What Color Is the Moon? A Simple Science Project For Sunday Night’s Eclipse

Depending on how clear the atmosphere is, the Moon's color can vary dramatically from one eclipse to another. The numbers, called the Danjon Scale, will help you estimate the color of Sunday night's eclipse. Credit: Bob King

There are many ways to enjoy tomorrow night’s total lunar eclipse. First and foremost is to sit back and take in the slow splendor of the Moon entering and exiting Earth’s colorful shadow. You can also make pictures, observe it in a telescope or participate in a fun science project by eyeballing the Moon’s brightness and color. French astronomer Andre Danjon came up with a five-point scale back in the 1920s to characterize the appearance of the Moon during totality. The Danjon Scale couldn’t be simpler with just five “L values” from 0 to 4:

L=0: Very dark eclipse. Moon almost invisible, especially at mid-totality.
L=1: Dark Eclipse, gray or brownish in coloration. Details distinguishable only with difficulty.
L=2: Deep red or rust-colored eclipse. Very dark central shadow, while outer edge of umbra is relatively bright.
L=3: Brick-red eclipse. Umbral shadow usually has a bright or yellow rim.
L=4: Very bright copper-red or orange eclipse. Umbral shadow has a bluish, very bright rim.

The Danjon Scale is used to estimate the color of the totally eclipsed moon. By making your own estimate, you can contribute to atmospheric and climate change science. Credit: Alexandre Amorim
The Danjon Scale is used to estimate the color of the totally eclipsed moon. By making your own estimate, you can contribute to atmospheric and climate change science. Credit: Alexandre Amorim

The last few lunar eclipses have been bright with L values of 2 and 3. We won’t know how bright totality will be during the September 27-28 eclipse until we get there, but chances are it will be on the bright side. That’s where you come in. Brazilian amateur astronomers Alexandre Amorim and Helio Carvalho have worked together to create a downloadable Danjonmeter to make your own estimate. Just click the link with your cellphone or other device and it will instantly pop up on your screen.

On the night of the eclipse, hold the phone right up next to the moon during mid-eclipse and estimate its “L” value with your naked eye. Send that number and time of observation to Dr. Richard Keen at [email protected]. For the sake of consistency with Danjon estimates made before mobile phones took over the planet, also compare the moon’s color with the written descriptions above before sending your final estimate.

Graph showing the change in heating of the ground in fractions of degrees (vertical axis) as affected by volcanic eruptions and greenhouse warming since 1979. The blue shows volcanic cooling, the red shows greenhouse warming. Notice the rising trend in warming after 1996. Credit: Dr. Richard Keen
Graph showing the change in heating of the ground in fractions of degrees (vertical axis) as affected by volcanic eruptions and greenhouse warming since 1979. The blue shows volcanic cooling, the red shows greenhouse warming. Notice the rising trend in warming after 1996. Credit: Dr. Richard Keen

Keen, an emeritus professor at the University of Colorado-Boulder Department of Atmospheric and Oceanic Sciences, has long studied how volcanic eruptions affect both the color of the eclipsed moon and the rate of global warming. Every eclipse presents another opportunity to gauge the current state of the atmosphere and in particular the dustiness of the stratosphere, the layer of air immediately above the ground-hugging troposphere. Much of the sunlight bent into Earth’s shadow cone (umbra) gets filtered through the stratosphere.

Volcanoes like Mt. Pinatubo, which erupted in June 1991 in the Philippines, inject tremendous quantities of ash and sulfur compounds high into the atmosphere, where they can temporarily block the sunlight and cause a global drop in temperature. Credit: USGS
Volcanoes like Mt. Pinatubo, which erupted in June 1991 in the Philippines, inject tremendous quantities of ash and sulfur compounds high into the atmosphere, where they can temporarily block sunlight and cause a global drop in temperature. Credit: USGS

Volcanoes pump sulfur compounds and ash high into the atmosphere and sully the otherwise clean stratosphere with volcanic aerosols. These absorb both light and solar energy, a major reason why eclipses occurring after a major volcanic eruption can be exceptionally dark with L values of “0” and “1”.

The moon was so dark during the December 1982 eclipse that Dr. Keen required a 3-minute-long exposure at ISO 160 to capture it. Credit: RIchard Keen
The moon was so dark during the December 1982 eclipse that Dr. Keen required a 3-minute-long exposure at ISO 160 to capture it. Credit: Richard Keen

One of the darkest in recent times occurred on December 30, 1982 after the spectacular spring eruption of Mexico’s El Chichon that hurled some 7 to 10 million tons of ash into the atmosphere. Sulfurous soot circulated the globe for weeks, absorbing sunlight and warming the stratosphere by 7°F (4°C).

A chromolithograph from the German astronomy magazine "Sirius" compares the dark and featureless lunar disk during the eclipse a year after the eruption of Krakatoa (left) with a bright eclipse four years later, after the volcanic aerosols had settled out of the stratosphere (right).
Lithograph from the German astronomy magazine Sirius compares the dark, featureless lunar disk during the 1884 eclipse a year after the eruption of Krakatoa (left) with a bright eclipse four years later, after the volcanic aerosols had settled out of the stratosphere (right).

Meanwhile, less sunlight reaching the Earth’s surface caused the northern hemisphere to cool by 0.4-0.6°C. The moon grew so ashen-black during totality that if you didn’t know where to look, you’d miss it.

Two photos of Earth’s limb or horizon from orbit at sunset before and after the Mt. Pinatubo eruption. The top view shows a relatively clear atmosphere, taken August 30,1984. The bottom photo was taken August 8, 1991, less than two months after the eruption. Two dark layers of aerosols between 12 and 15 miles high make distinct boundaries in the atmosphere. Credit: NASA
Two photos of Earth’s limb or horizon from orbit at sunset before and after the Mt. Pinatubo eruption. The top view shows a relatively clear atmosphere, taken August 30,1984. The bottom photo was taken August 8, 1991, less than two months after the eruption. Two dark layers of aerosols between 12 and 15 miles high make distinct boundaries in the atmosphere. Credit: NASA

Keen’s research focuses on how the clean, relatively dust-free stratosphere of recent years may be related to a rise in the rate of global warming compared to volcano-induced declines prior to 1996. Your simple observation will provide one more data point toward a better understanding of atmospheric processes and how they relate to climate change.

This map shows the Moon during mid-eclipse at 9:48 p.m. CDT. Selected stars are labeled with their magnitudes. Use these stars to help you estimate the Moon's magnitude by looking at the Moon through the backwards through binoculars. Source: Stellarium
This map shows the Moon during mid-eclipse at 9:48 p.m. CDT. Selected stars are labeled with their magnitudes. Examine the Moon backwards through binoculars and find a star it most closely matches to determine its magnitude. If for instance, the Moon looks about halfway in brightness between Hamal and Deneb, then it’s magnitude 1.6. Click to enlarge. Source: Stellarium

If you’d like to do a little more science during the eclipse, Keen suggests examining the moon’s color just after the beginning and before the end of totality to determine an ‘L’ value for the outer umbra.  You can also determine the moon’s overall brightness or magnitude at mid-eclipse by comparing it to stars of known magnitude. The best way to do that is to reduce the moon down to approximately star-size by looking at it through the wrong end of a pair of 7-10x binoculars and compare it to the unreduced naked eye stars. Use this link for details on how it’s done along with the map I’ve created that has key stars and their magnitudes.

The table below includes eclipse events for four different time zones with emphasis on mid-eclipse, the time to make your observation. Good luck on Sunday’s science project and thanks for your participation!

