If Pigs Could Fly – A Quick Guide to Solar Halos and Other Curiosities

A circumscribed halo encloses the more common 22-degree halo around the sun Saturday morning (May 17. Credit: Bob King

Call it a porcine occultation. It took nearly a year but I finally got help from the ornamental pig in my wife’s flower garden. This weekend it became the preferred method for blocking the sun to better see and photograph a beautiful pair of solar halos. We often associate solar and lunar halos with winter because they require ice crystals for their formation, but they happen during all seasons. 

Nature keeps it simple. Light refracting through or reflecting from six-sided plate and column (pencil-shaped) ice crystals in high clouds is responsible for almost all halos and their variations.
Nature keeps it simple. Light refracting through or reflecting from six-sided plate and column (pencil-shaped) ice crystals in high clouds is responsible for almost all halos and their variations.

Lower clouds, like the puffy cumulus dotting the sky on a summer day, are composed of water droplets. A typical cumulus spans about a kilometer and contains 1.1 million pounds of water. Cirrostratus clouds are much higher (18,000 feet and up) and colder and formed instead of ice crystals. They’re often the first clouds to betray an incoming frontal system.

Cirrostratus are thin and fibrous and give the blue sky a milky look.  Most halos and related phenomena originate in countless millions of hexagonal plate and pencil-shaped ice crystals wafting about like diamond dust in these often featureless clouds.

This is the top end of a hexagonal column-shaped ice crystal. Light refracting (bending) through billions of these crystals spreads out to form a typical solar halo. Credit: Donalbein
This is the top end of a hexagonal column-shaped ice crystal. Light refracting (bending) through the 60-degree angled faces of millions of these crystals is concentrated into a ring of light 22 degrees from the sun. As light leaves the crystal, the shorter blue and purple wavelengths are refracted slightly more than red, tinting the outer edge of the halo blue and inner edge red. Credit: Donalbein with additions by the author

In winter, the sun is generally low in the sky, making it hard to miss a halo. Come summer, when the sun is much higher up, halo spotters have to be more deliberate and make a point to look up more often. The 22-degree halo is the most common; it’s the inner of the two halos in the photo above. With a radius of 22 degrees, an outstretched hand at arm’s length will comfortably fit between sun and circle.

Light refracted or bent through millions of randomly oriented pencil-shaped crystals exits at angles from 22 degrees up to 50 degrees, however most of the light is concentrated around 22 degrees, resulting in the familiar 22-degree radius halo. No light gets bent and concentrated at angles fewer than 22 degrees, which is why the sky looks darker inside the halo than outside. Finally, a small fraction of the light exits the crystals between 22 and 50 degrees creating a soft outer edge to the circle as well as a large, more diffuse disk of light as far as 50 degrees from the sun.

The sun on Dec. 6, 2013 with a 22-degree halo and two luminous canine companions or sundogs. Credit: Bob King
The sun on Dec. 6, 2013 with a 22-degree halo and two luminous canine companions or sundogs. Similar halos and ‘moondogs’ can be seen around a bright moon. Credit: Bob King

Sundogs, also called mock suns or parhelia, are brilliant and often colorful patches of light that accompany the sun on either side of a halo. Not as frequent as halos, they’re still common enough to spot half a dozen times or more a year. Depending on how extensive the cloud cover is, you might see only one sundog instead of the more typical pair. Sundogs form when light refracts through hexagonal plate-shaped ice crystals with their flat sides parallel to the ground. They appear when the sun is near the horizon and on the same horizontal plane as the ice crystals. As in halos, red light is refracted less than blue, coloring the dog’s ‘head’ red and its hind quarters blue. Mock sun is an apt term as occasionally a sundog will shine with the intensity of a second sun. They’re responsible for some of the daytime ‘UFO’ sightings. Check this one one out on YouTube.

An especially colorful sundog with a 'tail' from 2008. Credit: Bob King
An especially colorful sundog with a ‘tail’. Red light is bent less than blue as it emerges from the ice crystal, tinting the sundog’s inner edge. Blue is bent more and colors the outer half. If you look closely, all colors of the rainbow are seen. Credit: Bob King

Wobbly crystals make for taller sundogs. Like real dogs, ice crystal sundogs can grow tails. These are part of the much larger parhelic circle, a rarely-seen narrow band of light encircling the entire sky at the sun’s altitude formed when millions of both plate and column crystals reflect light from their vertical faces. Short tails extend from each mock sun in the photo above.

A couple hours after the flying pig image, the sun was beyond 50 degrees altitude. The circumscribed halo had vanished! Credit: Bob King
About 2 hours after the flying pig image, the sun climbed beyond 50 degrees altitude. The circumscribed halo vanished! Credit: Bob King

There’s almost no end to atmospheric ice antics. Many are rare like the giant 46-degree halo or the 9 and 18-degree halos formed from pyramidal ice crystals. Oftentimes halos are accompanied by arcs or modified arcs as in the flying pig image.  When the sun is low, you’ll occasionally see an arc shaped like a bird in flight tangent to the top of the halo and rarely, to its bottom. When the sun reaches an altitude of 29 degrees, these tangent arcs – both upper and lower – change shape and merge into a circumscribed halo wrapped around and overlapping the top and bottom of the main halo. At 50 degrees altitude and beyond, the circumscribed halo disappears … for a time. If the clouds persist, you can watch it return when the sun dips below 29 degrees and the two arcs separate again.

Maybe you’re not a halo watcher, but anyone who keeps an eye on the weather and studies the daytime sky in preparation for a night of skywatching can enjoy these icy appetizers.

