Did Neutrinos Stop The Early Universe From Annihilating Itself?

Illustration of the Big Bang Theory
The Big Bang Theory: A history of the Universe starting from a singularity and expanding ever since. Credit: grandunificationtheory.com

We can create matter from energy in the lab. Particle accelerators do this all the time. When we do, half of what is created is matter and the other half antimatter. There is a symmetry in physics that requires matter and antimatter to appear in equal amounts. But when we look around the universe, what we see is matter. So how did the big bang create all the matter we see without creating an equal amount of antimatter? The answer could be neutrinos.

Continue reading “Did Neutrinos Stop The Early Universe From Annihilating Itself?”

Neutrinos Have Been Detected With Such High Energy That The Standard Model Can’t Explain Them

Neutrino detection by the Kamioka Observatory. Credit: Kamioka Observatory/ICRR/The University of Tokyo

Although neutrinos are mysterious particles, they are remarkably common. Billions of neutrinos pass through your body every second. But neutrinos rarely interact with regular matter, so detecting them is a big engineering challenge. Even when we do detect them, the results don’t always make sense. For example, we’ve recently detected neutrinos that have so much energy we have no idea how they are created.

Continue reading “Neutrinos Have Been Detected With Such High Energy That The Standard Model Can’t Explain Them”

Astronomers See Space Twist Around A White Dwarf 12,000 Light Years Away

A white dwarf and pulsar orbit each other as Parkes observatory watches. Credit: Mark Myers/ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav)

The theory of general relativity is packed with strange predictions about how space and time are affected by massive bodies. Everything from gravitational waves to the lensing of light by dark matter. But one of the oddest predictions is an effect known as frame-dragging. The effect is so subtle it was first measured just a decade ago. Now astronomers have measured the effect around a white dwarf, and it tells us how some supernovae occur.

Continue reading “Astronomers See Space Twist Around A White Dwarf 12,000 Light Years Away”

The Debate Over Cold Dark Matter Warms Up As Astronomers Take Its Temperature

An artist's impression of the cosmic web, the filamentary structure that fills the entire Universe. Credit: M. Weiss/CfA

Dark matter has long been one of the most mysterious things in the cosmos. It was first proposed in the 1930s as an idea to address stellar motion in some galaxies. The first solid evidence of dark matter was gathered by Vera Rubin, who studied the rotational motion of galaxies. The motion of these galaxies didn’t add up unless they contained a large amount of unseen mass. There must be some exotic, invisible matter unlike anything known before.

If dark matter exists, then it must have two major properties. First, it cannot interact strongly with light, otherwise we would see it and it wouldn’t be “dark.” Second, it must interact with other matter gravitationally, to make visible matter move in strange ways. We know of several things that satisfy those conditions, such as neutrinos or tiny black holes, but these can’t be dark matter. We know this in part because we are now able to take its temperature.

Continue reading “The Debate Over Cold Dark Matter Warms Up As Astronomers Take Its Temperature”

There’s a new method to measure the expansion rate of the Universe, but it doesn’t resolve the Crisis in Cosmology

The venerable Hubble Space Telescope. After 30 years, it's still a productive scientific workhorse. Image Credit: NASA/ESA

In a recent post I wrote about a study that argued dark energy isn’t needed to explain the redshifts of distant supernovae. I also mentioned we shouldn’t rule out dark energy quite yet, because there are several independent measures of cosmic expansion that don’t require supernovae. Sure enough, a new study has measured cosmic expansion without all that mucking about with supernovae. The study confirms dark energy, but it also raises a few questions.

Continue reading “There’s a new method to measure the expansion rate of the Universe, but it doesn’t resolve the Crisis in Cosmology”

A Huge Wave is Passing Through the Milky Way Unleashing New Stellar Nurseries

A wave structure of stellar nurseries in the Milky Way. Credit: Alyssa Goodman / Harvard University

Stars are formed within large clouds of gas and dust known as stellar nurseries. While star formation was once seen as a simple gravitational process, we now know it is a complex dance of interactions. When one star forms it can send shock waves through the interstellar medium that trigger other stars to form. Supernovae and galactic collisions can trigger the creation of stars as well. One way to study stellar formation is to look at where stars form within a galaxy.

Continue reading “A Huge Wave is Passing Through the Milky Way Unleashing New Stellar Nurseries”

New Research Casts A Shadow On The Existence Of Dark Energy

The cosmic distance ladder for measuring galactic distances.
The cosmic distance ladder for measuring galactic distances. Credit: NASA,ESA, A. Feild (STScI), and A. Riess (STScI/JHU)

The universe is expanding. When we look in all directions, we see distant galaxies speeding away from us, their light redshifted due to cosmic expansion. This has been known since 1929 when Edwin Hubble calcuated the relation between a galaxy’s distance and its redshift. Then in the late 1990s, two studies of distant supernovae found that the expansion of the universe is accelerating. Something, some dark energy, must be driving cosmic expansion.

Continue reading “New Research Casts A Shadow On The Existence Of Dark Energy”

LIGO Will Squeeze Light To Overcome The Quantum Noise Of Empty Space

The LIGO Hanford Observatory in Washington State. Credit: LIGO Observatory
The LIGO Hanford Observatory in Washington State. Credit: LIGO Observatory

When two black holes merge, they release a tremendous amount of energy. When LIGO detected the first black hole merger in 2015, we found that three solar masses worth of energy was released as gravitational waves. But gravitational waves don’t interact strongly with matter. The effects of gravitational waves are so small that you’d need to be extremely close to a merger to feel them. So how can we possibly observe the gravitational waves of merging black holes across millions of light-years?

Continue reading “LIGO Will Squeeze Light To Overcome The Quantum Noise Of Empty Space”

A Fifth Fundamental Force Could Really Exist, But We Haven’t Found It Yet

Simulation of dark matter and gas. Credit: Illustris Collaboration (CC BY-SA 4.0)

The universe is governed by four fundamental forces: gravity, electromagnetism, and the strong and weak nuclear forces. These forces drive the motion and behavior of everything we see around us. At least that’s what we think. But over the past several years there’s been increasing evidence of a fifth fundamental force. New research hasn’t discovered this fifth force, but it does show that we still don’t fully understand these cosmic forces.

Continue reading “A Fifth Fundamental Force Could Really Exist, But We Haven’t Found It Yet”

How Large Can A Planet Be?

How big can a planet be? Credit: NASA/JPL-Caltech

Jupiter is the largest planet in the solar system. In terms of mass, Jupiter towers over the other planets. If you were to gather all the other planets together into a single mass, Jupiter would still be 2.5 times more massive. It is hard to understate just how huge Jupiter is. But as we’ve discovered thousands of exoplanets in recent decades, it raises an interesting question about how Jupiter compares. Put another way, just how large can a planet be? The answer is more subtle than you might think.

Continue reading “How Large Can A Planet Be?”