Eclipse Events Eastern Daylight Time (EDT) Central Daylight Time (CDT) Mountain Daylight Time (MDT) Pacific Daylight Time (PDT)
Penumbra first visible 8:45 p.m. 7:45 p.m. 6:45 p.m. 5:45 p.m.
Partial eclipse begins 9:07 p.m. 8:07 p.m. 7:07 p.m. 6:07 p.m.
Total eclipse begins 10:11 p.m. 9:11 p.m. 8:11 p.m. 7:11 p.m.
Mid-eclipse 10:48 p.m. 9:48 p.m. 8:48 p.m. 7:48 p.m.
Total eclipse ends 11:23 p.m. 10:23 p.m. 9:23 p.m. 8:23 p.m.
Partial eclipse ends 12:27 a.m. 11:27 p.m. 10:27 p.m. 9:27 p.m.
Penumbra last visible 12:45 a.m. 11:45 p.m. 10:45 p.m. 9:45 p.m.

Mars Meets the King of the Beasts

Mars and Regulus are already close. This photo was taken this morning (Sept. 21) about an hour 10 minutes before sunrise. Credit: Bob King

I was up before dawn today hoping to find the returning comet 205P/Giacobini and a faint new supernova in the galaxy IC 1776 in Pisces. I was fortunate to see them both. But the morning held a pleasant surprise I hadn’t anticipated. Venus rose brilliantly in the east followed by the much dimmer planet Mars some 10° to its lower left. And there, not more than a couple degrees below Mars, shone Leo’s brightest star, Regulus. At first glance both appeared about equally bright, but looking closer, it was clear that Regulus, at magnitude +1.3, bested Mars by nearly half a magnitude. What was especially appealing was the color contrast between the two with Mars’ dusty, rusty surface so different from the pure white radiance of Regulus.

On Friday morning September 25, Mars and Regulus will be just 0.8 degrees apart in the eastern sky below brilliant Venus at dawn. They'll be nearly as close Thursday morning. Source: Stellarium
On Friday morning September 25, Mars and Regulus will be just 0.8 degrees apart in the eastern sky below brilliant Venus at dawn. They’ll be nearly as close Thursday morning. Source: Stellarium

While star and planet are both close enough to catch the eye, they’re headed for an excellent conjunction Thursday and Friday mornings, September 24 and 25. The actual time of closest approach, when star and planet will be separated by just 0.8°, occurs around 11 p.m. CDT — before Mars rises for skywatchers in the Americas and Canada, but about perfect for European and African observers.

Just the same, everyone around the planet will see them less than a degree apart low in the eastern sky about 90 minutes to an hour before sunrise on those dates. Joining the scene will be Venus, now spectacularly bright against the deep blue, early dawn, and Jupiter, bringing up the rear further lower down in Leo’s tail.


Regulus is a main sequence star like the Sun but hotter. It spins so fast that it’s stretched into an oblate spheroid 4.3 times the diameter of the Sun.

Regulus, Latin for “little king”, may have received that name because it’s the brightest star in the Leo the Lion, king of the beasts. The ancient Greeks knew it by the same name, Basiliscos, as did the Babylonians before them who called it Lugal (king). Regulus is the only 1st magnitude star to sit almost directly on the ecliptic, the path followed by the Moon, Sun and planets through the sky. That means it gets regular visitors. Mars this week; Venus and the crescent Moon both on October 8. Few bright stars are as welcoming of unannounced guests.

I encourage beginning and advanced astrophotographers alike to capture the Regulus-Mars conjunction using a tripod-mounted camera.  Just find an attractive setting and make a series of exposures at ISO 800 with a standard 35mm lens. Click here to find out when the Sun rises, so you’ll know what time to back up from to see the event. Now that fall brings much later sunrises, it’s not so hard anymore to catch dawn sky offerings.

It’s also a delight to see the Red Planet again, which will come to a close opposition in the constellation Scorpius next May. Let the fun begin!

Rare ‘Harvest Supermoon’ Makes for a Super Eclipse September 27

Next Sunday night, September 27-28, a full supermoon will step into Earth's shadow for a beautiful total eclipse. The event occurs during convenient evening viewing across the Americas. Credit: Jim Schaff

Get set for a superlative eclipse. On Sunday night, September 27 in the Americas (early Monday morning for Europe and Africa) the Full Moon will slide into Earth’s shadow in total eclipse. This is no ordinary Full Moon. It’s the Harvest Moon, the full Moon that occurs closest to the autumnal equinox.

It also happens to reach perigee — its closest point to the Earth — on the very same night, making this a supermoon eclipse. Oh, and this is no ordinary perigee. It so happens to be the closest Full Moon of 2015! Supermoon eclipses are rare; the last one occurred in 1982 and the next won’t happen till 2033.

The supermoon of March 19, 2011 (right), compared to an average moon of December 20, 2010 (left). Note the size difference. Image Credit: Marco Langbroek, the Netherlands, via Wikimedia Commons.
The supermoon of March 19, 2011 (right), compared to an average moon of December 20, 2010 (left). Note the size difference. Credit: Marco Langbroek, the Netherlands, via Wikimedia Commons.

The average Earth-Moon distance is 240,000 miles (386,000 km), but on Sunday night our red-faced companion will edge within 221,752 miles (356,876 km) of Earth and appear 8% larger than normal. Will you be able to see the difference?

Observers in the eastern half of the U.S. can watch the entire eclipse, while those living in the far western states will see the Moon rise already in partial eclipse. If you’re reading this from Europe or Africa, you’ll have to get up early because partial phases start just after 2 a.m. Universal Time Monday morning September 28.

A total lunar eclipse occurs during a Full Moon when the Sun, Earth and Moon line up precisely in that order. Light from the Sun (white lines) skirts the Earth's atmosphere, which bends and reddens it. It reaches and reflects off the Moon back toward the Earth and we see a beautifully colored disk during totality. Credit: NASA with additions by the author
A total lunar eclipse occurs during a Full Moon when the Sun, Earth and Moon line up exactly in that order. Light from the Sun (white lines) skirts the Earth’s atmosphere, which bends and reddens it. It reaches and reflects off the Moon back toward the Earth and we see a beautifully colored disk during totality. Credit: NASA with additions by the author

Lunar eclipses occur on average 2-3 times a year and are visible wherever the Moon is up or about half the globe. Were it not for the Moon’s orbit being tilted 5.1° relative to Earth’s orbit, we’d see a total eclipse every Full Moon. The tilt means the Moon normally misses Earth’s shadow at Full Moon, passing a few degrees north of south of the cone.

Six months after the of 1982 July 06 eclipse, a second total eclipse was visible from the USA on 1982 Dec 30. But this time, the totally eclipsed Moon almost vanished completely from sight. Dust from the recently erupting Mexican volcano El Chichon was still suspended high in Earth's atmosphere where it blocks most of the Sun's rays from reaching the Moon.
The totally eclipsed Moon of December 30, 1982 almost vanished completely from sight. Dust from the then-erupting Mexican volcano El Chichon was still suspended high in Earth’s atmosphere where it blocked most of the Sun’s rays from reaching the Moon. Credit and copyright: Fred Espenak

Not this month. On Sunday night, the Moon will pass squarely around the backside of the planet and enter Earth’s inner shadow called the umbra. In the umbra, the only sunlight that reaches the Moon is the bit that’s refracted and reddened by our atmosphere. It spills into the darkness to tint the Moon an amazing array of colors ranging from yellow to dingy brown-black. The colors vary with the state of the atmosphere.