Hubble Sees Jupiter’s Red Spot Shrink to Smallest Size Ever

In this comparison image the photo at the top was taken by Hubble's Wide Field Planetary Camera 2 in 1995 and shows the spot at a diameter of just under 21 000km; the second down shows a 2009 WFC3 photo of the spot at a diameter of just under 18 000km; and the lowest shows the newest image from WFC3 taken in 2014 with the spot at its smallest yet, with diameter of just 16 000km. Credit: NASA/ESA

Earlier this year we reported that amateur astronomers had observed and photographed the recent shrinking of Jupiter’s iconic Great Red Spot. Now, astronomers using the Hubble Space Telescope concur:

“Recent Hubble Space Telescope observations confirm that the spot is now just under  10,250 miles (16,500 km) across, the smallest diameter we’ve ever measured,” said Amy Simon of NASA’s Goddard Space Flight Center in Maryland, USA. 

Drawing of Jupiter made on Nov. 1, 1880 by French artist and astronomer Etienne Trouvelot showing transiting moon shadows and a much larger Great Red Spot.
Drawing of Jupiter made on Nov. 1, 1880 by French artist and astronomer Etienne Trouvelot showing transiting moon shadows and a much larger Great Red Spot.

Using historic sketches and photos from the late 1800s, astronomers determined the spot’s diameter then at 25,475 miles (41,000 km) across. Even the smallest telescope would have shown it as a huge red hot dog. Amateur observations starting in 2012 revealed a noticeable increase in the spot’s shrinkage rate.

The spot’s “waistline” is getting smaller by just under 620 miles (1,000 km) per year while its north-south extent has changed little. In a word, the spot has downsized and become more circular in shape. Many who’ve attempted to see Jupiter’s signature feature have been frustrated in recent years not only because the spot’s pale color makes it hard to see  against adjacent cloud features, but because it’s physically getting smaller.

Jupiter's Great Red Spot or GRS is located in a 'bay' or hollow south of the South Equatorial Belt. It's a swirling storm that rises above the cloud tops of the planet and rotates in a counterclockwise direction with a period of about This photo was taken by Hubble on April 21, 2014.
Jupiter’s Great Red Spot or GRS is located in a ‘bay’ or hollow south of the swirly South Equatorial Belt. A titanic storm that’s raged like hurricane-like for at least 400 years, the top of the Spot’s cloud deck rises 5 miles (8 km) above the planet’s clouds and rotates in an anticlockwise direction about once every 4 days. This photo was taken by Hubble on April 21, 2014. Credit: NASA / ESA / A. Simon

As to what causing the drastic downsizing, there are no firm answers yet:

“In our new observations it is apparent that very small eddies are feeding into the storm,” said Simon. “We hypothesized that these may be responsible for the accelerated change by altering the internal dynamics of the Great Red Spot.”


A brief primer on Jupiter’s Great Red Spot

The Great Red Spot has been a trademark of the planet for at least 400 years – a giant hurricane-like storm whirling in the planet’s upper cloud tops with a period of 6 days. But as it’s shrunk, its period has likewise grown shorter and now clocks in at about 4 days.

The storm appears to be conserving angular momentum by spinning faster the same way an ice skater spins up when she pulls in her arms. Wind speeds are increasing too, making one wonder whether they’ll ultimately shrink the spot further or bring about its rejuvenation.

Definitely worth keeping an eye on.

 

Saturn Disappears Behind the Full Flower Moon May 14 – Watch it Live

Simulation of the moon closing in on Saturn just prior to occultation. Credit: Gianluca Masi using SkyX software

Funny thing. Skywatchers are often  just as excited to watch a celestial object disappear as we are to see it make an appearance. Early Wednesday morning (May 14) the Full Flower Moon will slip in front of  Saturn, covering it from view for about an hour for observers in Australia and New Zealand. If you don’t live where the dingoes roam, no worries. You can watch it online.And no matter where you are on the planet, the big moon will accompany the ringed planet across the sky this Tues. night-Weds. morning.


Moon-Saturn occultation from Perth, Australia Feb. 22, 2014 captured by Colin Legg

Occultations of stars happen swiftly. The moon’s limb meets the pinpoint star and bam! it’s gone in a flash. But Saturn is an extended object and the moon needs time to cover one end of the rings to the other. Planetary occultations afford the opportunity to remove yourself from planet Earth and watch a planet ‘set’ and ‘rise’ over the alien lunar landscape. Like seeing a Chesley Bonestell painting in the flesh.

Saturn and the moon tomorrow night just before midnight as viewed from the Midwestern U.S. View faces south-southeast. Stellarium
Saturn and the moon Tuesday night (May 13) just before midnight as viewed from the U.S. Stellarium

As the moon approaches Saturn, the planet first touches the lunar limb and then appears to ‘set’ as it’s covered by degrees. About an hour later, the planet ‘rises’ from the opposite limb. Planetary occultations are infrequent and always worth the effort to see.

Seen from the northern hemisphere and equatorial regions, the nearly full moon will appear several degrees to the right or west of Saturn tomorrow night (May 13). As the night deepens and the moon rolls westward, the two grow closer and closer. They’ll be only a degree apart (two full moon diameters) during Wednesday morning twilight seen from the West Coast. Northern hemisphere viewers will notice that the moon slides to the south of the planet overnight.

