It's Confirmed. M87's Black Hole is Actually Spinning

Schematic representation of the tilted accretion disk model. Credit: Cui et al. (2023), Intouchable Lab@Openverse and Zhejiang Lab

Fifty-five million light-years away, in the galaxy known as M87, lies a supermassive black hole. It is a powerfully active black hole with a mass of 6.5 billion Suns, and in 2019 it was the first black hole to be imaged directly. The radio image captured by the Event Horizon Telescope (EHT) shows a halo of ambient light warped by the black hole’s gravity and directed our way. On one side of the halo, the light is brighter, which according to general relativity is due to the rotation or spin of the black hole. It was the first direct confirmation that the black hole rotates. A new study published in Nature has given us more rotational evidence.

Continue reading “It's Confirmed. M87's Black Hole is Actually Spinning”

The World's Largest Radio Telescope has Scanned Barnard's Star for Extraterrestrial Signals

Artist depiction of the surface of a super-Earth orbiting a red dwarf. Credit: ESO/M. Kornmesser

Barnard’s Star is a small red dwarf just six light-years from Earth. Despite its proximity, it was only noticed in 1916 when E. E. Barnard found it had a particularly high proper motion. It had appeared in photographic plates taken by Harvard Observatory in the late 1800s, but as a small dim star, no one took notice of it. Since its discovery, Barnard’s Star has been one of the most studied red dwarfs.

Continue reading “The World's Largest Radio Telescope has Scanned Barnard's Star for Extraterrestrial Signals”

The Milky Way's Mass is Much Lower Than We Thought

The rotation curve of our galaxy compared to the Keplerian rotation curve. Credit: Jiao, Hammer et al. / Observatoire de Paris – PSL / CNRS / ESA / Gaia / ESO / S. Brunier

How massive is the Milky Way? It’s an easy question to ask, but a difficult one to answer. Imagine a single cell in your body trying to determine your total mass, and you get an idea of how difficult it can be. Despite the challenges, a new study has calculated an accurate mass of our galaxy, and it’s smaller than we thought.

Continue reading “The Milky Way's Mass is Much Lower Than We Thought”

It's Official, Antimatter Falls Down in Gravity, Not Up

Illustration of how anti-hydrogen can test gravity. Credit: National Science Foundation

It’s a basic fact we’ve all learned in school. Drop any object, be it a baseball, feather, or cat, and it will fall toward the Earth at exactly the same rate. The cat will fortunately land on its feet thanks to a bit of feline grace, but the point is that everything falls at the same rate under gravity. It doesn’t matter what an object is made of, or how heavy it is. While we’ve all been taught this fact, calling it a fact was, until recently, a bit of a lie.

Continue reading “It's Official, Antimatter Falls Down in Gravity, Not Up”

Dark Matter Could Be Annihilating Inside White Dwarfs

The white dwarf Sirius B compared to Earth. Credit: ESA and NASA

As the search for dark matter particles continues to yield nothing, astronomers continue to look at ways these elusive particles might be found. One general method is to look for evidence of dark matter particle decay. Although dark matter doesn’t interact strongly with regular matter, some dark matter models predict that dark matter particles can interact with each other, causing them to decay into regular particles. There have been several searches for this effect, but there’s no clear evidence yet. But a new study suggests looking at white dwarfs could be a good approach.

Continue reading “Dark Matter Could Be Annihilating Inside White Dwarfs”

If You Could See Gravitational Waves, the Universe Would Look Like This

A simulation of the sky seen in gravitational waves. Credit: NASA’s Goddard Space Flight Center

Imagine if you could see gravitational waves.

Of course, humans are too small to sense all but the strongest gravitational waves, so imagine you were a great creature of deep space, with tendrils that could extend a million kilometers. As gravitational waves rippled across your vast body, you would sense them squeezing and tugging ever so slightly upon you. And your brilliant mind could use these sensations to create an image in your mind. The ripples of distant supernovae, merging black holes, the undercurrent of the gravitational background. Creation, and destruction, all seen in your mind’s eye.

Continue reading “If You Could See Gravitational Waves, the Universe Would Look Like This”

We Can't See the First Stars Yet, but We Can See Their Direct Descendants

This artist’s impression shows a Population III star that is 300 times more massive than our Sun exploding as a pair-instability supernova. Credit: NOIRLab/NSF/AURA/J. da Silva/Spaceengine

If you take a Universe worth of hydrogen and helium, and let it stew for about 13 billion years, you get us. We are the descendants of the primeval elements. We are the cast-off dust of the first stars, and many generations of stars after that. So our search for the first stars of the cosmos is a search for our own history. While we haven’t captured the light of those first stars, some of their direct children may be in our own galaxy.

Continue reading “We Can't See the First Stars Yet, but We Can See Their Direct Descendants”

Dark Photons Could Be the Key to Both Dark Matter and the Muon Anomaly.

An artistic view of light becoming matter. Credit: Gerd Altmann, via Pixabay

If dark matter exists, then where are the particles?

This single question threatens to topple the standard cosmological model, known as the LCDM model. The CDM stands for cold dark matter, and according to the model makes up nearly 85% of matter in the universe. It should be everywhere, and all around us, and yet every single search for dark matter particles has come up empty. If dark matter particles are real, we know what they are not. We don’t know what they are.

Continue reading “Dark Photons Could Be the Key to Both Dark Matter and the Muon Anomaly.”

First Contact Could Turn Out Well for Humanity

Illustration of a radio telescope listening for signals from an alien civilization. Credit: Zayna Sheikh, Breakthrough Listen

You’ve heard this story before. An advanced alien race comes to Earth. They offer peace and prosperity, but they hold a dark secret. One that could destroy humanity. That dark secret has varied over the years, from stealing our water, books on culinary advice, or communism, but the result is always the same. First contact with advanced extraterrestrials goes very badly for us. But in reality, how bad could it be? That’s the question a new study examines using game theory and Hobbesian philosophy.

Continue reading “First Contact Could Turn Out Well for Humanity”

Polar Ring Galaxies Are Bizarre and Rare. Astronomers Just Found Two More

A galaxy with a polar ring of hydrogen gas, known as a polar ring galaxy. Credit: Jayanne English, Nathan Deg & WALLABY Survey, CSIRO/ASKAP, NAOJ/Subaru Telescope

Galaxies come in a range of shapes, from elegant spirals to egg-shaped ellipticals. We often categorize galaxies by their shape, which was traditionally done based on what we could observe in the visual spectrum. But as we expanded astronomy into radio, infrared, ultraviolet, and x-ray light, learned that often galaxies have structures invisible to our eyes. Take, for example, an odd type of galaxy known as polar ring galaxies (PRGs).

Continue reading “Polar Ring Galaxies Are Bizarre and Rare. Astronomers Just Found Two More”