Diagram showing the Moon's progress during the upcoming eclipse. Both CDT and UT times are given. Credit: NASA / F. Espenak
Diagram showing the different phases of the upcoming eclipse. Both CDT and UT times are given. The Moon first travels through the outer partial shadow called the penumbra before reaching the umbra. Credit: NASA / F. Espenak

When levels of aerosols like desert and volcanic dust are low, the eclipsed Moon shines brightly in yellows and oranges. When high, especially in the wake of a major volcanic eruption, the atmosphere can be so choked with dust and other aerosols that the Moon nearly disappears from view. Part of the fun of eclipse-watching is not knowing quite what to expect until the Moon finally slips into the umbra.

View facing southeast at the start of totality around 9:15 p.m. CDT as seen from Minneapolis, Minn. The Moon will be in Pisces not far from the asterism dubbed "the Circlet". Source: Stellarium
View facing southeast at the start of totality around 9:15 p.m. CDT as seen from Minneapolis, Minn. The Moon will be in Pisces not far from the asterism dubbed “the Circlet”. Source: Stellarium

En route to the umbra, the Moon first passes through the penumbra or outer shadow. This region of partial shadow —  a mix of shadow and sunlight poking over the top or bottom of the Earth — shades the Moon but weakly. That’s why entry into the penumbra isn’t noticeable visually. But about 20 minutes before the partial phases begin, you’ll notice that the leading edge of the Moon (east or left side) looked dusky and blunted. It’s a cool view, so be sure to watch for it.

Animation of the Sept. 27-28 eclipse showing the Moon passing through Earth's shadow. Credit: Tom Ruen
Animation of the Sept. 27-28 eclipse showing the Moon passing through Earth’s shadow. Credit: Tom Ruen

Total lunar eclipses make for leisurely affairs. This one lasts more than 3 hours with 1 hour 12 minutes of totality; it all happens during convenient twilight and early evening viewing hours for most observers in the Americas and Canada. If you’ve felt a certain rhythm to eclipses in the past year and a half, you’re in touch with the cosmic vibe. September’s eclipse will be the fourth and final of the famed “bloody tetrad” of eclipses spaced six months apart that began back in 2014.

September 27-28, 2015 eclipse visibility map. Credit: NASA / Fred Espenak
September 27-28, 2015 eclipse visibility map. Credit: NASA / Fred Espenak

Make sure you catch this one. Skywatchers in the Americas won’t see another lunar totality until January 31, 2018. One of my favorite things to watch during eclipses is the return to darkness during totality. You look up and see all the stars the Moon stole away just an hour ago, and there in the middle of it hangs this ruddy orb that looks more like an alien planet than our familiar satellite.

Below I’ve listed times for each U.S. time zone for the different phases of the eclipse. If you’re interested in photographing the Moon, check out my photo primer for helpful tips. And don’t forget to take the kids out for a look. Lunar eclipses are perfectly safe to view, and this one’s early enough for many children to see. Clear skies! (But if it’s cloudy at your house, you can watch the eclipse live here or here.)

Eclipse Events EDT CDT MDT PDT
Penumbra first visible 8:45 p.m. 7:45 p.m. 6:45 p.m. 5:45 p.m.
Partial eclipse begins 9:07 p.m. 8:07 p.m. 7:07 p.m. 6:07 p.m.
Total eclipse begins 10:11 p.m. 9:11 p.m. 8:11 p.m. 7:11 p.m.
Mid-eclipse 10:48 p.m. 9:48 p.m. 8:48 p.m. 7:48 p.m.
Total eclipse ends 11:23 p.m. 10:23 p.m. 9:23 p.m. 8:23 p.m.
Partial eclipse ends 12:27 a.m. 11:27 p.m. 10:27 p.m. 9:27 p.m.
Penumbra last visible 12:45 a.m. 11:45 p.m. 10:45 p.m. 9:45 p.m.

Pluto Spectacular! Glaciers, Hazes, Majestic Peaks Revealed in New Photos

Pluto’s Majestic Mountains, Frozen Plains and Foggy Hazes: Just 15 minutes after its closest approach to Pluto on July 14, 2015, NASA’s New Horizons spacecraft looked back toward the sun and captured this near-sunset view of the rugged, icy mountains and flat ice plains extending to Pluto’s horizon. The smooth expanse of the informally named icy plain Sputnik Planum (right) is flanked to the west (left) by rugged mountains up to 11,000 feet (3,500 meters) high, including the informally named Norgay Montes in the foreground and Hillary Montes on the skyline. To the right, east of Sputnik, rougher terrain is cut by apparent glaciers. The backlighting highlights over a dozen layers of haze in Pluto’s tenuous but distended atmosphere. The image was taken from a distance of 11,000 miles (18,000 kilometers) to Pluto; the scene is 780 miles (1,250 kilometers) wide. Credits: NASA/JHUAPL/SwRI

As the hazy, lazy days of summer come to a close, the New Horizons team released a brand new set of incredible images of a very atmospheric Pluto.

Can you believe the detail in these photos? Back-lit by the Sun, we see icy plains, rugged mountains, glacier-cut terrain and multiple layers of haze just like those on a steamy August afternoon.

Closer Look: Majestic Mountains and Frozen Plains: Just 15 minutes after its closest approach to Pluto on July 14, 2015, NASA’s New Horizons spacecraft looked back toward the sun and captured this near-sunset view of the rugged, icy mountains and flat ice plains extending to Pluto’s horizon. The smooth expanse of the informally named Sputnik Planum (right) is flanked to the west (left) by rugged mountains up to 11,000 feet (3,500 meters) high, including the informally named Norgay Montes in the foreground and Hillary Montes on the skyline. The backlighting highlights more than a dozen layers of haze in Pluto’s tenuous but distended atmosphere. The image was taken from a distance of 11,000 miles (18,000 kilometers) to Pluto; the scene is 230 miles (380 kilometers) across. Credits: NASA/JHUAPL/SwRI)
Just look at those pyramidal mountain peaks right next to those relatively smooth, icy plains. The backlighting highlights more than a dozen layers of haze in Pluto’s tenuous but distended atmosphere. The image was taken from a distance of 11,000 miles (18,000 km) to Pluto; the scene is 230 miles (380 km) across.
Credits: NASA/JHUAPL/SwRI)

The scene measures 780 miles (1,250 kilometers) across and was taken from a distance of 11,000 miles (18,000 km) on July 15 just after closest approach. Because backlighting highlights fine aerosols suspended in the atmosphere (think of seeing your breath on a cold winter day against the Sun), these photos show the amazing complexity of Pluto’s atmosphere with more than a dozen thin haze layers extending from near the ground to at least 60 miles (100 km) above the surface.

Near-Surface Haze or Fog on Pluto: In this small section of the larger crescent image of Pluto, taken by NASA’s New Horizons just 15 minutes after the spacecraft’s closest approach on July 14, 2015, the setting sun illuminates a fog or near-surface haze, which is cut by the parallel shadows of many local hills and small mountains. The image was taken from a distance of 11,000 miles (18,000 kilometers), and the width of the image is 115 miles (185 kilometers). Credits: NASA/JHUAPL/SwRI
 In this small section of the larger crescent image of Pluto, the setting sun illuminates a bank of fog or low-lying near-surface haze sliced by the parallel shadows of many local hills and small mountains. The image was taken from a distance of 11,000 miles (18,000 km), and the width of the image is 115 miles (185 km).
Credits: NASA/JHUAPL/SwRI

“This image really makes you feel you are there, at Pluto, surveying the landscape for yourself,” said New Horizons Principal Investigator Alan Stern in a press release today. “But this image is also a scientific bonanza, revealing new details about Pluto’s atmosphere, mountains, glaciers and plains.”