Map showing the region where the occultation of Saturn will be visible. Click to get the times of Saturn's disappearance and reappearance for individual cities. Times are given in UT or Universal Time. Add 9.5 hours for Australian Central Standard Time. Credit: IOTA
Map showing the region where the occultation of Saturn will be visible. Click to get times of Saturn’s disappearance and reappearance for individual cities. Times shown are UT or Universal Time. Add 9.5 hours for Australian Central Standard Time. Credit: IOTA

Skywatchers in Australia will see the moon cover Saturn during convenient early evening viewing hours May 14:

* 8:09  p.m. local time from Adelaide

* 9:05 p.m.  Brisbane

* 8:50 p.m.  Melbourne

* 8:53 p.m. Canberra

* 8:56 p.m. from Sydney (More times and a map – click HERE)

Before the occultation, Saturn will shine close to the moon’s upper right and might be tricky to see with the naked eye because of glare.

Binoculars will easily reveal the planet, but a telescope is the instrument of choice. Even a small scope magnifying at least 30x will show Saturn and its rings hovering above the bright edge of the moon. Stick around. About an hour later, Saturn will re-emerge along the moon’s lower left limb.

Saturn and its moons Tuesday night May 13 around 10 p.m. CDT. Titan's the brightest and easiest. Iapetus ranges from magnitude +10 when it's west of Saturn and we see its bright hemisphere to magnitude +12 when it's west of the planet as it will be this week. Created with Meridian software
Saturn and its moons Tuesday night May 13 around 10 p.m. CDT. Titan’s the brightest and easiest moon to see at magnitude +8.5. Iapetus ranges from magnitude +10 when it’s west of Saturn and we see its bright hemisphere to magnitude +12 when it’s east of the planet. Created with Meridian software

Meanwhile, back in the western hemisphere, we’ll watch the nearly full Flower Moon make a close pass of the planet. If you’ve had difficulty finding the celestial ring bearer, you’ll have no problem Tuesday night. Take a look at Saturn’s wonderful system of rings in your telescope – they’re tipped nearly wide open this year. For even more fun, see how many moons you can spot. And don’t forget, you can watch it online courtesy of astrophysicist Gianluca Masi. His Virtual Telescope website will broadcast the occultation live starting at 10:15 Universal Time May 14 (6:15 a.m. EDT, 5:15 CDT, 4:15 MDT and 3:15 PDT).

Observing Alert: See Mercury’s Best Evening Show of the Year

Mercury starts its best period of visibility in the evening sky for skywatchers at mid-northern latitudes this weekend. This map shows the sky facing northwest about 40 minutes after sundown. Bright Jupiter also provides a convenient sightline for locating Mercury. Stellarium

Don’t let furtive Mercury slip through your fingers this spring. The next two and a half weeks will be the best time this year  for observers north of the tropics to spot the sun-hugging planet. If you’ve never seen Mercury,  you might be surprised how bright it can be. This is especially true early in its apparition when the planet looks like a miniature ‘full moon’. 

Mercury, like Venus, displays phases as it revolves around the sun as seen from Earth's perspective outside Mercury's orbit. Credit: Bob King
Mercury, like Venus, displays phases as it revolves around the sun as seen from Earth’s perspective outside Mercury’s orbit. Both Mercury and Venus appear largest when nearly lined up between Earth and sun at inferior conjunction. Planets not to scale and phases shown are approximate. Credit: Bob King

Both Venus and Mercury pass through phases identical to those of the moon. When between us and the sun, Mercury’s a thin crescent, when off to one side, a ‘half-moon’ and when on the far side of the sun, a full moon. This apparition of the planet is excellent because Mercury’s path it steeply tilted to the horizon in mid-spring.

We start the weekend with Mercury nearly full and brighter than the star Arcturus. Twilight tempers its radiance, but :

* Find a location with a wide open view to the northwest as far down to the horizon as possible.

* Click HERE to get your sunset time and begin looking for the planet about 30-40 minutes after sunset in the direction of the sunset afterglow.

* Reach your arm out to the northwestern horizon and look a little more than one vertically-held fist  (10-12 degrees) above it for a singular, star-like object. Found it? Congratulations – that’s Mercury!

* No luck? Start with binoculars instead and sweep the bright sunset glow until you find Mercury. Once you know exactly where to look, lower the binoculars from your eyes and you should see the planet without optical aid. And before I forget – be sure to focus the binoculars on a distant object like a cloud or the moon before beginning your sweeps. I guarantee you won’t find Mercury if it’s out of focus.

Through a telescope, Mercury looks like a gibbous moon right now but its phase will lessen as it moves farther to the ‘left’ or east of the sun. Greatest eastern elongation happens on May 24. On and around that date the planet will be farthest from the sun, standing 12-14 degrees high 40 minutes after sundown from most mid-northern locales.

jjjjjjj
Mercury is even better placed on May 19 but fades and begins to drop back down toward the horizon late in the month. Stellarium

The planet fades in late May and become difficult to see by early June. Inferior conjunction, when Mercury passes between the Earth and sun, occurs on June 19. Unlike Venus, which remains brilliant right up through its crescent phase, Mercury loses so much reflective surface area as a crescent that it fades to magnitude +3. Its greater distance from Earth, lack of reflective clouds and smaller size can’t compete with closer, brighter and bigger Venus.

Mercury's path across the solar disk as seen from the Solar and Heliospheric Observatory (SOHO) on November 8, 2006. The transit was visible in eastern Europe and the eastern hemisphere. Credit: NASA.
When a planet crosses the disk of the sun it’s called a transit. Mercury’s path across the solar disk is seen from the Solar and Heliospheric Observatory (SOHO) on November 8, 2006. Credit: NASA.

Mercury’s 7-degree inclined orbit means it typically glides well above or below the sun’s disk at inferior conjunction. But anywhere from 3 up to 13 years in either November or May the planet passes directly between the Earth and sun at inferior conjunction and we witness a transit. This last happened for U.S. observers on Nov. 8, 2006; the next transit occurs exactly two years from today on May 9, 2016. That event will be widely visible across the Americas, Western Europe and Africa. After having so much fun watching the June 2012 transit of Venus I can’t wait.

