May Meteor Storm Alert: All Eyes on the Sky!

Composite photo of Lyrid meteor shower and non-Lyrids taken with a NASA All-sky camera April 21-23, 2012. Credit: NASA/MSFC/Danielle Moser

On Friday night/early Saturday May 23-24 skywatchers across the U.S. and southern Canada may witness the birth of a brand new meteor shower.  If predictions hold true, Earth will pass through multiple tendrils of dust and pebbly bits left behind by comet 209P/LINEAR, firing up a celestial display on par with the strongest showers of the year. Or better.

Peter Jenniskens of the SETI Institute, who predicted a possible meteor storm associated with comet 209P/LINEAR. Credit: NASA
Peter Jenniskens of the SETI Institute, who predicted a possible meteor storm associated with comet 209P/LINEAR. Credit: NASA

Earlier predictions called for a zenithal hourly rate or ZHR of 1,000 per hour, pushing this shower into the ‘storm’ category. ZHR is an idealized number based on the shower radiant located at the zenith under ideal skies. The actual number is lower depending on how far the radiant is removed from the zenith and how much light pollution or moonlight is present. Meteor expert Peter Jenniskens of the SETI Institute and Finland’s Esko Lyytinen first saw the possibility of a comet-spawned meteor storm and presented their results in Jenniskens’ 2006 book Meteor Showers and Their Parent Comets.

Approximate location of the radiant of the 209P/LINEAR shower at the peak of the brief maximum around 2 a.m. CDT May 24. Between 100-400 meteors may radiate from the dim constellation of Camelopardalis near the North Star. This map shows the sky from Des Moines, Iowa. Created with Stellarium
Approximate location of the radiant (blue) of the 209P/LINEAR shower at the peak of the brief maximum around 2 a.m. CDT May 24. Between 100-400 meteors may radiate from the dim constellation of Camelopardalis near the North Star. This map shows the sky from the central U.S. Created with Stellarium

Quanzhi Ye and Paul Wiegert  (University of Western Ontario) predict a weaker shower because of a decline in the comet’s dust production rate based on observations made during its last return in 2009. They estimate a rate of ~200 per hour.

On the bright side, their simulations show that the comet sheds larger particles than usual, which could mean a shower rich in fireballs. Other researchers predict rates between 200 and 40o per hour. At the very least, the Camelopardalids – the constellation from which the meteors will appear to originate – promise to rival the Perseids and Geminids, the year’s richest showers. Motivation for setting the alarm clock if there ever was.

Comet 209P/LINEAR on April 14, 2014. It’s currently very faint at around magnitude 17. Material shed by the comet during passes between 1898-1919 may spawn a rich meteor shower overnight May 23-24. Credit: Ernesto Guido, Nick Howes, Martino Nicolini
Comet 209P/LINEAR on April 14, 2014. It’s currently very faint at around magnitude +17. Material shed by the comet during passes from 1898-1919 is expected to contribute to a May 23-24 shower. Credit: Ernesto Guido, Nick Howes, Martino Nicolini

Comet 209P/LINEARdiscovered in Feb. 2004 by the automated Lincoln Laboratory Near-Earth Asteroid Research (LINEAR) sky survey, orbits the sun every 5.04 years with an aphelion (most distant point from the sun) near Jupiter. In 2012, during a relatively close pass of that planet, Jupiter perturbed its orbit, bringing it to within 280,000 miles (450,000 km) of Earth’s orbit.

That set up a remarkably close encounter with our planet on May 29 when 209P will cruise just 5 million miles (8 million km) from Earth to become the  9th closest comet ever observed. Multiple debris trails shed by the comet as long ago as the 18th century will intersect our planet’s path 5 days earlier, providing the material for the upcoming meteor shower/storm.

Shining meekly around magnitude +17 at the moment, 209P/LINEAR could brighten to magnitude +11 as it speeds from the Big Dipper south to Hydra during the latter half of May. Closer to the BIG night, we’ll provide helpful maps for you to track it down in your telescope. Cool to think that both the shower and its parent comet will be on display at the same time.

The shaded area shows where the shower will be visible on May 23-24. North of the red line, the moon (a thick crescent) will be up during shower maximum around 2:10 a.m. CDT. Credit: Mikhail Maslov
The shaded area shows where the shower will be visible on May 23-24. North of the red line, the moon (a thick crescent) will be up during shower maximum around 2:10 a.m. CDT. Credit: Mikhail Maslov

The shower’s expected to last only a few hours from about 12:40-3:50 a.m. CDT with the best viewing locations in the U.S. and southern half of Canada. This is where the radiant will be up in a dark sky at peak activity. A thick crescent moon rises around 3-3:30 a.m. but shouldn’t pose a glare problem.

Meteors from 209P/LINEAR are expected to be bright and slow with speeds around 40,000 mph compared to an average of 130,000 mph for the Perseids. Most shower meteoroids are minute specks of rock, but the Camelopardalids contain a significant number of particles larger than 1mm – big enough to spark  fireballs.

The dark streak is a series of filaments of dust and grit left behind by 209P/LINEAR mostly between 1803 and 1924 that Earth (shown on path) will pass through on May 23-24, 2014. Credit:
The dark “finger” represents streams of dust and rocks left behind by 209P/LINEAR during passes made from 1803 to 1924. Earth is shown intersecting the debris on May 23-24, 2014. Credit: Dr. Jeremie Vaubaillon

The farther north you live in the shaded area on the map, the higher the radiant stands in the northern sky and the more meteors you’re likely to see. Skywatchers living in the Deep South will see fewer shooting stars, but a greater proportion will be earthgrazers, those special meteors that skim the upper atmosphere and flare for an unusually long time before fading out.