Sputnik Planum is the informal name of the smooth, light-bulb shaped region on the left of this composite of several New Horizons images of Pluto. The brilliantly white upland region to the right may be coated by nitrogen ice that has been transported through the atmosphere from the surface of Sputnik Planum, and deposited on these uplands. The box shows the location of the glacier detail images below. Credits: NASA/JHUAPL/SwRI
Sputnik Planum is the informal name of the smooth, light-bulb shaped region on the left of this composite of several New Horizons images of Pluto. The brilliantly white upland region to the right may be coated by nitrogen ice that has been transported through the atmosphere from the surface of Sputnik Planum, and deposited on these uplands. The box shows the location of the glacier detail images below.
Credits: NASA/JHUAPL/SwRI

I find the hazes the most amazing aspect of the photos. They remind me of crepuscular rays, those beams of sunshine that shine between breaks in the clouds near sunset and sunrise. It chills and thrills me to the bone to see such earthly sights on a bitterly cold orb more than 3 billion miles from home.

Ice, probably frozen nitrogen, appears to have accumulated on the uplands on the right side of this 390-mile (630-km) wide image is draining from Pluto’s mountains onto the informally named Sputnik Planum through the 2- to 5-mile (3- to 8-km) wide valleys indicated by the red arrows. On Earth this would be considered a valley glacier. The flow front of the ice moving into Sputnik Planum is outlined by the blue arrows. The origin of the ridges and pits on the right side of the image remains uncertain. Credits: NASA/JHUAPL/SwRI
Ice, probably frozen nitrogen, appears to have accumulated on the uplands on the right side of this 390-mile (630-km) wide image is draining from Pluto’s mountains onto the informally named Sputnik Planum through the 2- to 5-mile (3- to 8-km) wide valleys indicated by the red arrows. On Earth this would be considered a valley glacier. The flow front of the ice moving into Sputnik Planum is outlined by the blue arrows. The origin of the ridges and pits on the right side of the image remains uncertain.
Credits: NASA/JHUAPL/SwRI

But that’s not all that’s close to our hearts on Pluto. The photos reveal nitrogen ice apparently flowing downhill from mountainous highlands into a broad, smooth basin. Combined with other recently downloaded pictures, this new image (above) provides evidence for a remarkably Earth-like “hydrological” cycle on Pluto – but involving soft and exotic ices, including nitrogen, rather than water ice.

This might be the most remarkable image of all. Intricate Valley Glaciers on Pluto: This image covers the same region as the image above, but is re-projected from the oblique, backlit view shown in the new crescent image of Pluto. The backlighting highlights the intricate flow lines on the glaciers. The flow front of the ice moving into the informally named Sputnik Planum is outlined by the blue arrows. The origin of the ridges and pits on the right side of the image remains uncertain. This image is 390 miles (630 kilometers) across. Credits: NASA/JHUAPL/SwRI
This might be the most remarkable image of all. It covers the same region as the image above, but is re-projected from the oblique, backlit view shown in the new crescent image of Pluto. The backlighting highlights the intricate flow lines on the valley glaciers. The flow front of the ice moving into the informally named Sputnik Planum is outlined by the blue arrows. We’re looking at a scene 390 miles (630 km) across.
Credits: NASA/JHUAPL/SwRI

Nitrogen ice in the vast, relatively smooth Sputnik Planum may have vaporized in sunlight and then redeposited as ice in the bright, rugged region to its east. The new Ralph imager panorama also reveals glaciers flowing back from the blanketed mountain region into Sputnik Planum; these features are similar to the frozen streams on the margins of ice caps on Greenland and Antarctica.

Who knew that by going to Pluto we’d see such familiarity? But there you have it.

Amateur Astronomer Chases Down Barnard’s Star – You Can Too!

It now covers 9 years (9 animation frames) from 2007 to 2015 (July). Nothing much has changed but for its location keeps moving north. For those looking to find it visually the arrowhead asterism to the south seen in the full frame image which is about a half degree wide and a third of a degree high. so fits a medium power telescope field of view. The galaxy near the bottom of the image is CGCG 056-003, a 15.6 magnitude galaxy some 360 million light-years distant and 85,000 light-years across. Credit: Rick Johnson

Tucked away in northern Ophiuchus and well-placed for observing from spring through fall is one of the most remarkable objects in the sky — Barnard’s Star.  A magnitude +9.5 red dwarf wouldn’t normally catch our attention were it not for the fact that it speeds across the sky faster than any other star known.

Incredibly, you can actually see its motion with a small telescope simply by dropping by once a year for 2-3 years and taking note of its position against the background stars. For one amateur astronomer, recording its wandering ways became a 9-year mission.

This map shows the sky facing southeast around 10:30 p.m. local time in early June. Barnard's Star is located 1° NW of the 4.8-magnitude star 66 Ophiuchi on the northern fringe of the loose open cluster Melotte 186. Source: Stellarium
This map shows the sky facing south-southwest around 9 o’clock local time in late September. Barnard’s Star is located 1° NW of the 4.8-magnitude star 66 Ophiuchi on the northern fringe of the loose open cluster Melotte 186. Use the more detailed map below to pinpoint the star’s location. Source: Stellarium

Located just 6 light years from Earth, making it the closest star beyond the Sun except for the Alpha Centauri system, Barnard’s Star dashes along at 10.3 arc seconds a year. OK, that doesn’t sound like much, but over the course of a human lifetime it moves a quarter of a degree or half a Full Moon, a distance large enough to be easily perceived with the naked eye.

Barnard's Star would be an undistinguished red dwarf in Ophiuchus were it not for its rapid motion across the sky. It measures 1.9 times Jupiter's diameter and lies only 6 light-years from Eart
Barnard’s Star is a very low mass red dwarf star 1.9 times Jupiter’s diameter only 6 light-years from Earth in the direction of the constellation Ophiuchus the Serpent Bearer. Credit: Wikipedia with additions by the author

This fleet-footed luminary was first spotted by the American astronomer E.E. Barnard in 1916. With a proper motion even greater than the triple star Alpha Centauri, we’ve since learned that the star’s speed is truly phenomenal; it zips along at 86 miles a second (139 km/sec) relative to the Sun. As the stellar dwarf moves north, it’s simultaneously headed in our direction.

Based on its high velocity and low “metal” content, Barnard’s Star is believed to be a member of the galactic bulge, a fastness of ancient stars formed early on in the Milky Way galaxy’s evolution. Metals in astronomy refer to elements heavier than hydrogen and helium, the fundamental building blocks of stars. That’s pretty much all that was around when the first generation of suns formed about 100 million years after the Big Bang.

Generally, the lower a star’s metal content, the more ancient it is as earlier generations only had the simplest elements on hand. More complex elements like lithium, carbon, oxygen and all the rest had to be cooked up the earliest stars’ interiors and then released in supernovae explosions where they later became incorporated in metal-rich stars like our Sun.

All this to say that Barnard’s Star is an interloper, a visitor from another realm of the galaxy here to take us on a journey across the years. It certainly got the attention of Lincoln, Nebraska amateur Rick Johnson, who first learned of the famous dwarf in 1957.