 

Star Trail Photo Hints at Hidden Polestars

A 45-minute time exposure of the southern sky taken in early May shows trailed stars. The fat, bright streak is the planet Mars. Credit: Bob King

A week ago I made a 45-minute time exposure of the southern sky featuring the planet Mars. As the Earth rotated on its axis, the stars trailed across the sky. But take a closer look at the photo and you’ll see something interesting going on. 

The trails across the diagonal (upper right to lower left) are straight, those in the top third arc upward or north while those in the bottom third curve downward or south.

I've drawn part of the imaginary great circle in the sky called the celestial equator. Residents of cities on or near the Earth's equator see the celestial equator pass directly overhead. From mid-northern latitudes, it's about halfway up in the southern sky. From mid-southern latitudes, it's halfway up in the northern sky. Credit: Bob King
I’ve drawn part of the imaginary great circle in the sky called the celestial equator. Residents of cities on or near the Earth’s equator see the celestial equator pass directly overhead. From mid-northern latitudes, it’s about halfway up in the southern sky. From mid-southern latitudes, it’s halfway up in the northern sky. Credit: Bob King

I suspect you know what’s happening here. Mars happens to lie near the celestial equator, an extension of Earth’s equator into the sky. The celestial equator traces a great circle around the celestial sphere much as the equator completely encircles the Earth.

On Earth, cities north of the equator are located in the northern hemisphere, south of the equator in the southern hemisphere. The same is true of the stars. Depending on their location with respect to the celestial equator they belong either to the northern or southern halves of the sky.

Earth's axis points north to Polaris, the northern hemisphere's North Star, and south to dim Sigma Octantis. Illustration: Bob King
Earth’s axis points north to Polaris, the northern hemisphere’s North Star, and south to dim Sigma Octantis. Illustration: Bob King

Next, let’s take a look at Earth’s axis and where each end points. If you live in the northern hemisphere, you know that the axis points north to the North Star or Polaris. As the Earth spins, Polaris appears fixed in the north while all the stars in the northern half of the sky describe a circle around it every 24 hours (one Earth spin). The closer a star is to Polaris, the tighter the circle it describes.

Time exposure centered on Polaris, the North Star. Notice that the closer stars are to Polaris, the smaller the circles they describe. Stars at the edge of the frame make much larger circles. Credit: Bob King
Time exposure centered on Polaris, the North Star. Notice that the closer stars are to Polaris, the smaller the circles they describe. Stars at the edge of the frame make much larger circles. Credit: Bob King

Likewise, from the southern hemisphere, all the southern stars circle about the south pole star, an obscure star named Sigma in the constellation of Octans, a type of navigational instrument. Again, as with Polaris, the closer a star lies to Sigma Octantis, the smaller its circle.

Stars trail around the dim southern pole star Sigma Octantis as seen from the southern hemisphere. The two smudges are the Large and Small Magellanic Clouds, companion galaxies of the Milky Way. Credit: Ted Dobosz
Stars trail around the dim southern pole star Sigma Octantis as seen from the southern hemisphere. The two smudges are the Large and Small Magellanic Clouds, companion galaxies of the Milky Way. Credit: Ted Dobosz

But what about stars on or near the celestial equator? These gems are the maximum distance of 90 degrees from either pole star just as Earth’s equator is 90 degrees from the north and south poles. They “tread the line” between both hemispheres and make circles so wide they appear not as arcs – as the other stars do in the photo – but as straight lines. And that’s why stars appear to be heading in three separate directions in the photograph.

A view of the entire sky as seen from Quito, Ecuador on the equator this evening. The celestial equator crosses directly overhead while each pole star lies 90 degrees away on opposite horizons. Stellarium
A view of the entire sky as seen from Quito, Ecuador on the equator this evening. The celestial equator crosses directly overhead while each pole star lies 90 degrees away on opposite horizons. Stellarium

In so many ways, we see aspects of our own planet in the stars above.

Asteroid 2013 UQ4 Suddenly Becomes a Dark Comet with a Bright Future

Comet C/2013 UQ4, once thought to be an asteroid, now shows characteristics of a comet including a coma. This photo was made on May 7, 2014. Credit: Artyom Novichonok and Taras Prystavski

On October 23, 2013,  astronomers with the Catalina Sky Survey picked up a very faint asteroid with an unusual orbit more like a that of a comet than an asteroid. At the time 2013 UQ4 was little  more than a stellar point with no evidence of a hazy coma or tail that would tag it as a comet. But when it recently reappeared in the morning sky after a late January conjunction with the sun, amateur astronomers got a surprise.

On May 7, Comet ISON co-discoverer Artyom Novichonok, and Taras Prystavski used a remote telescope located in Siding Spring, Australia to take photos of 2013 UQ4 shortly before dawn in the constellation Cetus. Surprise, surprise. The asteroid had grown a little fuzz, making the move to comethood. No longer a starlike object, 2013 UQ4 now displays a substantial coma or atmosphere about 1.5 arc minutes across with a more compact inner coma measuring 25 arc seconds in diameter. No tail is visible yet, and while its overall magnitude of +13.5 won’t make you break out the bottle of champagne, it’s still bright enough to see in a 12-inch telescope under dark skies.