To see the shower at its best, find a dark place with an open view to the north. Plan your viewing between 12:30 and 4 a.m. CDT (May 24), keeping the 2 a.m. forecast peak in mind. Maximum activity occurs around 3 a.m. Eastern, 1 a.m. Mountain and midnight Pacific  time.

No one’s really certain how many meteors will show, but I encourage you to make the effort to see what could be a spectacular show.

Take a Look: Comet PANSTARRS K1 Swings by the Big Dipper this Week, Sprouts Second Tail

Comet C/2012 K1 PANSTARRS displays two tails in this excellent image taken with an 8-inch f/2.8 telescope on April 20, 2014 from Austria. The shorter, brighter spike is the dust tail; the longer is the ion tail with distinct kinks caused by interactions with the solar wind.

Comets often play hard to get. That’s why we enjoy those rare opportunities when they pass close to naked eye stars. For a change, they’re easy to find! That’s exactly what happens in the coming nights when the moderately bright comet C/2012 K1 PANSTARRS slides past the end of the Big Dipper’s handle. I hope Rolando Ligustri’s beautiful photo, above,  entices you roll out your telescope for a look.

Comet K5 PANSTARRS glides from northern Bootes up the handle of the Big Dipper this coming week not far from the famed Whirlpool Galaxy M51. This map shows the sky facing east (west is at top, east at bottom) with stars to magnitude +11.  Created with Chris Marriott's SkyMap software
Comet K1 PANSTARRS glides from northern Bootes up the handle of the Big Dipper this coming week not far from the bright star Alkaid and M51, the Whirlpool Galaxy. This map shows the sky facing east (west is at top, east at bottom) with stars to magnitude +11 and the comet’s position at 10 p.m. CDT daily. Click to enlarge and then print out a copy you can use at the telescope. Created with Chris Marriott’s SkyMap software

If you’ve put off viewing this fuzzball because it’s been lost in the wilds of northern Bootes too long, hesitate no more. I saw it several nights ago through a 15-inch (37-cm) scope and can report a teardrop-shaped coma with a bright, not-quite-stellar nucleus. The comet sports an 8 arc minute long faint tail (1/4 the diameter of the full moon) and glows around magnitude 9-9.5. Granted I observed from dark skies, but K1 PANSTARRS could even be seen faintly in the 10×50 finderscope, putting it within range of ordinary binoculars.

Use this map to get oriented. It shows the sky facing east around 10 o'clock in late April. The comet passes very near Alkaid on April 28-29. Stellarium
Use this map to get oriented. It shows the sky facing east around 10 o’clock in late April. The comet passes very near Alkaid on April 28-29. Stellarium

Ligustri’s photo shows both gas and dust tails, but most observers will probably pick up the dust tail and strain to see the other. The comet has been moving north and slowly waxing in brightness all winter and spring. Right now, it’s ideally placed for viewing in the early evening sky and remains up all night for northern hemisphere observers. On Monday and Tuesday April 28-29 it’s within 1 degree of Alkaid, the bright star at the end of the Dipper’s handle.

C/2012 K1 PANSTARRS, discovered with the Pan-STARRS 1 telescope high up the Haleakala volcano on  Maui, Hawaii. Credit: Carl Hergenrother
C/2012 K1 PANSTARRS, discovered in May 2012 with the Pan-STARRS 1 telescope from Hawaii, has been under observation a long time. Here on Sept. 13, 2013 it was a still a small, dim object of magnitude ~+13. Credit: Carl Hergenrother

In a 6-inch (15-cm) scope, expect to see a faint puff with a brighter core; observers with 8-inch and larger telescopes will more easily see the tail. K1 PANSTARRS continues to brighten through the spring and summer as it saunters from the Great Bear into Leo. In late July it will be too near the sun to view but re-emerge a month later in Hydra in the morning sky. Southern hemisphere skywatchers will be favored during the fall and early winter, though the comet will continue to hover very low in the southern morning sky for northerners. Predictions call for the PANSTARRS to reach peak brightness around magnitude +6 to +7 in mid-October.

Sounds like old C/2012 K1 will be around a good, long time. Why not get acquainted?

LADEE Sees Zodiacal Light before Crashing into Moon, but Apollo Mystery Remains

The zodiacal light (left) reaches up from the eastern horizon to "touch" the Milky Way at right on Sept. 23, 2012. Credit: Bob King

Sunrise over the surface of the moon: a series of star tracker images taken by LADEE Saturday, April 12. The lunar horizon is ahead, a few minutes before orbital sunrise. Image Credit: NASA Ames.

[/caption]

NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE) literally ‘saw the light’ just days before crashing into the lunar farside last Thursday April 17. Skimming just a few kilometers above the moon’s surface, mission controllers took advantage of this unique low angle to gaze out over the moon’s horizon in complete darkness much like the Apollo astronauts did from lunar orbit more than 40 years ago.