Close-up map showing Barnard's Star's northward march every 5 years from 2015 to 2030. Your guide star, 66 Ophiuchi, is at lower left. Stars are numbered with magnitudes and a 15? scale bar is at lower right. North is up. The line through the two 12th-magnitude stars will help you gauge Barnard's movement. Click for larger map.
Close-up map showing Barnard’s Star’s position every 5 years from 2015 to 2030. Your guide star, 66 Ophiuchi, also shown on the first map, is at lower left. Stars are numbered with magnitudes and a 15 arc minute scale bar is at lower right. North is up. The line through the two 12th-magnitude stars will help you gauge Barnard’s movement in the coming few years. Click for a larger map.

“One of the first things I imaged was Barnard’s Star on the off chance I could see its motion,” wrote Johnson, who used a cheap 400mm lens on a homemade tracking mount. “Taking it a couple months later didn’t show any obvious motion, though I thought I saw it move slightly.  So I took another image the following year and the motion was obvious.”

Many years later in 2005, Johnson moved to very dark skies, upgraded his equipment and purchased a good digital camera. Barnard’s Star continued to tug at his mind.

“Again one of my first thoughts was Barnard’s Star.  The idea of an animation however didn’t hit until later, so my exposure times were all over the map.  This made the first frames hard to match.” Later, he standardized the exposures and then assembled the individual images into a color animation.

This diagram illustrates the locations of the star systems closest to the sun. The year when the distance to each system was determined is listed after the system's name. NASA's Wide-field Infrared Survey Explorer, or WISE, found two of the four closest systems: the binary brown dwarf WISE 1049-5319 and the brown dwarf WISE J085510.83-071442.5. NASA's Spitzer Space Telescope helped pin down the location of the latter object. The closest system to the sun is a trio of stars that consists of Alpha Centauri, a close companion to it and Proxima Centauri. Credit: NASA / Penn State
This diagram illustrates the locations of the star systems closest to the Sun along with the dates of discovery. NASA’s Wide-field Infrared Survey Explorer, or WISE, found two of the four closest systems: the binary brown dwarf WISE 1049-5319 and the brown dwarf WISE J085510.83-071442.5. The closest system to the Sun is a trio of stars that consists of Alpha Centauri, a close companion to it and Proxima Centauri. Credit: NASA / Penn State

“Now the system is programed to take it each July,” he added. I’m automated, so its all automatic now.” Johnson said the Barnard video is his most popular of many he’s made over the years including short animations of the eye-catching Comet C/2006 M4 SWAN and Near-Earth asteroid 2005 YU55.

With Johnson’s wonderful animation in your mind’s eye, I encourage you to use the maps provided to track down the star yourself the next clear night. To find it, first locate 66 Ophiuchi (mag. 4.8) just above the little triangle of 4th magnitude stars a short distance east or left of Beta Ophiuchi. Then use the detailed map to star hop ~1° to the northwest to Barnard’s Star.

Barnard's Star is one of our galaxy's ancient ones with age of somewhere between 7 and 12 billion years
Barnard’s Star, a red dwarf low in metals,  is very ancient with an age between 7 and 12 billion years. Like people, older stars slow down and Barnard’s is no exception with a rotation rate of 150 days. Heading in the Sun’s direction, the star will come closest to our Solar System around the year 11,800 A.D. at a distance of just 3.75 light years. Credit: NASA

It’s easily visible in a 3-inch or larger telescope. Use as high a magnification as conditions will allow to make a sketch of the star’s current position, showing it in relation to nearby field stars. Or take a photograph. Next summer, when you return to the field, sketch it again. If you’ve taken the time to accurately note the star’s position, you might see motion in just a year. If not, be patient and return the following year.

Most stars are too far away for us to detect motion either with the naked eye or telescope in our lifetime. Barnard’s presents a rare opportunity to witness the grand cycling of stars around the galaxy otherwise denied our short lives. Chase it.

Start Your Day with a Full House – Three Planets and a Pair of Crescents

The Moon, just a couple days before new phase and the upcoming partial solar eclipse, joins Venus and Mars in the dawn sky on Thursday Sept. 10. Well below the triplet, look for returning Jupiter. Source: Stellarium

The dawn sky’s where it’s happening. With Saturn swiftly sinking westward at dusk, bright planets have become scarce in the evening hours. But if you get up early and look east, you’ll discover where the party is. Venus, Mars and now Jupiter have the dance floor.

Tale of two crescents. A montage of the thick crescent Moon and crescent Venus photographed earlier this month. Credit: Tom Ruen
Tale of two crescents. A montage of the thick crescent Moon and crescent Venus photographed earlier this month. Credit: Tom Ruen

What’s more, the sky gods have seen fit to roll a thin crescent Moon alongside Venus Thursday morning (Sept. 10). This lovely twinning of crescents is best seen about 75 minutes to an hour before sunrise. All you need is a pair of 10x binoculars to see the peewee Venusian version. Its waning crescent phase closely mimics the Moon’s.

From the U.S., the separation between the two will vary from 3° for the East Coast to 4.5° for the West. European and African skywatchers will witness the actual conjunction with the Moon gliding 2.5° north of the planet.

Venus is very bright, making it easy to see in the daytime if you know where to look. Try using the thin Moon soon after sunrise (7:30 a.m. local time shown here) to spot Venus. Aim and focus your binoculars on the Moon, then glide up and to the right to find Venus. If you succeed, lower the binoculars and see if you can spot it without optical aid. Source: Stellarium
Venus is very bright, making it easy to see in the daytime if you know where to look. Try using the thin Moon soon after sunrise (7:30 a.m. local time shown here) to spot Venus. Aim and focus your binoculars on the Moon, then glide up and to the right to find Venus. If you succeed, lower the binoculars and see if you can spot it without optical aid. Source: Stellarium

Much fainter Mars, checking in at magnitude +1.8, lies 6° to the left or east of the Moon. It thrills me to see Mars begin a new apparition with its return to the morning sky. Next year, the Red Planet reaches opposition on May 22 in the constellation Scorpius, when it will be brighter than Sirius and more than 18 arc seconds across, its biggest and closest since 2005.

Remember Jupiter? We lost it in the solar glare more than a month ago, but if you can find a location with a nice, open eastern horizon, you can welcome the ever-jovial planet back Thursday. Bring binoculars just in case! Jove’s only a few degrees high in moderately-bright twilight.

The bright sunlit crescent contrasts with the darker lighting of twice-reflected light supplied by sunlight reflecting off our own planet. Credit: Bob King
The bright sunlit crescent contrasts with the darker lighting of twice-reflected light contributed by own planet. Credit: Bob King

When you look at the Moon Thursday, most of it will be illuminated not by sunlight but by Earth-light called earthshine. This smoky, dark glow results from sunlight bouncing off the globe into space to softly light the otherwise shadowed portion of the Moon. The effect is most pleasing to the eye and remarkable in binoculars, which reveal lunar seas and even larger craters shrouded in blue-dark. Don’t miss it!

Eclipse By Fire! Smoky Haze Pervades Night Sky, Darkens Moon

The Full Moon at 10:30 p.m. last night (Aug. 30). Even at 25 altitude, it glowed a deep, dark orange due to heavy smoke from western forest fires. Credit: Bob King

Did you see the Moon last night? I walked outside at 10:30 p.m. and was stunned to see a dark, burnt-orange Full Moon as if September’s eclipse had arrived a month early. Why? Heavy smoke from forest fires in Washington, California and Montana has now spread to cover nearly half the country in a smoky pall, soaking up starlight and muting the moonlight.

If this is what global warming has in store for us, skywatchers will soon have to take a forecast of “clear skies” with a huge grain of salt.

