Webb Relieves the Hubble Tension

Sometimes, when scientists measure things differently, they get different results. Whenever that happens with something as crucial to humanity’s long-term future as the universe’s expansion rate, it can draw much attention. Scientists have thought for decades that there has been such a difference, known as the Hubble Tension, in measurements of the speed at which the universe is expanding. However, a new paper by researchers at the University of Chicago and the Carnegie Institution for Science using data from the James Webb Space Telescope (JWST) suggests that there wasn’t any difference at all.

Continue reading “Webb Relieves the Hubble Tension”

Project Helianthus – a Solar Sail Driven Geomagnetic Storm Tracker

An illustration of the Light Sail 2 craft with its solar sails deployed. Image Credit: Josh Spradling / The Planetary Society

Solar storms captured the imagination of much of the American public earlier this year when auroras were visible well south of their typical northern areas. As the Sun ramps into another solar cycle, those storms will become more and more common, and the dangers they present to Earth’s infrastructure will continue to increase. Currently, most of our early warning systems only give us a few minutes warning about a potentially destructive impending geomagnetic storm event. So a team of researchers from Sapienza University in Rome and the Italian Space Agency proposed a plan to sail a series of detectors to a point out in space where they could give us an early warning. And they want those detectors to stay on station without rockets.

Continue reading “Project Helianthus – a Solar Sail Driven Geomagnetic Storm Tracker”

Researchers Developed a Test Bed For Separating Valuable Material on the Moon

Many times, it’s better to flesh out technologies fully on Earth’s surface before they’re used in space. That is doubly true if that technology is part of the critical infrastructure keeping astronauts alive on the Moon. Since that infrastructure will undoubtedly use in-situ resources – known as in-situ resource utilization (ISRU) – developing test beds here on Earth for those ISRU processes is critical to derisking the technologies before they’re used on a mission. That’s the plan with a test bed designed by researchers at the German Aerospace Center in Bremen – they designed it to improve how well we gather water and oxygen from lunar regolith. Unfortunately, as their work described in a recent paper demonstrates, it will be a challenge to do so.

Continue reading “Researchers Developed a Test Bed For Separating Valuable Material on the Moon”

A Hopper Could Explore Over 150km of Triton’s Surface In Two Years

Neptune’s largest moon, Triton, is one of the most biologically interesting places in the solar system. Despite being hard to reach, it appears to have active volcanoes, a thin atmosphere, and even some organic molecules called tholins on its surface. However, Voyager only visited it once, in passing, 35 years ago. Technology has advanced a lot in the intervening decades, and a new push for a lander on Triton specifically has been garnering attention. One such mission was described by Steve Oleson and Geoffrey Landis of NASA’s Glenn Research Center. Their concept mission, known as Triton Hopper, was funded by NASA’s Institute for Advanced Concepts (NIAC) back in 2018 and utilized a cryogenic pump to extract propellant from Triton’s surface to power a “hopper” that could travel up to 5 km a month, and do some fascinating science along the way.

Continue reading “A Hopper Could Explore Over 150km of Triton’s Surface In Two Years”

Are Andromeda and the Milky Way Doomed to Collide? Maybe Not

Scientists discovered the Andromeda galaxy, known as M31, hundreds of years ago, and around a century ago, we realized that it had negative radial velocity toward the Milky Way. In other words, eventually, the two galaxies would merge spectacularly. That has been common knowledge for astronomers since then, but is it really true? A new paper from researchers at the University of Helsinki looks at several confounding factors, including the gravitational influence of other galaxies in our local group, and finds only a 50% chance that the Milky Way will merge with the Andromeda galaxy in the next 10 billion years. 

Continue reading “Are Andromeda and the Milky Way Doomed to Collide? Maybe Not”

Astronomers Use Artificial Intelligence To Find Elusive Stars “Gobbling Up” Planets

We recently reported on how the mountains of data produced by astronomical instruments are “perfect for AI.” We’ve also started reporting on several use cases for different AI algorithms. Now, a team of researchers from the University of Texas has developed a new use case that focuses on discovering the interior makeup of exoplanets by looking at a specific type of star.

Continue reading “Astronomers Use Artificial Intelligence To Find Elusive Stars “Gobbling Up” Planets”

A Tower On The Moon Could Provide Astronauts With Light, Power, and Guidance

Technologies for enabling NASA’s Artemis mission are coming thick and fast, as plenty of problems must be solved before a permanent human presence on the Moon can be established. A novel idea from Honeybee Robotics, one of the most prominent space technology companies now owned by Blue Origin, could solve plenty of them with one piece of infrastructure. The Lunar Utility Navigation with Advanced Remote Sensing and Autonomous Beaming for Energy Redistribution, or LUNARSABER (which must have been named by someone who really likes Star Wars), is a 100m tall pole that can hold one ton of equipment on top of it. It could serve as a central power, communications, and lighting hub of an Artemis base and part of a mesh network with other places of interest on the Lunar surface. 

Continue reading “A Tower On The Moon Could Provide Astronauts With Light, Power, and Guidance”

A Unique Combination of Antennas Could Revolutionize Remote Sensing

Bigger antennas are better, at least according to researchers interested in geospatial monitoring. That’s because higher resolution in monitoring applications requires larger apertures. So imagine the excitement in the remote sensing community when a researcher from Leidos, a government consulting firm, developed an idea that dramatically increased the effective aperture size of a remote radio-frequency monitoring system simply by tying a rotating antenna to a flat “sparse” array. That’s exactly what Dr. John Kendra did, and it has garnered him not only two NASA Institute for Advanced Concepts (NIAC) grants to advance the technology but also a prize paper award at a technical conference on remote sensing. In other words, if implemented correctly, the Rotary-Motion Extended Array Synthesis (R-MXAS) technology could be a game changer for remote sensing applications.

Continue reading “A Unique Combination of Antennas Could Revolutionize Remote Sensing”

How to SUPPPPRESS Light From a Star That Is Ten Billion Times Brighter Than Its Habitable Exoplanet

This artist’s concept features one of multiple initial possible design options for NASA’s Habitable Worlds Observatory. Credits: NASA’s Goddard Space Flight Center Conceptual Image Lab

Searching for Earth 2.0 has been an obsession of almost all exoplanet hunters since the discipline’s dawn a few decades ago. Since then, they’ve had plenty of technological breakthroughs help them in their quest, but so far, none of them have been capable of providing the clear-cut image needed to prove the existence of an exo-Earth. However, some of those technologies are undoubtedly getting closer, and one of the most interesting is utilizing a system called a multi-grated vector vortex coronagraph (mgVVC). Researchers funded by ESA think it may hold the optical properties to enable space-based telescopes like the Habitable Worlds Observatory (HWO) to finally capture the holy grail of exoplanet hunting – and it may be ready for prime time as early as next year.

Continue reading “How to SUPPPPRESS Light From a Star That Is Ten Billion Times Brighter Than Its Habitable Exoplanet”

The Properties of 1.2 Million Solar System Objects Are Now Contained In A Machine-Readable Database

Illustration of an interstellar object approaching our solar system. Credit: Rubin Observatory/NOIRLab/NSF/AURA/J. daSilva

Academic research on solar system objects has increased dramatically over the last twenty years. However, information on most of the estimated 1.2 million objects discovered in our solar system has been spread throughout various databases and research papers. Putting all that data into a single data store and making it easy to access would allow researchers to focus on their research rather than on where to collect data. That is the idea behind the Solar System Open Database Network (SsODNet), a project by data scientists at the Observatoire de Paris.

Continue reading “The Properties of 1.2 Million Solar System Objects Are Now Contained In A Machine-Readable Database”