The zodiacal light (left) reaches up from the eastern horizon to "touch" the Milky Way at right  on Sept. 23, 2012. Credit: Bob King
The zodiacal light (left), adorned by the planet Venus, reaches up from the eastern horizon to “touch” the Milky Way before sunrise on Sept. 23, 2012. Credit: Bob King

With the glow of Earth well-hidden, any dust in the moon’s scant atmosphere around the time of orbital sunrise should become visible. Scientists also expected to see  the softly luminous glow of the zodiacal light, an extensive cloud of comet and asteroid dust concentrated in the flat plane of the solar system. The zodiacal light gets its name from the zodiac, that familiar band of constellations the planets pass through as they orbit the sun. Back on Earth, the zodiacal light looks like a big thumb of light standing up from the western horizon a couple hours after sunset in spring and before sunrise in fall.

Frame from LADEE's star tracker camera showing the zodiacal light rising on the moon's horizon from its extremely low orbit on April 12, 2014. Credit: NASA
Frame from LADEE’s star tracker camera showing the zodiacal light rising on the moon’s horizon from its extremely low orbit on April 12, 2014. Credit: NASA

So what did LADEE see? As you watch the animation above, comprised of images taken from darkness until sunrise, you’ll see a yellow haze on the horizon that expands into large diffuse glow tilted slightly to the right. This is the zodiacal light along with a smaller measure of light coming from sun’s outer atmosphere or corona.  Together they’re referred to as CZL or ‘coronal and zodiacal light’. At the very end, the sun peaks over the lunar horizon.

This is a sketch of the lunar sunrise seen from orbit by Apollo 17 astronaut Eugene Cernan. On the right, the sketch is highlighted to show the sources of the scattered light: red indicates Coronal and Zodiacal Glow, blue is the Lunar Horizon Glow, perhaps caused by exospheric dust, and green indicates possible "streamers" of light (crepuscular rays) formed by shadowing and scattered light. Credit: NASA
This is a sketch of the lunar sunrise seen from orbit by Apollo 17 astronaut Eugene Cernan. On the right, the sketches are highlighted in color to show the sources of the scattered light: red indicates coronal and zodiacal light (CZL), blue is a glow along the lunar horizon possibly caused by dust suspended in the moon’s exosphere, and green may be crepuscular rays formed by shadowing and scattered light. Credit: NASA/phys.org

What appears to be missing from the pictures are the mysterious rays seen by some of the Apollo astronauts. The rays, neatly sketched by astronaut Eugene Cernan of Apollo 17, look a lot like those beams of light and shadow streaming though holes in clouds called crepuscular rays.

Crepuscular rays form a crown of rays made of alternating shadows and light scattered by dust in the atmosphere. Credit: Bob King
Crepuscular rays form a crown of rays made of alternating shadows and light scattered by dust and moisture in the atmosphere. Credit: Bob King

Only thing is, Earth’s atmosphere is thick enough for cloud beams. The dust in the moon’s atmosphere appears much too thin to cause the same phenomenon. And yet the astronauts saw rays as if sunlight streamed between mountain peaks and scattered off the dust just like home.

Low level horizon glow photos on the moon captured by the Surveyor 7 unmanned lander in 1968. It's possible this low altitude glow is caused by larger dust particles that don't travel as high as the smaller motes. Credit: NASA
Low level horizon glow photos on the moon captured by the Surveyor 7 unmanned lander in 1968. It’s possible this low altitude glow is caused by larger dust particles that don’t travel as high as the smaller motes. Credit: NASA

It’s believed that dust gets lofted into the spare lunar atmosphere via electricity. Ultraviolet light from the sun knocks electrons from atoms in moon dust, giving them a positive charge. Since like charges repel, bits of dust push away from one another and move in the direction of least resistance: up. The smaller the dust particle, the higher it rises until dropping back down to the surface. Perhaps these “fountains” of lunar dust illuminated by the sun are what the astronauts recorded.

Unlike Cernan, LADEE saw only the expected coronal and zodiacal light but no rays. Scientists plan to look more closely at several sequences of images made of lunar sunrise in hopes of finding them.

Ceres and Vesta Converge in Virgo, Watch it Happen With Just Binoculars

This map shows the paths of Ceres and Vesta in Virgo through late June at five-day intervals. Vesta is currently magnitude +5.8 and Ceres 7.0. Both are easily visible in binoculars from suburban and rural skies. A wide view map below will help you navigate from nearby bright Mars to Zeta Virginis. From Zeta, star hop to either asteroid. Stars are shown to about magnitude +8.5. Click to enlarge. Created with Chris Marriott's SkyMap software

Don’t let them pass you by. Right now and continuing through July, the biggest and brightest asteroids will be running on nearly parallel tracks in the constellation Virgo and so close together they’ll easily fit in the same binocular field of view.  The twofer features Ceres (biggest) and Vesta (brightest) which are also the prime targets of NASA’s Dawn Mission. Now en route to a Ceres rendezvous next February, Dawn orbited Vesta from July 2011 to September 2012 and sent back spectacular photos of two vast impact basins, craters stained black by carbon-rich asteroids and parallel troughs that stretch around the 330-mile-wide world like rubber bands.

mosaic synthesizes some of the best views the spacecraft had of the giant asteroid Vesta. Dawn studied Vesta. The towering mountain at the south pole - more than twice the height of Mount Everest - is visible at the bottom of the image. The set of three craters known as the "snowman" can be seen at the top left. Credit: NASA/JPL-Caltech/UCAL/MPS/DLR/IDA
This mosaic of Vesta synthesizes some of the best views the spacecraft had of the giant asteroid. The towering mountain at the south pole – more than twice the height of Mount Everest – is visible at the bottom of the image. The set of three craters known as the “snowman” can be seen at the top left. Credit: NASA/JPL-Caltech/UCAL/MPS/DLR/IDA

Astronomers used Dawn’s gravity data to discover Vesta is more like a planet than anyone had supposed. Deep beneath its crust, composed of lighter minerals, lies a denser iron core. Most asteroids were too small to generate enough interior heat through the decay of radioactive elements to melt and “differentiate” into core, mantle and crust like the terrestrial planets. Thanks to our new understanding, you’ll hear Vesta referred to as a ‘baby planet’.