The Pacific Northwest is abundantly dotted with wildfires in Washington, Oregon, Idaho and Montana.This natural-color satellite image was made using the Aqua satellite on August 25, 2015. Actively burning areas, detected by MODIS’s thermal bands, are outlined in red. Credit: NASA image courtesy Jeff Schmaltz, MODIS Rapid Response Team
The Pacific Northwest is abundantly dotted with wildfires in Washington, Oregon, Idaho and Montana in this Aqua satellite image taken on August 25, 2015. Actively burning areas, detected by MODIS’s thermal bands, are outlined in red. Smoke from the fires has been drifting east, blanketing Midwestern skies and blotting out the stars at night. Credit: NASA image courtesy Jeff Schmaltz, MODIS Rapid Response Team

By day, the sky appears the palest of blues. By night, the stars are few if any, and the Moon appears faint, the color of fire and strangely remote. Despite last night’s clear skies, only the star Vega managed to penetrate the gloom. I never saw my shadow even at midnight when the Moon had climbed high into the southern sky.

Last night's Full Moon seen through an 8-inch telescope. The colors are true. Credit: Bob King
Last night’s Full Moon seen through an 8-inch telescope at 11:30 p.m. The colors are true. Credit: Bob King

We’ve seen this smoke before. Back in July, Canadian forest fires wafted south and west and covered much of the northern half of the U.S., giving us red suns in the middle of the afternoon and leaving only enough stars to count with two hands at night. On the bright side, the Moon is fascinating to observe. I set up the telescope last night and spend a half hour watching this unexpected “eclipse”; sunsets appear positively atomic. The size of the smoke particles is just right for filtering out or scattering away blues, greens and even yellow from white light. Vivid reds, pinks and oranges remain to tint anything bright enough to penetrate the haze.

GOES-8 satellite view of the central U.S. taken at 8:15 a.m. CDT August 30, 2015 show a veil of grayish forest fire smoke covering much of the Midwest with clearer conditions to the southeast. The red line is the approximate border between the two. Credit: NOAA
GOES-8 satellite view of the central U.S. taken at 8:15 a.m. CDT August 30, 2015 show a veil of grayish forest fire smoke covering much of the Midwest with clearer conditions to the southeast. The red line is the approximate border between the two. Credit: NOAA

But smoke can cause harm, too. Forest fire smoke contains carbon monoxide, carbon dioxide and soot. On especially smoky days, you can even smell the odor of burning trees in the air at ground level. Some may suffer from burning eyes, asthma or bronchitis on especially smoky days even a thousand miles from the source fires.

Wide-angle view of last night's melon Moon. Notice that the smoke is thicker along the horizontal left and right of the Moon. Above, at a higher elevation, we see through less smoke, so the moonlit sky is a little brighter there. No stars are visible. Credit: Bob King
Wide-angle view of last night’s Moon. Notice that the smoke is thicker along the horizontal – left and right of the Moon. Above, at a higher elevation, we see through less smoke, so the moonlit sky is a bit brighter there. No stars are visible. Credit: Bob King

On clear, blue-sky days, I’ve watched the smoke creep in from the west. It begins a light haze and slowly covers the entire sky in a matter of several hours, often showing a banded structure in the direction of the Sun. A little smoke is OK for observing, but once it’s thick enough to redden the Moon even hours after moonrise, you can forget about using your telescope for stargazing. Sometimes, a passing thunderstorm and cold front clears the sky again. Sometimes not.

The only cures for fire soot are good old-fashioned rain and the colder weather that arrives with fall. In the meantime, many of us will spend our evenings reading about the stars instead of looking at them.

August Full Moon Anticipates September’s Total Lunar Eclipse

A Full Moon in all its horizontal glory. When near the horizon, refraction squeezes the lunar disk into an oval. Scattering removes the shorter wavelengths of white light, leaving the Moon a rich red or orange. Credit: Bob King

Who doesn’t love a Full Moon? Occurring about once a month, they never wear out their welcome. Each one becomes a special event to anticipate. In the summer months, when the Moon rises through the sultry haze, atmosphere and aerosols scatter away so much blue light and green light from its disk, the Moon glows an enticing orange or red.

At Full Moon, we’re also more likely to notice how the denser atmosphere near the horizon squeezes the lunar disk into a crazy hamburger bun shape. It’s caused by atmospheric refraction.  Air closest to the horizon refracts more strongly than air near the top edge of the Moon, in effect “lifting” the bottom of the Moon up into the top. Squished light! We also get to see all the nearside maria or “seas” at full phase, while rayed craters like Tycho and Copernicus come into their full glory, looking for all the world like giant spatters of white paint even to the naked eye.

At full phase, the Moon lies directly opposite the Sun on the other side of Earth. Sunlight hits the Moon square on and fully illuminates the Earth-facing hemisphere. Credit: Bob King
At full phase, the Moon lies directly opposite the Sun on the other side of Earth. Sunlight hits the Moon square on and fully illuminates the Earth-facing hemisphere. Credit: Bob King

Tomorrow night (August 29), the Full Sturgeon Moon rises around sunset across the world. The name comes from the association Great Lakes Indian groups made between the August moon and the best time to catch sturgeon. Next month’s moon is the familiar Harvest Moon; the additional light it provided at this important time of year allowed farmers to harvest into the night.

A Full Moon lies opposite the Sun in the sky exactly like a planet at opposition. Earth is stuck directly between the two orbs. As we look to the west  to watch the Sun go down, the Moon creeps up at our back from the eastern horizon. Full Moon is the only time the Moon faces Sun directly – not off to one side or another – as seen from Earth, so the entire disk is illuminated.

The moon provides the perfect backdrop for watching birds migrate at night. Observers with spotting scopes and small telescopes can watch the show anytime the moon is at or near full. Photo illustration: Bob King
The moon provides the perfect backdrop for watching birds migrate at night. Although a small telescope is best, you might see an occasional bird in binoculars, too. Credit: Bob King

If you’re a moonrise watcher like I am, you’ll want to find a place where you can see all the way down to the eastern horizon tomorrow night. You’ll also need the time of moonrise for your city and a pair of binoculars. Sure, you can watch a moonrise without optical aid perfectly well, but you’ll miss all the cool distortions happening across the lunar disk from air turbulence. Birds have also begun their annual migration south. Don’t be surprised if your glass also shows an occasional winged silhouette zipping over those lunar seas.

Because the Moon's orbit is tilted 5.1 degrees with respect to Earth's, it normally passes above or below Earth's shadow with no eclipse. Only when the lineup is exact, does the Moon then pass directly behind Earth and into its shadow. Credit: Bob King
Because the Moon’s orbit is tilted 5.1° with respect to Earth’s, it normally passes above or below Earth’s shadow with no eclipse — either lunar or solar. Only when the lineup is exact, does the Moon pass directly behind Earth and into its shadow. Credit: Bob King

Next month’s Full Moon is very special. A few times a year, the alignment of Sun, Earth and Moon (in that order) is precise, and the Full Moon dives into Earth’s shadow in total eclipse. That will happen overnight Sunday night-Monday morning September 27-28. This will be the final in the current tetrad of four total lunar eclipses, each spaced about six months apart from the other. I think this one will be the best of the bunch. Why?

