In the beginning, the universe created three elements: hydrogen, helium, and lithium. There isn’t much you can do with these simple elements, other than to let gravity collapse them into stars, galaxies, and black holes. But stars have the power of alchemy. Within their hearts, they can fuse these elements into new ones. Carbon, nitrogen, oxygen, and others, all up to the heavy element of iron. When these first stars exploded, they scattered the new elements across the cosmos, creating planets, new stars, and even us.
Continue reading “Colliding Neutron Stars Don’t Make Enough Gold to Explain What We See in the Universe”Small Amounts of Dark Matter are Creating Much Stronger Gravitational Distortions than Anyone Expected to See
Dark matter is difficult for astronomers to study, but that doesn’t keep them from trying. And with skill and determination, they continue to find exciting things about the invisible stuff.
Continue reading “Small Amounts of Dark Matter are Creating Much Stronger Gravitational Distortions than Anyone Expected to See”Could There Be a Form of Life Inside Stars?
Are we alone in the universe?
It is one of the most profound questions posed in modern astronomy. But although our understanding of the cosmos has grown significantly, the question remains unanswered. We know that Earth-like planets are common, as are the building blocks necessary for terrestrial life, and yet we still haven’t found definitive evidence for life beyond Earth. Perhaps part of our problem is that we are mostly looking for life similar to our own. It is possible that alien life is so radically different from that of Earth it goes unnoticed.
Continue reading “Could There Be a Form of Life Inside Stars?”New Simulation Shows Exactly What Dark Matter Would Look Like If We Could See It
How do you study something invisible? This is a challenge that faces astronomers who study dark matter. Although dark matter comprises 85% of all matter in the universe, it doesn’t interact with light. It can only be seen through the gravitational influence it has on light and other matter. To make matters worse, efforts to directly detect dark matter on Earth have been unsuccessful so far.
Continue reading “New Simulation Shows Exactly What Dark Matter Would Look Like If We Could See It”Some Quasars Actually Contain Two Supermassive Black Holes in the Process of Merging
Quasars are some of the most powerful objects in the Universe. They were first discovered in the 1950s as bright radio sources coming from almost point-like objects. They were given the name quasi-stellar radio sources, or quasars for short. We now know that they are powered by supermassive black holes at the center of distant galaxies.
Continue reading “Some Quasars Actually Contain Two Supermassive Black Holes in the Process of Merging”Supernova Wreckage is Still Expanding at Extreme Speeds After 400 Years
Four centuries ago, Johannes Kepler observed a bright new star in the night sky. Astronomers from all over the world noticed it, but it came to be known as Kepler’s star. It was caused by a stellar explosion 20,000 light-years from Earth, and it was the most recent naked-eye supernova to appear in our galaxy.
Continue reading “Supernova Wreckage is Still Expanding at Extreme Speeds After 400 Years”Scientists Recreate the Density of a White Dwarf in the Lab
The density of a white dwarf star defies our imagination. A spoonful of white dwarf matter would weigh as much as a car on Earth. Atoms within the star are squeezed so tightly that they are on the edge of collapse. Squeeze a white dwarf just a bit more, and it will collapse into a neutron star. And now, we can recreate the density of a white dwarf within a lab.
Continue reading “Scientists Recreate the Density of a White Dwarf in the Lab”Could a tabletop experiment detect gravitational waves and determine the quantum nature of gravity?
Perhaps the most surprising prediction of general relativity is that of gravitational waves. Ripples in space and time that spread through the universe at the speed of light. Gravitational waves are so faint that for decades their detection was thought impossible. Even today, it takes an array of laser interferometers several kilometers long to see their effect. But what if we could detect them with a table-top experiment in a university lab?
In a recent paper published in the New Journal of Physics, a team of physicists proposes just such a device. Rather than using beams of light, they suggest using the quantum superposition of a single electron.
Continue reading “Could a tabletop experiment detect gravitational waves and determine the quantum nature of gravity?”The Last Supernovae
A supernova is a powerful event. For a brief moment in time, a star shines as bright as a galaxy, ripping itself apart in a last, desperate attempt to fight against its gravity. While we see supernovae as rare and wondrous things, they are quite common. Based on observations of isotopes in our galaxy, we know that about twenty supernovae occur in the Milky Way every thousand years. These brilliant cosmic flashes fill the universe with heavy elements, and their remnant dust makes up almost everything we see around us. But supernovae won’t keep happening forever. At some point in the far future, the universe will see the last supernova.
Continue reading “The Last Supernovae”Fastest Star Ever Seen is Moving at 8% the Speed of Light
In the center of our galaxy, hundreds of stars closely orbit a supermassive black hole. Most of these stars have large enough orbits that their motion is described by Newtonian gravity and Kepler’s laws of motion. But a few orbits so closely that their orbits can only be accurately described by Einstein’s general theory of relativity. The star with the smallest orbit is known as S62. Its closest approach to the black hole has it moving more than 8% of light speed.
Continue reading “Fastest Star Ever Seen is Moving at 8% the Speed of Light”