Wide field map showing the comet's movement from Cetus through Pisces and into Cepheus in July when it becomes circumpolar for skywatchers at mid-northern latitudes. It should reach peak brightness of 7th magnitude in early July. Created with Chris Marriott's SkyMap program
Wide field map showing the comet’s movement from Cetus through Pisces and into Cepheus in July when it becomes circumpolar for skywatchers at mid-northern latitudes. It should reach a peak brightness of 7th magnitude in early July. Click to enlarge. Created with Chris Marriott’s SkyMap program

The best is yet to come. Assuming the now renamed C/2013 UQ4 continues to spout dust and water vapor, it should brighten to magnitude +11 by month’s end as it moves northward across Pisces and into a dark morning sky. Perihelion occurs on June 5 with the comet reaching magnitude +8-9 by month’s end. Peak brightness of 7th magnitude is expected during its close approach of Earth on July 10 at 29 million miles (46.7 million km).

This should be a great summer comet, plainly visible in binoculars from a dark sky as it speeds across Cepheus and Draco during convenient viewing hours at the rate of some 7 degrees per night! That’s 1/3 of a degree per hour or fast enough to see movement through a telescope in a matter of minutes when the comet is nearest Earth.

Lightcurve showing the date on the bottom and magnitude along the vertical. Work by Artyom Novichonok and Taras Prystavski
Light curve showing C/2013 UQ4 brightening to a sharp peak in early July and then quickly fading. Created by Artyom Novichonok and Taras Prystavski

Come August, C/2013 UQ4 rapidly fades to magnitude +10 and then goes the way of so many comets – a return to a more sedentary lifestyle in the cold bones of deep space.

C/2013 UQ4 belongs to a special category of asteroids called damocloids (named for asteroid 5335 Damocles) that have orbits resembling the Halley-family comets with long periods, fairly steep inclinations and highly eccentric orbits (elongated shapes). Some, like Comet Halley itself, even travel backwards as they orbit the sun, an orbit astronomers describe as ‘retrograde’.

Evolution of a comet as it orbits the sun. Credit: Laboratory for Atmospheric and Space Sciences/ NASA
Evolution of a comet as it orbits the sun. Credit: Laboratory for Atmospheric and Space Sciences/ NASA

Damocloids are thought to be comets that have lost all their fizz. With their volatile ices spent from previous trips around the sun, they stop growing comas and tails and appear identical to asteroids. Occasionally, one comes back to life. It’s happened in at least four other cases and appears to be happening with C/2013 UQ4 as well.

Studies of the comet/asteroid’s light indicate that UQ4 is a very dark but rather large object some 4-9 miles (7-15 km) across. It’s estimated that C/2013 UQ4 takes at least 500 years to make one spin around the sun. Count yourself lucky this damocloid decided to spend its summer vacation in Earth’s skies. We’ll have more detailed maps and updates as the comet becomes more easily visible next month. Stay tuned.

Most Powerful Solar Telescope on Earth Rises Atop Hawaiian Volcano

Construction on the new observatory on the summit of the Haleakala Crater on Maui, Hawaii this February. Credit: National Solar Observatory

Rising 10,000 feet above the sunburned faces of 2.2 million tourists a year, the largest solar telescope on the planet is under construction atop Haleakala Crater in Maui, Hawaii. Never mind all those admonitions about never staring at the sun. Astronomers can’t wait for the chance. 

Named for the late Senator Daniel Inouye, the Daniel K. Inouye Solar Telescope or DKIST will be the world’s premier ground-based solar observatory in the world. With its 4-meter (157.5-inch) primary mirror, DKIST is capable of distinguishing features down to 0.03 arc seconds or just 20-70 km (12-44 miles) wide at the sun’s surface. To achieve such fantastic resolutions the telescope will employ the latest adaptive optics technology to cancel the blurring effects of the atmosphere using a computer-controlled deformable mirror. 

capture the evolution of sunspot fine structure and finally understand its physical origin. (Image from the NSO Dunn Solar Telescope, courtesy of Thomas Rimmele.)
Extreme closeup of a sunspot showing the dark, central umbra (top) feathery penumbra and individual granules or hot gas. DKIST will capture the evolution of sunspot fine structure and finally understand its physical origin. Credit: NSO Dunn Solar Telescope, courtesy of Thomas Rimmele

Consider that the smallest features visible in large amateur telescopes are solar granules, columns of hot gas rising up from the sun’s interior. Each spans about 930 miles (1,500 km) and together give the sun’s surface the texture of finely-etched glass. DKIST will resolve features more than 60 times smaller. The current largest sun-dedicated telescope is the McMath-Pierce Solar Telescope , which has kept a steady eye on the home star with its 63-inch (1.6-meter) mirror since 1962 from Kitt Peak, Arizona.

DKIST cutaway showing light entering the top of the dome and gathered by the primary mirror, which is then reflected to a secondary mirror, which reflects the light to a science gallery below. Inset shows the light path in greater detail including the deformable mirror that will cancel the blurring effects of bad atmospheric seeing. Credit: L. Phelps
Observatory cutaway showing light entering the top of the dome and gathered by the primary mirror, which is reflected to a secondary mirror and from there through a series of smaller mirrors to the science gallery below. Inset shows the light path in greater detail including the deformable mirror that will cancel the blurring effects of atmospheric turbulence. Notice that the secondary mirror is offset with no obstructions between it and the primary mirror that would otherwise lessen the telescope’s ability to resolve fine detail. Credit: L. Phelps with enhancements by the author

DKIST will focus on three key areas: What is the nature of solar magnetism; how does that magnetism control our star; and how can we model and predict its changing outputs that affect the Earth? Astronomers hope to clearly resolve  solar flux tubes – magnetic field concentrations near the sun’s surface – thought to be the building blocks of magnetic structures in the atmosphere.