The totally eclipsed moon on April 15, 2014 from Duluth, Minn. This was the first in the series of four eclipses called a tetrad. Some refer to this lunar eclipse as a “Blood Moon” because it coincides with the Jewish Passover. Credit: Bob King
The totally eclipsed moon on April 15, 2014 from Duluth, Minn. This was the first in the series of four eclipses called a tetrad. September’s totally eclipsed Moon will appear similar. The coloring comes from sunlight grazing the edge of Earth’s atmosphere and refracted by it into the planet’s shadow. Credit: Bob King
  • Convenient evening viewing hours (CDT times given) for observers in the Americas. Partial eclipse begins at 8:07 p.m., totality lasts from 9:11 – 10:23 p.m. and partial eclipse ends at 11:27 p.m. Those times mean that for many regions, kids can stay up and watch.
  • The Moon passes more centrally through Earth’s shadow than during the last total eclipse. That means a longer totality and possibly more striking color contrasts.
  • September’s will be the last total eclipse visible in the Americas until January 31, 2018. Between now and then, there will be a total of four minor penumbral eclipses and one small partial. Slim pickings.
Diagram showing the details of the upcoming total lunar eclipse. The event begins when the Moon treads into Earth's outer shadow (penumbra) at 7:12 p.m. CDT. Partial phases start at 8:07 and totality at 9:11. Credit: NASA / Fred Espenak
Diagram showing the details of the upcoming total lunar eclipse. The event begins when the Moon treads into Earth’s outer shadow (penumbra) at 7:12 p.m. CDT. Partial phases start at 8:07 and totality at 9:11. Credit: NASA / Fred Espenak

Not only will the Americas enjoy a spectacle, but totality will also be visible from Europe, Africa and parts of Asia. For eastern hemisphere skywatchers, the event will occur during early morning hours of September 28. Universal or UT times for the eclipse are as follows: Partial phase begin at 1:07 a.m., totality from 2:11 – 3:23 a.m. with the end of partial phase at 4:27 a.m.

Eclipse visibility map. Credit: NASA / Fred Espenak
September 27-28, 2015 eclipse visibility map. Credit: NASA / Fred Espenak

We’ll have much more coverage on the upcoming eclipse in future articles here at Universe Today. I hope this brief look will serve to whet your appetite and help you anticipate what promises to be one of the best astronomical events of 2015.

How to Find Rosetta’s Comet In Your Telescope

This sequence of images, taken with Rosetta's OSIRIS narrow-angle camera on 30 July 2015, show a boulder-sized object close to the nucleus of Comet 67P/Churyumov-Gerasimenko. The images were captured on 30 July 2015, about 185 km from the comet. The object measures between one and 50 m across; however, the exact size cannot be determined as it depends on its distance to the spacecraft, which cannot be inferred from these images. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

How would you like to see one of the most famous comets with your own eyes? Comet 67P/Churyumov-Gerasimenko plies the morning sky, a little blot of fuzzy light toting an amazing visitor along for the ride — the Rosetta spacecraft. When you look at the coma and realize a human-made machine is buzzing around inside, it seems unbelievable. 

Comet 67P/Churyumov-Gerasimenko plows through a rich star field in Gemini on the morning of August 19, 2015. Photos show a short, faint tail to the west not visible to the eye in most amateur telescopes. Credit: Efrain Morales
Comet 67P/Churyumov-Gerasimenko plows through a rich star field in Gemini on the morning of August 20, 2015. Photos show a short, faint tail to the west not visible to the eye in most amateur telescopes. Credit: Efrain Morales

If you have a 10-inch or larger telescope, or you’re an experienced amateur with an 8-inch and pristine skies, 67P is within your grasp. The comet glows right around magnitude +12, about as bright as it will get this apparition. Periodic comets generally appear brightest around and shortly after perihelion or closest approach to the Sun, which for 67P/C-G occurred back on August 13.

The surface of Comet 67P/C-G is extensively fractured likely related to the intense freeze-thaw cycle that occurs during the heat of perihelion vs. the chill experienced in the outer part of its orbit. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
The surface of Comet 67P/C-G is extensively fractured due to loss of volatile ices, the expansion and contraction of the comet from solar heating and bitter cold and possibly even tectonic forces. The smaller polygonal shapes outlined by fractures in the lower right photo are just 6-16 feet (2-5 meters) across. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

You’ll be looking for a small, 1-arc-minute-diameter, compact, circular patch of nebulous light shortly before dawn when it’s highest in the east. Rosetta’s Comet will spend the remainder of August slicing across Gemini the Twins north of an nearly parallel to the ecliptic. I spotted 67P/C-G for the first time this go-round about a week ago in my 15-inch (37 cm) reflector. While it appears like a typical faint comet, thanks to Rosetta, we know this particular rough and tumble mountain of ice better than any previous comet. Photographs show rugged cliffs, numerous cracks due to the expansion and contraction of ice, blowholes that serve as sources for jets and smooth plains blanketed in fallen dust.

Geysers of dust and gas shooting off the comet's nucleus are called jets. The material they deliver outside the nucleus builds the comet's coma. Credit: ESA/Rostta/NAVCAM
Geysers of dust and gas shooting off the comet’s nucleus are called jets. The material they deliver outside the nucleus builds the comet’s coma. Credit: ESA/Rostta/NAVCAM

The jets are geyser-like sprays of dust and gas that loft grit and rocks from the comet’s interior and surface into space to create a coma or temporary atmosphere. This is what you’ll see in your telescope. And if you’re patient, you’ll even be able to catch this glowing tadpole on the move. I was surprised at its speed. After just 20 minutes, thanks to numerous field stars that acted as references, I could easily spot the comet’s eastward movement using a magnification of 245x.

Facing east around 4 a.m. local time in late August, you'll see the winter constellations Gemini and Orion. 67P/C-G's path is shown through
Facing east around 4 a.m. local time in late August, you’ll see the winter constellations Gemini and Orion. 67P/C-G’s path is shown through early September. Brighter stars near the path are labeled. Time shown is 4 a.m. CDT. Use this map to get oriented and then switch to the one below for telescope use. Source: Chris Marriott’s SkyMap

Tomorrow morning, 67P/C-G passes very close to the magnitude +5 star Omega Geminorum. While this will make it easy to locate, the glare may swamp the comet. Set your alarm for an hour before dawn’s start to allow time to set up a telescope, dark-adapt your eyes and track down the field where the comet will be that morning using low magnification.

Once you’ve centered 67P/C-G’s position, increase the power to around 100x-150x and use averted vision to look for a soft, fuzzy patch of light. If you see nothing, take it to the next level (around 200-250x) and carefully search the area. The higher the magnification, the darker the field of view and easier it will be to spot it.

Detailed map showing the comet's path through central Gemini daily August 21-28, 2015 around 4 a.m. CDT. Brighter stars are marked with Greek letters and numbers. "48" = 48 Geminorum. Source: Chris Marriott's SkyMap
Detailed map showing the comet’s path through central Gemini daily August 21-28, 2015 around 4 a.m. CDT. Brighter stars are marked with Greek letters and numbers. “57”= 57 Geminorum. North is up, east to the left and stars to magnitude +13.5. Click for a larger version you can print out. Source: Chris Marriott’s SkyMap

Besides being relatively faint, the comet doesn’t get very high in the east before the onset of twilight. Low altitude means the atmosphere absorbs a share of the comet’s light, making it appear even fainter. Not that I want to dissuade you from looking! There’s nothing like seeing real 67P photons not to mention the adventure and sense of accomplishment that come from finding the object on your own.

As we advance into late summer and early fall, 67P/C-G will appear higher up but also be fading. Now through about August 27 and again from September 10-24 will be your best viewing times. That’s when the Moon’s absent from the sky.

Given the comet’s current distance from Earth of 165 million miles and apparent visual size of just shy of 1 arc minute, the coma measures very approximately 30,000 miles across. Rosetta orbits the comet’s 2.5-mile-long icy nucleus at a distance of about 115 miles (186 km), meaning it’s snug up against the nuclear center from our point of view on the ground.

