If humans want to travel about the solar system, they’ll need to be able to communicate. As we look forward to crewed missions to the Moon and Mars, communication technology will pose a challenge we haven’t faced since the 1970s.
Continue reading “New Receiver Will Boost Interplanetary Communication”We use the Transit Method to Find other Planets. Which Extraterrestrial Civilizations Could use the Transit Method to Find Earth?
We have discovered more than 4,000 planets orbiting distant stars. They are a diverse group, from hot Jupiters that orbit red dwarf stars in a few days to rocky Earth-like worlds that orbit Sun-like stars. With spacecraft such as Gaia and TESS, that number will rise quickly, perhaps someday leading to the discovery of a world where intelligent life might thrive. But if we can discover alien worlds, life on other planets could find us. Not every nearby star would have a good view of our world, but some of them would. New work in the Monthly Notices of the Royal Astronomical Society tries to determine which ones.
Continue reading “We use the Transit Method to Find other Planets. Which Extraterrestrial Civilizations Could use the Transit Method to Find Earth?”We actually don’t know how fast the Milky Way’s supermassive black hole is spinning but there might be a way to find out
Unless Einstein is wrong, a black hole is defined by three properties: mass, spin, and electric charge. The charge of a black hole should be nearly zero since the matter captured by a black hole is electrically neutral. The mass of a black hole determines the size of its event horizon, and can be measured in several ways, from the brightness of the material around it to the orbital motion of nearby stars. The spin of a black hole is much more difficult to study.
Continue reading “We actually don’t know how fast the Milky Way’s supermassive black hole is spinning but there might be a way to find out”Astronomers Watch a Star Get Spaghettified by a Black Hole
The gravitational dance between massive bodies, tidal forces occur because the pull of gravity from an object depends upon your distance from it. So, for example, the side of Earth near the Moon is pulled a bit more than the side opposite the Moon. As a result, the Earth stretches and flattens a bit. On Earth, this effect is subtle but strong enough to give the oceans high and low tides. Near a black hole, however, tidal forces can be much stronger, creating an effect known as spaghettification.
Continue reading “Astronomers Watch a Star Get Spaghettified by a Black Hole”Black Holes Make Complex Gravitational-Wave Chirps as They Merge
Gravitational waves are produced by all moving masses, from the Earth’s wobble around the Sun to your motion as you go about your daily life. But at the moment, those gravitational waves are too small to be observed. Gravitational observatories such as LIGO and VIRGO can only see the strong gravitational waves produced by merging stellar-mass black holes.
Continue reading “Black Holes Make Complex Gravitational-Wave Chirps as They Merge”Gravitational-Wave Lensing is Possible, but it’s Going to be Incredibly Difficult to Detect
Gravity is a strange thing. In our everyday lives, we think of it as a force. It pulls us to the Earth and holds planets in orbits around their stars. But gravity isn’t a force. It is a warping of space and time that bends the trajectory of objects. Throw a ball in deep space, and it moves in a straight line following Newton’s First Law of Motion. Throw the same ball near the Earth’s surface, and it follows a parabolic trajectory caused by Earth’s warping of spacetime around it.
Continue reading “Gravitational-Wave Lensing is Possible, but it’s Going to be Incredibly Difficult to Detect”Einstein. Right again
Most of what we know about black holes is based upon indirect evidence. General relativity predicts the structure of a black hole and how matter moves around it, and computer simulations based on relativity are compared with what we observe, from the accretion disks that swirl around a black hole to the immense jets of material they cast off at relativistic speeds. Then in 2019, radio astronomers captured the first direct image of the supermassive black hole in M87. This allows us to test the limits of relativity in a new and exciting way.
Continue reading “Einstein. Right again”Time Travel, Without the Pesky Paradoxes
Time travel is a staple of science fiction, and not without reason. Who wouldn’t want to go back in time to explore history, or save the world from catastrophe. Time travel has also been deeply studied within the context of theoretical physics because it tests the limits of our scientific theories. If time travel is possible, it has implications for everything from the origin of the universe to the existence of free will. One of the central problems of time travel theory is that it gives rise to logical paradoxes. But a couple of researchers think they have solved the pesky paradox problem.
Continue reading “Time Travel, Without the Pesky Paradoxes”The Shadow from M87’s Supermassive Black Hole has Been Observed Wobbling Around the Galaxy for Years
In April 2019, the Event Horizon Telescope (EHT) released the first direct image of a black hole. It was a radio image of the supermassive black hole in the galaxy M87. Much of the image resulted from radio light gravitationally focused toward us, but there was also some light emitted by gas and dust near the black hole. By itself, the image is a somewhat unimpressive blurry ring, but the data behind the image tells a more detailed story.
Continue reading “The Shadow from M87’s Supermassive Black Hole has Been Observed Wobbling Around the Galaxy for Years”The Destruction of Dark Matter isn’t Causing Extra Radiation at the Core of the Milky Way
There are times when it feels like dark matter is just toying with us. Just as we gather evidence that hints at one of its properties, new evidence suggests otherwise. So it is with a recent work looking at how dark matter might behave in the center of our galaxy.
Continue reading “The Destruction of Dark Matter isn’t Causing Extra Radiation at the Core of the Milky Way”