We still lack a complete understanding of how energy in the sun’s turbulent, churning interior is transferred to magnetic fields. Earth’s magnetic field is about 0.5 gauss at the surface. Fields within sunspots can range from 1,500 to 3,000 gauss – about the strength of a bar magnet but across a region several times larger than Earth.

A test of the Visible Broadband Imager (VBI) interference filter that will be used with DKIST
A test of the DKIST Visible Broadband Imager interference filter in 2012 shows material flowing from a sunspot’s outer penumbra into the surrounding solar gases. Credit: NSO

A better understanding of small scale magnetic structures, too tiny to be resolved with current telescopes, will help make sense of broader phenomena like sunspot formation, the heating of the solar corona and why the sun’s energy output varies. The solar constant, the amount of radiation we receive from the sun, increases with an increase in solar activity like spots and flares. Since the smallest magnetic elements are the biggest contributors to this increase, DKIST will be the first telescope able to image and study these structures directly, helping astronomers understand how variations in the sun’s output can lead to climate changes.

Left - Solar photosphere showing bright structures between granules  associated with magnetic fields. RIght - Computer model of a magnetic flux tube rising from the convective  zone into the photosphere. These are believed to be an important  conduit for energy flowing from the solar interior to the hot outer  atmosphere. Flux tubes are below the limit of resolution  in current telescopes. Credit: Paxman, Seldin, Keller / O. Steiner
Left – Solar photosphere showing bright structures between granules associated with magnetic fields bubbling up from below. Right – Computer model of a magnetic flux tube rising from the convective
zone into the photosphere. Flux tubes are believed to be an important
conduit for energy flowing from the solar interior to the hot outer
atmosphere but are below the limit of resolution
in current telescopes. Credit: Paxman, Seldin, Keller / O. Steiner

DKIST will do its work on rapid times scales, taking images once every 3 seconds. For comparison, NASA’s orbiting Solar Dynamics Observatory takes pictures in 8 different wavelengths every 10 seconds, STEREO one image every 3 minutes and SOHO (Solar Heliospheric Observatory) once every 12 minutes. The speedy shooting ability will help DKIST resolve rapidly evolving structures on the sun’s surface and lower atmosphere in a multitude of wavelengths of light from near-ultraviolet to deep infrared thanks to the the extraordinarily clean and dry air afforded by its high altitude digs.

DKIST is under construction in the observatory complex on Haleakala Crater in Maui, Hawaii. The Maui Space Surveillance is the large structure near top center. Photo take Oct. 2013. Credit: Bob King
DKIST is under construction in the observatory complex on Haleakala Crater in Maui, Hawaii. The Maui Space Surveillance Complex is the large structure right of center. Photo take Oct. 2013. Credit: Bob King

The new solar telescope will be in excellent company not far from the current Mees Solar Observatory and a stone’s throw from the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) telescope, the 79-inch (2-meter) Faulkes Telescope North and Maui Space Surveillance Complex which keeps an eye on man-made orbital debris. Tourists to Mt. Haleakala, a popular destination for tourists, can watch it take shape in the next few years while enjoying a hike in the cool air for which Haleakala is famous.

On August 31, 2012 a long filament of solar material that had been hovering in the sun's atmosphere, the corona, erupted out into space at 4:36 p.m. EDT. The coronal mass ejection, or CME, traveled at over 900 miles per second.
On August 31, 2012 a long filament of solar material erupted out into space as a coronal mass ejection, or CME, traveling at over 900 miles per second. By probing solar gases at high resolution and rapid time scales using DKIST’s high power optics and spectrographs, astronomers hope to better understand the first stirrings of these huge outbursts of solar energy. Credit: NASA

I first heard about the DKIST telescope from a burly stranger with fierce-looking tattoos. My wife and I vacationed in Maui last fall. One afternoon, while watching surfers ride the waves near the beach town of Paia, this big guy overheard us mention Duluth (Minn.), our hometown. He said he’d lived in Duluth for a time before moving to Hawaii and offered us a beer. We got to talking and learned he worked safety inspection at at the “biggest solar telescope in the world”, making the hour-long drive up the mountain 5 days a week.  I checked it out and he was absolutely right.

The Daniel K. Inouye Solar Telescope (formerly the Advanced Technology Solar Telescope) is being developed by a consortium led by the National Solar Observatory and comprising the University of Chicago, the New Jersey Institute of Technology, University of Hawaii, the High Altitude Observatory, NASA, the U.S. Air Force and others. For more details on the project, click HERE.

There’s poetry in building a large solar observatory on an island known for its sunny, warm climate. While vacationers flop out on Kaanapali Beach to vanquish the mid-winter chills, astronomers 50 miles away and 10,000 feet up will be at work coaxing secrets from the fiery ball of light that illuminates surf and scope alike.

“Tea, Earl Grey, Hot”… How Scientists Replicated a Mars Meteorite

The 'Block Island' meteorite reproduced in plastic at NASA’s Jet Propulsion Laboratory. Credit: NASA/JPL-Caltech


Captain Picard orders tea

“Tea, Earl Grey, hot.” Who doesn’t remember that famous command by Captain Picard’s of TV’s “Star Trek: The Next Generation”? While no one’s yet invented a replicator that can brew a cup of tea out of thin air, scientists have taken in step in that direction by creating an amazing replica of a Martian meteorite using a 3D printer.

Without the fuss and expense of a sample retrieving mission to Mars, NASA scientists now have a realistic, true to life facsimile of the ‘Block Island’ meteorite discovered by the Opportunity Rover in 2009. Block Island, an iron-nickel meteorite similar to those found at Meteor Crater in Arizona, is the largest meteorite found on the Red Planet.