If you do find and follow 67P/C-G, consider sharing your observations with the Pro-Amateur Collaborative Astronomy (PACA) campaign to help increase our knowledge of its behavior. Interested? Sign up HERE.

Dramatic Outburst at Rosetta’s Comet Just Days Before Perihelion

Rosetta’s scientific camera OSIRIS show the sudden onset of a well-defined jet-like feature emerging from the side of the comet’s neck, in the Anuket region. Image Credit: ESA/Rosetta/OSIRIS

A comet on a comet? That’s what it looks like, but you’re witnessing the most dramatic outburst ever recorded at 67P/Churyumov-Gerasimenko by the Rosetta spacecraft. The brilliant plume of gas and dust erupted on July 29 just two weeks before perihelion.

In a remarkable display of how quickly conditions on a comet can change, the outburst lasted only about 18 minutes, but its effects reverberated for days.

A short-lived outburst from Comet 67P/Churyumov–Gerasimenko was captured by Rosetta’s OSIRIS narrow-angle camera on 29 July 2015. The image at left was taken at 13:06 GMT and does not show any visible signs of the jet. It is very strong in the middle image captured at 13:24 GMT. Residual traces of activity are only very faintly visible in the final image taken at 13:42 GMT. The images were taken from a distance of 186 km from the centre of the comet.
In this sequence of images, the one at left was taken at 8:06 a.m. CDT and doesn’t show any visible signs of the jet. 18 minutes later at 8:24, it’s very bright and distinct (middle image) with only residual traces of activity remaining in the final photo made at 8:42.
The photos were taken from a distance of 116 miles (186 km) from the center of the comet. Copyright: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

In a sequence of images taken by Rosetta’s scientific camera OSIRIS, the brilliant, well-defined jet erupts from the side of the comet’s neck in the Anuket region. It was first seen in a photo taken at 8:24 a.m. CDT, but not in one taken 18 minutes earlier, and had faded significantly in an image captured 18 minutes later. The camera team estimates the material in the jet was traveling at a minimum of 22 mph (10 meters/sec), but possibly much faster.

It’s the brightest jet ever seen by Rosetta. Normally, the camera has to be set to overexpose 67P/C-G’s nucleus to reveal the typically faint, wispy jets. Not this one. You can truly appreciate its brilliance because a single exposure captures both nucleus and plume with equal detail.

Comet 67P/Churyumov-Gerasimenko photographed from about 125 miles away on June 5 looks simply magnificent. Only two months from perihelion, the comet shows plenty of jets. One wonders what the chances are of one erupting underneath Philae and sending it back into orbit again. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
Jets are normally faint and require special processing or longer exposures to bring out in photos., overexposing the nucleus in the process. Comet 67P/Churyumov-Gerasimenko photographed from about 125 miles away on June 5  Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

We all expected fireworks as the comet approached perihelion in its 6.5 year orbit around the Sun. Comets are brightest at and shortly after perihelion, when they literally “feel the heat”. Solar radiation vaporizes both exposed surface ices and ice locked beneath the comet’s coal-black crust. Vaporizing subsurface ice can created pressurized pockets of gas that seek a way out either through an existing vent or hole or by breaking through the porous crust and erupting geyser-like into space.

Jets carry along dust that helps create a comet’s fuzzy coma or temporary atmosphere, which are further modified into tails by the solar wind and the pressure of sunlight. When conditions and circumstances are right, these physical processes can build comets, the sight of which can fill the human heart with both terror and wonder.

The decrease in magnetic field strength measured by Rosetta’s RPC-MAG instrument during the outburst event on 29 July 2015. This is the first time a ‘diamagnetic cavity’ has been detected at Comet 67P/Churyumov–Gerasimenko and is thought to be caused by an outburst of gas temporarily increasing the gas flux in the comet’s coma, and pushing the pressure-balance boundary between it and incoming solar wind farther from the nucleus than expected under ‘normal’ levels of activity. Credit: ESA/Rosetta/RPC/IGEP/IC
The decrease in magnetic field strength measured by Rosetta’s RPC-MAG instrument during the outburst event on July 29, 2015. This is the first time a ‘diamagnetic cavity’ has been detected at Comet 67P/Churyumov–Gerasimenko and is thought to be caused by an outburst of gas temporarily increasing the gas flux in the comet’s coma, and pushing the pressure-balance boundary between it and incoming solar wind farther from the nucleus than expected under ‘normal’ levels of activity. Credit: ESA/Rosetta/RPC/IGEP/IC

This recent show of activity may be just the start of a round of outbursts at 67P/C-G. While perihelion occurs on this Thursday, a boost in a comet’s activity and brightness often occurs shortly after, similar to the way the hottest part of summer lags behind the date of summer solstice.

Rosetta found that the brief and powerful jet did more than make a spectacle — it also pushed away the solar wind’s magnetic field from around the nucleus as observed by the ship’s magnetometer. Normally, the Sun’s wind is slowed to a standstill when it encounters the gas cloud surrounding the nucleus.

“The solar wind magnetic field starts to pile up, like a traffic jam, and eventually stops moving towards the comet nucleus, creating a magnetic field-free region on the Sun-facing side of the comet called a ‘diamagnetic cavity’,” explained Charlotte Götz, magnetometer team member, on the ESA Rosetta website.

This photo of 67P/C-G's nucleus shows the context for the outburst. Copyright: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
The red circle shows the location of the July 29, 2015 outburst on 67P/C-G. Copyright: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Only once before at Halley’s Comet has a magnetically “empty” region like this been observed. But that comet was so much more active than 67P/C-G and up until July 29, Halley’s remained the sole example. But following the outburst on that day, the magnetometer detected a diamagnetic cavity extending out at least 116 miles (186 km) from the nucleus. This was likely created by the outburst of gas, forcing the solar wind to ‘stop’ further away from the comet and thus pushing the cavity boundary outwards beyond where Rosetta was flying at the time.

 

The graph shows the relative abundances of various gases after the outburst, compared with the measurements two days earlier. Copyright: ESA/Rosetta/ROSINA/UBern/ BIRA/LATMOS/LMM/IRAP/MPS/SwRI/TUB/UMich
Pew! The graph shows the relative abundances of various gases after the outburst, compared with the measurements two days earlier. Water remained the same, but CO2 and especially increased dramatically. Copyright: ESA/Rosetta/ROSINA/UBern/ BIRA/LATMOS/LMM/IRAP/MPS/SwRI/TUB/UMich

Soon afterward the outburst, the comet pressure sensor of ROSINA detected changes in the structure of the coma, while its mass spectrometer recorded changes in the composition of outpouring gases. Compared to measurements made two days earlier, carbon dioxide increased by a factor of two, methane by four, and hydrogen sulphide by seven, while the amount of water stayed almost constant. No question about it – with all that hydrogen sulfide (rotten egg smell), the comet stunk! Briefly anyway.

It was also more hazardous. In early July, Rosetta recorded and average of 1-3 dust hits a day, but 14 hours after the event, the number leapt to 30 with a peak of 70 hits in one 4-hour period on August 1. Average speeds picked up, too, increasing from 18 mph (8 m/s) to about 45 mph (20 m/s), with peaks at 67 mph (30 m/s). Ouch!

“It was quite a dust party!” said Alessandra Rotundi, principal investigator of GIADA (Grain Impact Analyzer and Dust Accumulator).

67P/C-G’s little party apparently wasn’t enough to jack up its brightness significantly as seen from Earth, but that doesn’t mean future outbursts won’t. We’ll be keeping an eye on any suspicious activity through perihelion and beyond and report back here.

Sources: 1, 2