A full 5.3 hour rotation of Vesta using photos taken by Dawn. Credit: NASA
A full 5.3 hour rotation of Vesta using photos taken by Dawn. Credit: NASA

Studies of its crustal rocks showed a match to a clan of basaltic meteorites called howardites, eucrites and diogenites. Many of these formerly volcanic rocks that trace their origin to Vesta are found in numerous private and institutional collections. With a little homework, you can even buy a slice of Vesta on eBay, making for one of the least expensive sample return missions ever undertaken.


Dawn’s Greatest Hits at Vesta – A quick summary of key discoveries accompanied by electric guitar

While Vesta is a rocky body, Ceres shows telltale signs of water and iron-rich clay. Like Vesta, it also appears to have cooked itself into denser core and lighter crust. Because Ceres is less dense than Earth,  astronomers believe water ice may be buried beneath its dusty crust.

Dwarf planet Ceres is located in the asteroid belt, between the orbits of Mars and Jupiter. Observations by ESA's Herschel space observatory between 2011 and 2013 find that the dwarf planet has a thin water-vapour atmosphere. It is the first unambiguous detection of water vapour around an object in the asteroid belt.  Credit: ESA/ATG medialab
Dwarf planet Ceres (right) is located in the asteroid belt, between the orbits of Mars and Jupiter. Observations by ESA’s Herschel space observatory between 2011 and 2013 found that the dwarf planet has a thin water-vapor atmosphere. It’s the first unambiguous detection of water vapor around an object in the asteroid belt. Credit: ESA/ATG medialab

Earlier this year, astronomers working with the Herschel Space Telescope announced the discovery of plumes of water vapor blasting from two regions on the dwarf planet’s surface. While Ceres is an asteroid it’s also a member of a select group of dwarf planets, bodies large enough to have crunched themselves into spheres through their own gravity but not big enough to clear the region they orbit of smaller asteroids.

Vesta (left) and Ceres. Vesta was photographed up close by Dawn, while the best views we have to date of Ceres come from the Hubble Space Telescope. Credit: NASA/ESA
Vesta (left) and Ceres. Vesta was photographed up close by Dawn, while the best views we have to date of Ceres come from the Hubble Space Telescope. Notice the bright white spot which is still a mystery. Credit: NASA/ESA

Ceres and Vesta will be gradually drawing closer in the coming weeks and months until on July 5 only 10 arc minutes (one-third the diameter of a full moon) will separate them. They’ll also be fading, but not so much that binoculars won’t show them throughout this excellent dual apparition. Vesta will only dim to magnitude +7 by July 1, Ceres to 8.4. Come mid-June I’ll return with a detailed map showing how best to see the dynamic duo during their close conjunction.

To find your way to the 4th magnitude stars Zeta and Tau Virginis, which you can use with the detailed map to guide you to Ceres and Vesta, start with brilliant Mars in the southern sky and look about one fist to the left or east to spot Zeta. Stellarium
To find your way to the 4th magnitude stars Zeta and Tau Virginis, which you can use with the detailed map to guide you to Ceres and Vesta, start with brilliant Mars in the southern sky and look about one fist to the left or east to spot Zeta. Map shows the sky around 10 o’clock local time in late April. Stellarium

Sure, both Ceres and Vesta look exactly like stars even in large amateur telescopes, but sampling photons from real asteroids while listening to the sound of frogs on a spring night is my idea of a good time. Maybe yours too. Good luck!

Comet ISON Photo Contest Winners Rock the House!

"Comet ISON" -- People's Choice award winner: Eric Cardoso, Setúbal, Portugal, Credit: Eric Cardoso

Comet ISON’s gone but positively not forgotten. The National Science Foundation today shared the results of their Comet ISON Photography Contest. You’ll recognize many of the names because so many of their photos have graced stories written for Universe Today. 

Come take a look back at the high points of one of the most highly anticipated and studied comets of all time. Click each photo for a full-sized view. Congratulations to all the winners!

