed to commence in August after permission was granted by the Department of Environment and Heritage and the National Capital Authority, pending final approval of the redevelopment plan. The demolition process has now made the site safe for public access.

?It is fantastic to once more be able to welcome the public back to Mt Stromlo. We weren?t able to make the site safe for public visits until demolition and reconstruction plans were approved. The commencement of our night viewing program on Saturday marks an important milestone in our recovery, allowing the public to experience some of the same excitement about the Universe that we feel in our daily work at the Observatory.?

Funding for the redevelopment will come from a Federal Government grant, donations and partial payments from insurance companies. Money donated by the public will be used to fund domes that will house small telescopes for public viewing of the night sky, one of which is a historic telescope salvaged from the heritage Commonwealth Solar Observatory building.

The key ingredients of the first stage of redevelopment are:

? The Advanced Instrumentation and Technology Centre, which will replace the workshops destroyed in the blaze, offering expanded design, manufacturing and testing capabilities for precision optical instruments, opportunities for higher degree student participation in technical projects, and a research and development program focusing on Extremely Large Telescopes.

? The world?s fastest sky-mapping telescope, the SkyMapper, to be installed at the ANU Siding Spring Observatory, but controlled from Mt Stromlo through an ultra-fast broadband link. SkyMapper will complete the first digital all-sky map of the Southern Sky.

? The $6 million Near-infrared Integral-Field Spectrograph, being rebuilt for the Gemini Observatory in Hawaii in partnership with Auspace.

Construction of Stage Two will commence as further insurance money is received in compensation for the fires. ANU is still in active discussions with three insurers over full payment for damage of Mt Stromlo.

Mt Stromlo will be open from 10am-3pm on Saturday 30 October and 10am-5pm on Sunday 31 October. Mt Stromlo will then open to the public every Wednesday to Sunday between 10am-5pm. Saturday night sky viewing (Saturday Stargazing) will commence on Saturday 30 October. Bookings essential, call Natalie T: 02 6125 0232.

Original Source: ANU News Release

What’s Up This Week? Nov 1 – 7, 2004

Image credit: NASA
Monday, November 1 – As the new month begins, we’ve already began to feel the impact of the shorter daylight hours and I am sure many of you have noticed the migration of the birds. What better time to explore the infamous “Wild Duck” cluster than in the short span of time we have tonight before the Moon rises?

Discovered in 1681 by German astronomer, Gottfried Kirch, at the Berlin Observatory, M11 was later cataloged by Charles Messier in 1764 and first dubbed the “Wild Ducks” by Admiral Smyth. To our modern telescopes and binoculars, there is little doubt as to how this rich galactic cluster earned its name – for it has a distinctive wedge-shaped pattern that closely resembles a flight of ducks. This fantastic open cluster of several thousand stars (about 500 of them are magnitude 14 or brighter) is approximately 250 million years old!

Image credit: NASA
M11 is easily located by identifying our last week’s study object – Altair. By counting two stars “down” the “body” of Aquila and stopping on Lambda you will find your starhop “guide”. Near Lambda you will see three stars, the centermost is Eta Scuti. Now just aim! Even small binoculars will have no problem finding M11, but a telescope is required to start resolving individual stars. The larger the telescope’s aperture the more stars will be revealed.

Image credit: NASA
Tuesday, November 2 – Tonight will be a great opportunity before the Moon rises to try your hand at finding Uranus and Neptune. Uranus will be fairly easy to spot in small binoculars just due west Sigma Aquarii. At a respectable magnitude 5.8, it will appear to this low power view as a blue/green “star”, but telescopes will reveal its 3.5″ disc with no problem. At magnitude 7.9, Neptune is harder to find, but not impossible in moderately dark skies.

The key to finding Neptune is to locate bright Alpha and Beta in Capricornus’ northwest corner. From there, drop due south to find a close grouping of three stars. Now go due west until you spot moderately bright Theta about central in the constellation. Theta will be your guide and you will find Neptune west/northwest of it by using a more detailed locator chart. Neptune will appear as a small (2.3″ diameter) blue-grey disk to higher power, but that’s pretty remarkable considering it’s over four and half billion kilometers away from the Sun!

Don’t think that’s challenge enough? Then large telescope owners and webcam “hot shots” are encouraged to try for Neptune’s most visible moon, Triton, at magnitude 13. Best of luck!

Image credit: NASA
Wednesday, November 3 – For those of you who have awaited the chance to find Saturn easily? Then tonight is your night. Rising by local midnight the waning Moon will be your guide to finding Saturn – for the “Ring King” will appear about 6 degrees south. (If you can’t stay up that late? Don’t worry! The pair will still be there before dawn.)

Saturn is absolutely magnificent in even the smallest of telescopes. Its amazing ring system and bright moon Titan are easily perceived at modest magnification and even larger binoculars will reveal its planetary nature. Larger telescopes will appreciate Saturnian features such as the Cassini division and shadow of the planet against the ring system.

Moon viewer’s will also appreciate tonight’s highlighted view of the Apennine Mountain range. Stretching a massive distance of 750 km (450 miles) the Apennine Mountain range makes up the south east wall of Mare Ibrium. Truly a delight!

***image6***On November 3, 1957 the Russian Space Program launched its first “live” astronaut into space – Laika. Carried on board Sputnik 2, our canine hero was the first living creature to reach orbit. The quickly developed Sputnik 2 was designed with sensors to transmit ambient pressure, breathing patterns and heartbeat of its passenger along with a television camera monitor. The craft also monitored ultraviolet and x-ray radiation as well to further study the impact of space flight upon human occupants. Unfortunately, the technology of the time offered no way to return Laika to Earth, so she perished in space. On April 14, 1958, Laika and Sputnik 2 returned to Earth in a fiery re-entry ending after 2,570 orbits.