The real Block Island, the largest meteorite yet found on Mars, photographed by Opportunity's panoramic camera.Credit: NASA/JPL-Caltech/Cornell
The real Block Island, the largest meteorite yet found on Mars, photographed by Opportunity’s panoramic camera.Credit: NASA/JPL-Caltech/Cornell

Measuring about two feet (60 cm) across, it’s about the size of picnic cooler and weighs an estimated 1,000 pounds. The replica’s made of plastic – you could tote it around like a … picnic cooler.

Analysis of Block Island’s composition using the rover’s alpha particle X-ray spectrometer confirmed that it’s rich in iron and nickel. Scientists based the design of the plastic meteorite on detailed measurements and stereo images taken by Opportunity’s panoramic camera.

Get out your red-blue plastic glasses to get a look at Block Island in stereo. Credit: NASA/JPL-Caltech
Get out your red-blue plastic glasses to get a look at Block Island in stereo. Credit: NASA/JPL-Caltech

The rover made a 360-degree study of the meteorite five years ago taking measurements and many stereo images. But because Opportunity couldn’t see every square inch of the rock, the missing data created holes in the computer model, making it a poor candidate for 3D printing.

Last summer, scientists got around that problem by filling in the missing data and building small scale models of Block Island. To build the life-sized rock, they created depth meshes of the meteorite’s surface from six positions, then combined them into a three-dimensional digital model, according to researcher Kris Capraro of NASA’s Jet Propulsion Laboratory.

Researcher Kris Capraro (second from left) adds the finishing touches of realistic color to a model of the "Block Island" meteorite.Credit: NASA/JPL-Caltech
Researcher Kris Capraro (second from left) adds the finishing touches of realistic color to a model of the “Block Island” meteorite.Credit: NASA/JPL-Caltech

The printer built the meteorite from ABS plastic, the same material used in Lego bricks, with cord the width of the plastic line in your weed-whacker. One small problem remained before the replica could be executed – it was too big to fit in the printer’s building space. So researchers broke up the computer model of the meteorite into 11 sections. Printing took 305 hours and 36 minutes.

Researchers created each of 11 pieces in the 3D printer and glued them together to build the true-size model. Credit: NASA/JPL-Caltech
Researchers created each of 11 pieces in the 3D printer and glued them together to build the true-size model. Credit: NASA/JPL-Caltech

The sections were assembled and then painted to match the real rock. Said Capraro: “it’s the next best thing to bringing back real Martian rock samples back to Earth.”

Scientists hope someday to use 3D printing to not only replicate more Mars rocks but terrains across the solar system.

Revisit Halley’s Comet – Stay Up Late for This Week’s Eta Aquarid Meteor Shower

The Eta Aquarid meteor shower is active in early May and peaks before dawn on Tuesday and Wednesday May 6-7 this year. Watch for it before the start of morning twilight in the eastern sky. Created with Stellarium

UPDATE: Watch a live webcast of the meteor shower, below, from NASA’s Marshall Space Flight Center during the night of Monday, May 5 to the early morning of May 6.

Halley’s Comet won’t be back in Earth’s vicinity until the summer of 2061, but that doesn’t mean you have to wait 47 years to see it. The comet’s offspring return this week as the annual Eta Aquarid meteor shower. Most meteor showers trace their parentage to a particular comet. The Perseids of August originate from dust strewn along the orbit of comet 109P/Swift-Tuttle, which drops by the inner solar system every 133 years after “wintering” for decades just beyond the orbit of Pluto, but the Eta Aquarids (AY-tuh ah-QWAR-ids) have the best known and arguably most famous parent of all – Halley’s Comet. Twice each year, Earth’s orbital path intersects dust and rock particles strewn by Halley during its cyclic 76-year journey from just beyond Uranus to within the orbit of Venus. When we do, the grit meets its demise in spectacular fashion as wow-inducing meteors.



Video streaming by Ustream

Composite of Aquarid meteors from the 2012 shower. Credit: John Chumack
Composite of Aquarid meteors from the 2012 shower. Credit: John Chumack

Meteoroids enter the atmosphere and begin to glow some 70 miles high. The majority of them range from sand to pebble sized but most no more than a gram or two.  Speeds range from 25,000-160,000 mph (11-72 km/sec) with the Eta Aquarids right down the middle at 42 miles per second (68 km/sec). Most burn white though ‘burn’ doesn’t quite hit the nail on the head. While friction with the air heats the entering meteoroid, the actual meteor or bright streak is created by the speedy rock exciting atoms along its path. As the atoms return to their neutral state, they emit light. That’s what we see as meteors. Picture them as tubes of glowing gas.

The farther south you live, the higher the shower radiant will appear in the sky and the more meteors you’ll see. For southern hemisphere observers this is one of the better showers of the year with rates around 30-40 meteors per hour. With no moon to brighten the sky, viewing conditions are ideal. Except for maybe the early hour. The shower is best seen in the hour or two before the start of dawn.

The Eta Aquarid shower originates with material left behind by Halley's Comet when the sun boils dust and ice from its nucleus around the time of perihelion. This photo from May 1986 during its last pass by Earth. Credit: Bob King
The Eta Aquarid shower originates with material left behind by Halley’s Comet when the sun boils dust and ice off its nucleus around the time of perihelion. This photo from May 1986 during Halley’s last visit. Credit: Bob King

From mid-northern latitudes the radiant or point in the sky from which the meteors will appear to originate is low in the southeast before dawn. At latitude 50 degrees north the viewing window lasts about 1 1/2 hours; at 40 degrees north, it’s a little more than 2 hours. If you live in the southern U.S. you’ll have nearly 3 hours of viewing time with the radiant 35 degrees high.