"Broom Star" -- 1st place in the Through the Telescope category: Damian Peach, Hampshire, U.K., Credit: Damian Peach
“Broom Star” — 1st place in the Through the Scope category: Damian Peach, Hampshire, U.K., Credit: Damian Peach
"C/2012 S1 ISON" -- 2nd place Through the Scope: Gerald Rhemann, Vienna, Austria. Credit: Gerald Rhemann
“C/2012 S1 ISON” — 2nd place Through the Scope: Gerald Rhemann, Vienna, Austria. Credit: Gerald Rhemann
"Comet ISON over Pokhara City, Nepal" -- 1st place Cameras and Tripods: Atish Aman, Delhi, India,  Credit: Atish Aman
“Comet ISON over Pokhara City, Nepal” — 1st place Cameras and Tripods category: Atish Aman, Delhi, India. Credit: Atish Aman
"Comet ISON, Port Medway, Nova Scotia" -- 2nd place Cameras and Tripods: Barry Burgess, Nova Scotia, Canada. Credit: Barry Burgess
“Comet ISON, Port Medway, Nova Scotia” — 2nd place Cameras and Tripods category: Barry Burgess, Nova Scotia, Canada. Credit: Barry Burgess
"Comet ISON Gossamer Tail & Disconnection Event" -- 1st place Piggyback Cameras: John Chumack, Ohio, USA. Credit: John Chumack
“Comet ISON Gossamer Tail & Disconnection Event” — 1st place Piggyback Cameras category: John Chumack, Ohio, USA. Credit: John Chumack
 "Mercury and ISON" 2nd place Piggyback Cameras: Gaeul Song, Korea. Credit: Gaeul Song
“Mercury and ISON” — 2nd place Piggyback Cameras: Gaeul Song, Korea. Credit: Gaeul Song

Comet Jacques Brightens Rapidly, Heads North

omet C/2014 E2 Jacques on April 1, 2014. Credit and copyright: Damian Peach.

We’ve got a hot comet on our hands. Comet Jacques barely cracked magnitude +11 at the time of its March 13 discovery, but just three weeks later, amateur astronomers have already spotted it in large binoculars at magnitude +9.5. Expert comet observer Michael Mattiazzo, who maintains the Southern Comets Homepage, predicts that if Comet Jacques continues its rapid rise in brightness, it might become faintly visible with the naked eye by July. 

Discovery images of Comet Jacques by the SONEAR team show a small, condensed object with a short, faint tail. Credit: SONEAR
Discovery images of Comet Jacques by the SONEAR team show a small, condensed object with a short, faint tail. Credit: SONEAR

The comet’s currently inching across the southern constellation Antlia  headed toward Puppis and Monoceros later this month. Observers describe it as “very diffuse” with a large, dim coma and moderately compact core. Photos show a short tail pointing east-northeast. This past weekend C/2014 E2 passed closest to the Earth at 89.3 million miles (144 million km) on its way to perihelion on July 2.

Comet Jacques photographed on April 3, 2014. Credit: Efrain Morales
Comet Jacques photographed on April 3, 2014 when it was near two faint galaxies. Credit: Efrain Morales

Right now, observers in southern latitudes have the viewing advantage. As seen from South America and Australia, Comet Jacques floats high in the southwestern sky at nightfall. Observers in mid-northern latitudes can see it too, but have to set their sights lower.  A week ago I tried tracking down this newcomer with a 37-cm (15-inch) Dobsonian reflector around 9 o’clock. With Jacques only 14 degrees high at the time I had to kneel beside the telescope to see into the eyepiece. Try as I might, I suspected only a fuzzy patch at best. Light pollution and low altitude were partly to blame, but Jacques’ diffuse appearance may have contributed to the uncertain observation.  Other mid-northern latitude observers may have shared my sore kneecap experience in similar attempts.

Map showing Comet Jacques starting April 16 when the moon is once again out of the evening sky. Positions are shown every 5 days through May 16. Created with Chris Mariott's SkyMap software
Map dated April 16 showing Comet Jacques’ path from mid-April to mid-May. Positions are marked every 5 days with stars down to magnitude +8. Click to enlarge. Created with Chris Mariott’s SkyMap software

But that will soon change. C/2014 E2 continues to increase in altitude throughout the month, offering easier viewing as soon as mid-month.  April 16 through early May the moon will be gone from the sky and provide a needed dark time slot for viewing the comet before it’s lost in evening twilight. Comet Jacques will likely be brighter than magnitude 9 as it slides from Puppis into Monoceros.

Find a place with a dark sky to the southwest and start looking at the end of evening twilight when the comet is highest. The map shows stars in reverse making it easier to use in crowded star fields.

Comet Jacques is approaching the sun from beneath (south of) the plane of the planets indicated by the dark blue curve of its orbit. It crosses northward later this spring (Iight blue). Credit: NASA/JPL
Comet Jacques is approaching the sun from beneath (south of) the plane of the planets indicated by the dark blue curve of its orbit. It crosses northward later this spring (Iight blue). Credit: NASA/JPL

By mid-July, Comet Jacques will have passed perihelion 61 million miles (98 million km) from the sun and transition into the morning sky as it rapidly swings northward across Taurus, Auriga and Perseus. Though the comet will be half again as far from Earth as it is today, it’s expected to become considerably brighter and more condensed after a good “roasting” by the sun.

C/2012 E2 will join a veritable team of comets expected to reach or approach naked eye brightness in late summer and fall: C/2012 K1 PANSTARRS, C/2013 A1 Siding Spring and C/2013 V5 Oukaimeden. Much to look forward to!

Fly to Rosetta’s Comet with this New Interactive Visualization

Frame from the Rosetta Mission simulation shows the probe and comet when closest to the sun in late 2015. Credit: INOVE

Hang onto your space helmets.  With a few moves of the mouse, you can now follow the European Rosetta mission to its target comet with this interactive 3-D simulator. Go ahead and give it a click – it’s live! The new simulator was created by INOVE Space Models, the same group that gave us the 3-D solar system and Comet ISON interactive models.