***image7***Thursday, November 4 – Prepare yourself for this week’s exciting astronomical event! Before local sunrise this morning, bright Venus and returning Jupiter will make a dazzling appearance in the eastern sky as they appear around one half a degree apart! This spectacular display will delight viewers of all ages and skill levels. Very visible to the naked eye, this bright pairing will offer outstanding photographic opportunities and well as a memorable observing experience through either telescopes or binoculars.

This morning will be the peak of the Southern Taurid meteor shower. Already making headlines around the world for producing fireballs, the Taurids will be best visible in the earlier evening hours before moonrise. The radiant for this shower is, of course, the constellation of Taurus and red giant Aldeberan, but did you know the Taurids are divided into two streams? It is surmised that the original parent comet shattered as it passed our Sun around 20,000 to 30,000 years ago. The larger “chunk” continued orbiting and is known as periodic comet Encke. The remaining debris field turned into smaller asteroids, meteors and larger fragments that often pass through our atmosphere creating astounding “fireballs” known as bolides. Although the fall rate for this particular shower is rather low at 7 per hour, these slow traveling meteors (27km or 17 miles per second) are usually very bright and appear to almost “trundle” across the sky. With the chances high all week of seeing a bolide, this makes a bit of quiet contemplation under the stars a worthy evening.

While you are out meteor watching, take the opportunity to check out the Moon. Tonight’s highlighted features will be craters Pltomaeus, Alphonsus and Arzachel.

***image8***Friday, November 5 – Did you miss your opportunity to see Venus and Jupiter yesterday? Then don’t despair for the pair will still be very visible in the pre-dawn skies this morning as well. They’ve just changed positions slightly! Two additional challenges for this morning is the appearance of Mars low on the horizon and the return of Comet LINEAR C/2003 K4.

Viewers with an open horizon to the east/south east are strongly encouraged to take out even the smallest of binoculars or telescopes and attempt to find Comet K4 in the basic center of the constellation of Corvus. The four primary stars of Corvus are easy to recognize and finding the comet should be a cinch. The two southernmost stars are Beta and Epsilon – almost directly between them and slightly to the north is Theta. It is around this star your will find the comet! Starting November 1, K4 will be north of Theta and will be slightly southwest of it on this date. At predicted magnitude 5, this bright comet is on the verge of naked-eye visibility and will be a snap to find with binoculars.

For Moonwatchers tonight, take the opportunity to revisit the “Straight Wall”. While we learned about Rupes Recta during the waxing phase two weeks ago, the waning phase will create the finest appearance of the “Straight Wall” this month.

***image9***Saturday and Sunday, November 6 and 7 – Thanks to the later rise of the Moon this weekend, right now would be a great time to think “all about Andromeda”. The first of our objects for tonight can be a naked-eye observation from a dark sky site, an easy catch with binoculars even from urban locations and absolutely outstanding in telescopes. Of whom do I speak so highly? Why, of the Great Andromeda Galaxy of course!

For those of you just beginning in astronomy, you owe it to yourself to find a dark sky location and try locating a galaxy whose light left almost 3 million years ago with just your eyes! Although I have provided you with a map, it’s not always as easy to use one as it may seem. If you are having difficulties, try this simple trick. About an hour or so after the Sun sets and the skies are completely dark, go out and face east. About halfway between the horizon and the zenith, look for a wide pattern of four stars that resemble a large diamond. This is the Great Square of Pegasus! To the left of you, look for the flattened M of the constellation of Cassiopeia. Now, returning to the Great Square, focus on the left hand star and point at it. Moving left, count this as one bright star. Going left, two – a much dimmer one, and more left, three, a bright one – and stop. Above this star (and toward Cassiopeia) you will see another star, and above that? A hazy, fuzzy patch of glow that is the Andromeda Galaxy! As far back as 905 A.D., this galaxy has been known as “The Little Cloud” and appeared on ancient star charts long before the telescope was even dreamed of. It also appeared on Dutch starmaps as far back as 1500, but wasn’t cataloged by Messier until August 3, 1764. One of the first telescopic descriptions actually dates back to 1612! Even the great Edmond Halley in 1716 credited its discovery incorrectly to French astronomer Bullialdus in 1661, even though it had been reported 150 years earlier.

***image10***As a part of our own “Local Group” of eleven galaxies, the Andromeda galaxy is our nearest large neighbor. Both it and our own Milky Way are approaching each other at about 100 km per second. But not to worry – the M31 is still almost 2.9 million light years away!

Now, focus binoculars on the area and be prepared to journey across space and time…

Small telescopes and binoculars at low power will have no trouble seeing the M31’s bright nucleus and 4 degrees of extension. Larger binoculars and mid-range telescopes will find that the Andromeda contains a triple treat, as the M32 and M110 galaxies also accompany it. For those of you with large telescopes who scoff at such a simple target as the Andromeda? Then I highly encourage you to “power up” and study the NGC206 on the M31’s southern flank. This region of nebulosity and starbirth is a challenge object worthy of your optics and you’ll be studying a DSO in another galaxy!

While you’re in the neighborhood? Take the time to study the map and visit with Gamma Andromeda. Almach is a wonderful double star, and its yellowish primary and blue-green secondary are easily split by modest telescopes. Again, for those of you with larger telescopes and precision optics there’s another challenge here. Almach’s secondary star is also a double!

Until next week fellow stargazers? Keep looking up! I wish you clear skies and light speed… ~Tammy Plotner