A bright, earthgrazer Eta Aquarids streaks across Perseus May 6, 2013. Because the radiant is low for northern hemisphere observers, earthgrazers - long, bright meteors that come up from near the horizon and have long-lasting trails. Credit: Bob King
A bright, earthgrazing Eta Aquarid meteor streaks across Perseus May 6, 2013. Because the radiant is low for northern hemisphere observers, watch for earthgrazers – long, bright meteors that come up from near the horizon and have long-lasting trails. Credit: Bob King

Northerners might spy 5-10 meteors per hour over the next few mornings. Face east for the best view and relax in a reclining chair. One good thing about this event – it won’t be anywhere near as cold as watching the December Geminids or January’s Quadrantids. We must be grateful whenever we can.

Meteor shower members can appear in any part of the sky, but if you trace their paths in reverse, they’ll all point back to the radiant. Other random meteors you might see are called sporadics and not related to the Eta Aquarids. Because Aquarius is home to at least two radiants, we distinguish the Etas, which radiate from near Eta Aquarii, from the Delta Aquarids, an unrelated shower active in July and August.

Wishing you clear skies and plenty of  hot coffee at the ready.

Spectacular Aurora Sneaks in Quietly, Rages All Night

Auroral arcs are topped by red rays light up the northeast while the moon and Jupiter shine off to the west in this photo taken last night over a small lake north of Duluth, Minn. Both moon and aurora light are reflected in puddles on the ice. Credit: Bob King

Expect the unexpected when it comes to northern lights. Last night beautifully illustrated nature’s penchant for surprise. A change in the “magnetic direction” of the wind of particles from the sun called the solar wind made all the difference. Minor chances for auroras blossomed into a spectacular, night-long storm for observers at mid-northern latitudes.

 

6-hours of data from NASA's Advanced Composition Explorer spacecraft, which measures energetic particles from the sun and other sources from a spot 1.5 million kilometers ahead of Earth toward the sun. By watching the Bz graph, you'll get advance notice of the potential for auroras. Click to visit the site. Credit: NOAA
6-hours of data from NASA’s Advanced Composition Explorer spacecraft, which measures energetic particles from the sun and other sources from a spot 1.5 million kilometers ahead of Earth toward the sun. By watching the Bz graph, you’ll get advance notice of the potential for auroras. Click to visit the site. Credit: NOAA

Packaged with the sun’s wind are portions of its magnetic field. As that material – called the interplanetary magnetic field (IMF) – sweeps past Earth, it normally glides by, deflected by our protective magnetic field, and we’re no worse for the wear. But when the solar magnetic field points south – called a southward Bz – it can cancel Earth’s northward-pointing field at the point of contact, opening a portal. Once linked, the IMF dumps high-speed particles into our atmosphere to light up the sky with northern lights. 

A large red patch briefly glowed above the bright green arc around 11:15 p.m. CDT last night May 3. The color was faintly visible with the naked eye. Credit: Bob King
A large red patch briefly glowed above the bright green arc around 11:15 p.m. CDT last night May 3. The color was faintly visible with the naked eye. Credit: Bob King

Spiraling down magnetic field lines like firefighters on firepoles, billions of tiny solar electrons strike oxygen and nitrogen molecules in the thin air 60-125 miles up. When the excited atoms return back to their normal rest states, they shoot off niblets of green and red light that together wash the sky in multicolor arcs and rays. Early yesterday evening, the Bz plot in the ACE satellite data dipped sharply southward (above), setting the stage for a potential auroral display.

After an intial flurry of bright rays, the aurora scaled back to two bright, diffuse arcs before erupting again around 11:30 p.m. Credit: Bob King
After an initial flurry of bright rays, the aurora scaled back to two bright, diffuse arcs with subtle rayed textures before erupting again around 11:30 p.m. Credit: Bob King

Nothing in the space weather forecast would have led you to believe northern lights were in the offing for mid-latitude skywatchers last night. Maybe a small possibility of a glow very low on the northern horizon. Instead we got the full-blown show. Nearly every form of aurora put in an appearance from multi-layered arcs spanning the northern sky to glowing red patches, crisp green rays and the bizarre flaming aurora. “Flames” look like waves or ripples of light rapidly fluttering from the bottom to the top of an auroral display. Absolutely unearthly in appearance and yet only 100 miles away.


VLF Auroral Chorus by Mark Dennison

I even broke out a hand-held VLF (very low frequency) radio and listened to the faint but crazy cosmic sounds of electrons diving through Earth’s magnetosphere. When my electron-jazzed brain finally hit the wall at 4 a.m., flames of moderately bright aurora still rippled across the north.

Just when you thought it was over, the whole northern sky burst into rays around 1 a.m. CDT. The whole northern sky lit up with green and red rays earlier this morning. While the green color was easy to see, the red was very pale. The human eye is much more sensitive to green light than red, one of the reasons why the aurora rarely appears red except in a camera during a time exposure. Credit: Bob King
Just when you thought it was over, the whole northern sky burst into rays around 1 a.m. CDT this morning. The human eye is much more sensitive to green light than red, one of the reasons why the aurora rarely appears red except in time exposures made with a camera. Credit: Bob King
Around 2 o'clock the northern lights displayed flaming when ripples of light pulse from top to bottom. It's very difficult to photograph, but here it is anyway! Credit: Bob King
Around 2 o’clock, flames pulsed from bottom to top in patchy aurora. It’s very difficult to photograph, but here it is anyway! Credit: Bob King

So what about tonight? Just like last night, there’s only a 5% chance of a minor storm. Take a look anyway –  nature always has a surprise or two up her sleeve.