The embedded version gives you a taste, so be sure to also check out the full-screen version. You can either click play to watch the mission from start to finish or you can drop it at key points by selecting from list of 11 highlights on the left side of your screen. A tick-tock at the bottom of the screen helps reference the time and what the spacecraft is doing at that moment in the video.

To interact with the model, simply click the screen. The action stops, allowing you to zoom in and out by scrolling; to change orbital viewpoints hold down the mouse button and drag. So easy!

Simulator view of Rosetta's first Earth flyby / gravity assist in March 2005. The probe flew by Earth three times and Mars once to conserve fuel and send it beyond the asteroid belt to rendezvous with Comet Churyumov-Gerasimenko. Credit: INOVE
Simulator view of Rosetta’s first Earth flyby / gravity assist in March 2005. The probe flew by Earth three times and Mars once to conserve fuel and send it beyond the asteroid belt to rendezvous with Comet Churyumov-Gerasimenko. Credit: INOVE

I like the realism of the simulation, the attention paid to the planets’ variable spin rates and orbital periods and how well model illustrates the complicated maneuvers required to “fling” the probe to Comet Churyumov-Gerasimenko. And I do mean fling. Watching the video from a face-on solar system perspective I was struck  by how Rosetta’s flight path resembled a spiral after repeated gravity assists by Mars and Earth.

Rosetta heads toward Comet C-G after its final Earth flyby in this face-on view. Credit: INOVE
Rosetta heads toward Comet C-G after its final Earth flyby in this face-on view. Credit: INOVE

Whether you’re a teacher or an armchair space enthusiast looking for an easy-to-understand, graphic way to find out how Rosetta will meet its target, I doubt you’ll find a more effective tool.

Possible Nova Pops in Cygnus

Cygnus. Credit: Stellarium

A newly-discovered star of magnitude +10.9 has flared to life in the constellation Cygnus the Swan. Koichi Nishiyama and Fujio Kabashima, both of Japan, made their discovery yesterday March 31 with a 105mm f/4 camera lens and electronic camera. They quickly confirmed the observation with additional photos taken with a 0.40-m (16-inch) reflector. Nothing was seen down to magnitude +13.4  in photos taken the on the 27th, but when they checked through images made on March 30 the star present at +12.4. Good news – it’s getting brighter!

This more detailed map, showing stars to mag. 10.5, will help you pinpoint the star. Stellarium
This more detailed map, showing stars to mag. 10.5, will help you pinpoint the star. Its coordinates are R.A. 20h 21m 42, declination +31 o3′. Stellarium

While the possible nova will need confirmation, nova lovers may want to begin observing the star as soon as possible. Novae can brighten quickly, sometimes by several magnitudes in just a day. These maps should help you hone in on the star which rises around midnight and becomes well placed for viewing around 1:30-2 a.m. local time in the eastern sky. At the moment, it will require a 4-inch or larger telescope to see, but I’m crossing my fingers we’ll see it brighten further.

Novae occur in close binary systems where one star is a tiny but extremely compact white dwarf star. The dwarf pulls material into a disk around itself, some of which is funneled to the surface and ignites in a nova explosion. Credit: NASA
Novae occur in close binary systems where one star is a tiny but extremely compact white dwarf star. The dwarf pulls material into a disk around itself, some of which is funneled to the surface and ignites in a nova explosion. Credit: NASA

To see a nova is to witness a cataclysm. Astronomers – mostly amateurs – discover about 10 a year in our Milky Way galaxy. Many more would be seen were it not for dust clouds and distance. All involve close binary stars where a tiny but extremely dense white dwarf star steals gas from its companion. The gas ultimately funnels down to the 150,000 degree surface of the dwarf where it’s compacted by gravity and heated to high temperature until it ignites in an explosive fireball. If you’ve ever wondered what a million nuclear warheads would look like detonated all at once, cast your gaze at a nova.

Novae can rise in brightness from 7 to 16 magnitudes, the equivalent of 50,000 to 100,000 times brighter than the sun, in just a few days. Meanwhile the gas they expel in the blast travels away from the binary at up to 2,000 miles per second.

One of the key diagnostics for nova identification is the appearance of deep red light in its spectrum called hydrogen alpha or H-alpha. Italian astronomer obtained this spectrum of the possible nova on April 1. Credit: Gianluca Masi
Emission of deep red light called hydrogen alpha or H-alpha is often diagnostic of a nova. When in the fireball phase, the star is hidden by a fiery cloud of rosy hydrogen gas and expanding debris cloud. Italian astronomer obtained this spectrum of the possible nova on April 1 showing H-alpha emission. Credit: Gianluca Masi

Nishiyama and Kabashima are on something of a hot streak. If confirmed, this would be their third nova discovery in a month! On March 8, they discovered Nova Cephei 2014 at magnitude 11.7 (it’s currently around 12th magnitude) and 10th magnitude Nova Scorpii 2014 (now at around 12.5) on March 26. Impressive.

Photo showing the possible nova in Cygnus. The star is described as being tinted red. Credit: Gianluca Masi
Photo showing the possible nova in Cygnus. The star is described as being tinted red. Credit: Gianluca Masi

Charts for the two older discoveries are available on the AAVSO website. Type in either Nova Cep 2014 or TCP J17154683-3128303 (for Nova Scorpii)  in the Star finder box and click Create a finder chart. I’ll update this article as soon as a chart for the new object is posted.

** UPDATE April 2, 2014: This star has been confirmed as a nova. You can print out a chart by going to the AAVSO website and following the instructions above using Nova Cyg 2014 for the star name. On April 2.4 UT, I observed the nova at magnitude 11.o.

Mars-Bound Comet Siding Spring Sprouts Multiple Jets

Hubble Space Telescope picture of comet C/2013 A1 Siding Spring as observed on March 11, 2014. At that time the comet was 353 million miles from Earth. When the glow of the coma is subtracted through image processing, which incorporates a smooth model of the coma's light distribution, Hubble resolves what appear to be two jets of dust coming off the nucleus in opposite directions. This means that only portions of the surface of the nucleus are presently active as they are warmed by sunlight, say researchers. Credit: NASA, ESA, and J.-Y. Li (Planetary Science Institute)

Comet Siding Spring, on its way to a close brush with Mars on October 19, has been kicking up a storm lately. New images from Hubble Space Telescope taken on March 11, when the comet was just this side of Jupiter, reveal multiple jets of gas and dust. 

Illustration showing Comet Siding Spring's orbit and close pass of Mars as it swings around the sun this year. Credit: NASA
Illustration showing Comet Siding Spring’s orbit and close pass of Mars as it plies its way through the inner solar system this year. Credit: NASA

Discovered in January 2013 by Robert H. McNaught at Siding Spring Observatory in Australia, the comet is falling toward the sun along a roughly 1 million year orbit. It will gradually brighten through spring and summer until reaching binocular brightness this fall when it passes 130 million miles (209 million km) from Earth.

Views of the comet on three different dates. Top shows a series of unfiltered images while the bottom are filtered to better show the jets. Credit:
Views of the comet on three different dates. Top shows a series of unfiltered images while the bottom are filtered to better show the jets. Comet Siding Spring’s hazy coma measures about 12,000 miles across and it’s presently about 353 million miles (568 million km) from the sun. Credit: NASA, ESA, J.-Y. Li (Planetary Science Institute)

Astronomers were particularly interested in getting images when Earth crossed the comet’s orbital plane, the path the comet takes as it orbits the sun. The positioning of the two bodies allowed Hubble to make crucial observations of how fast dust particles streamed off the nucleus.

Comet C/2013 A1 Siding Spring photographed from Australia on March 4, 2014. Credit: Rolando Ligustri
Comet C/2013 A1 Siding Spring photographed from Australia on March 4, 2014. Credit: Rolando Ligustri

“This is critical information that we need to determine whether, and to what degree, dust grains in the coma of the comet will impact Mars and spacecraft in the vicinity of Mars,” said Jian-Yang Li of the Planetary Science Institute in Tucson, Arizona.

On October 19 this year, Comet Siding Spring will pass within 84,000 miles (135,000 km) of Mars or less than half the distance of our moon. There’s a distinct possibility that orbiting Mars probes like NASA’s Mars Reconnaissance Orbiter and the European Mars Express might be enveloped by the comet’s coma (hazy atmosphere) and pelted by dust.

Mars and Comet C/2013 A1 Siding Spring will overlap as seen from Earth on Oct. 19, 2014 when the comet might pass as close as 25,700 miles (41,300 km) from the planet’s center. View shows the sky at the end of evening twilight facing southwest. Stellarium
Mars and Comet C/2013 A1 Siding Spring will overlap as seen from Earth on Oct. 19, 2014 when the comet might pass as close as 25,700 miles (41,300 km) from the planet’s center. View shows the sky at the end of evening twilight facing southwest. Stellarium

While comet dust particles are only 1 to 1/10,000 of a centimeter wide, they’ll be moving at 124,000 mph (200,000 km/hr). At that speed even dust motes small can be destructive. Plans are being considered to alter the orbits of the spacecraft to evade the worst of the potential blast. On the bright side, the Red Planet may witness a spectacular meteor storm! Protected by the atmosphere, the Martian rovers aren’t expected to be affected.

I know where I’ll be on October 19 – in the front yard peering at Mars through my telescope. Even if the comet doesn’t affect the planet, seeing the two overlap in conjunction will be a sight not to miss.

Sirius, UFO trickster extraordinaire

Pilot Kenneth Arnold with an illustration of a UFO he saw in 1947. The modern run of UFO sightings began when Arnold reported seeing nine objects flying in a V-formation over Mt. Ranier in Washington. Click for more on the story.


Scintillating Sirius is sometimes mistaken for a UFO

I’ve never seen a UFO that stayed a UFO. I remember certain moving lights as a kid but they turned out to be airplanes or geese aglow with light pollution. And who hasn’t been tricked into thinking they’ve discovered the next Milky Way supernova only to realize it was a distant aircraft in your line of sight? 

For all the hours of dark sky time amateur astronomers accumulate, few of us have seen a UFO. It makes sense. We’re generally familiar with the stars and their movements, where the planets happen to be and the atmosphere’s uncanny ability to distort and parse light into strange and beautiful phenomena. Not that some skywatchers haven’t seen a few things that defy immediate explanation.

While some might say this takes away the magic of the night sky, rendering us blind to the possibility of UFOs, I’d argue the contrary. Knowledge deepens our appreciation of all we see, hear, smell and touch.

Sirius, nicknamed the Dog Star is the brightest star in Canis Major and brightest in the night sky. This map show Sirius about 1/3 of the way up in the southern sky during late twilight this month. Stellarium
Sirius, nicknamed the Dog Star, is the brightest star in Canis Major and brightest in the night sky. This map show Sirius about 1/3 of the way up in the southern sky during late twilight this month. Stellarium

Familiar objects often mistaken for UFOs include bright stars, planets and satellites, but high – if not highest – on the list is Sirius in the constellation Canis Major the Greater Dog.

Sirius has attained UFO status for several good reasons: at magnitude -1.5 it’s the brightest star in the sky, it “moves” both slowly and rapidly and shoots out light of different colors.

Because it’s bright, and for many of us, falls along an easy line of sight on March evenings, we’re bound to notice it. No star sparkles more intensely especially when hovering low in the sky.

For skywatchers at mid-northern latitudes, Sirius is the bright, often flashing star in the southern sky at nightfall. Credit: Bob King
For skywatchers at mid-northern latitudes, Sirius is the bright, often flashing star in the southern sky at nightfall. Credit: Bob King

Stars. So big but yet so tiny. Despite their enormous size, distance reduces stars to tiny pinpoints even in the largest telescopes. When a star beam hits our atmosphere, it gets yanked around by parcels of air of varying density, speed and size. Each parcel acts like a individual lens, refracting or bending the star’s light into a tiny image. As the air churns overhead, the positions of all those individual images continually change, zigging the star in random directions. While our eyes aren’t keen enough to distinguish the many tiny images moving to and fro, we sense the starlight’s tortured path as sputtering light or twinkling. All stars flitter around – just ask telescopic observers –  but twinkling is most noticeable in bright stars like Vega, Canopus, Rigel and especially Sirius.

Twinkling is caused by moving air pockets in our atmosphere. Twinkling is much stronger and more noticeable near the horizon, because our line of sight passes through a much greater thickness of air. Illustration: Bob King - See more at: http://astrobob.areavoices.com/2011/09/04/why-stars-twinkle-and-sputter-in-color/#sthash.MNP51ROv.dpuf
Twinkling is caused by moving air pockets in our atmosphere. Twinkling is much stronger and more noticeable near the horizon, because our line of sight passes through a much greater thickness of air. Illustration: Bob King

Mind you, it doesn’t necessarily matter how calm it is on the ground. Some 10 miles of relatively thick air between you and Sirius provide plenty of opportunities for fluttering images on many otherwise tranquil nights. Bright planets generally don’t twinkle because they’re close enough to show actual disks.  Tiny shifts induced by atmospheric turbulence can bodily move a star with ease, but planets are big enough compared to the size of the air cells to hold their own and beam forth a steady light.

 

For some, Sirius’ twinkling creates the sense that a star is moving or shooting about, making it that much more mysterious. Superimposed on this apparent rapid movement is the slow westward drift of the stars caused by Earth’s rotation. People have contacted me about brilliant, slow-moving objects, and it’s clear they’ve been watching a star get a free ride from our revolving planet.

The color and brightness of Sirius can change rapidly as it twinkles. I shot these slightly out of focus to spread the color out and show it more clearly. Not only are the hues striking but brightness changes are obvious, too. Photo: Bob King
The color and brightness of Sirius changes rapidly as it twinkles. I shot these individual 1/30″ photos slightly out of focus to spread the color out and show it more clearly. Not only are the hues striking but brightness changes are obvious, too. The short video at the top of this story captures Sirius’ twinkling “live”.Credit: Bob King

So we’ve got brightness and movement going for us – what about color? Colors come from the air, too. Just as white light is composed of a rainbow or spectrum of individual colors from indigo to red, so is starlight. When Sirius is low above the horizon, refraction (bending of light) is strong enough to create images of the star in every color of the rainbow and cast them about in different directions. Split-second variations in air density and flow make for continuous multi-color sparkles.

Sirius’ colors are fairly obvious with the naked eye, but I’ve found binoculars show them even better. By the way, the jerkiness induced in holding binoculars steady adds another motion factor to the UFO equation.

Sirius is hotter, brighter and 1.75 times the size of our own sun. It's located nearby as stars go at a distance of 8.7 light years, the main reason it appears so bright in the sky. Credit: Wikipedia
Sirius is hotter, brighter and 1.75 times the size of our own sun. As stars go, it’s practically in our backyard at just 8.7 light years away – the main reason it appears so bright in the nighttime sky. Credit: Wikipedia

Once, a fellow came to our local planetarium with video he’d taken of a UFO, hoping for help in identifying the object. We watched it change from a star to a bloated disk and back to a star again as the image jumped wildly about in the shaky, hand-held camera. Knowing the date and time of the footage, we instantly knew it was the camera struggling to maintain autofocus on Sirius.

Sirius is orbited by an Earth-sized, superdense white dwarf nicknamed the "Pup". Credit: NASA/ESA
Sirius is orbited by an Earth-sized, superdense white dwarf nicknamed the “Pup”. Credit: NASA/ESA

I remember thinking, “wow, we really helped this guy out”, but he was less than pleased. We tried to explain that he was seeing not only the brightest star in the sky but one twice as massive as the sun and nearly twice its size. But facts were of no use. Convinced he had recorded a UFO anyway, he took his video and promptly left!

I’d love to see a real space ship UFO powered by alien biology. Deep down many of us suspect they exist. With 1,779 extra-solar planets confirmed to date, habitats for potential life seem more certain than ever. But what are the odds of little green men dropping by anything soon? Not only are the distances between stars daunting, but intelligent species may have no interest in outer space or leaving the home planet. After all, whales don’t build space ships.