Scientists Recreate the Density of a White Dwarf in the Lab

Illustration of the internal layers of a white dwarf star. Credit: University of Warwick/Mark Garlick

The density of a white dwarf star defies our imagination. A spoonful of white dwarf matter would weigh as much as a car on Earth. Atoms within the star are squeezed so tightly that they are on the edge of collapse. Squeeze a white dwarf just a bit more, and it will collapse into a neutron star. And now, we can recreate the density of a white dwarf within a lab.

Continue reading “Scientists Recreate the Density of a White Dwarf in the Lab”

Could a tabletop experiment detect gravitational waves and determine the quantum nature of gravity?

This illustration shows the merger of two black holes and the gravitational waves that ripple outward as the black holes spiral toward each other. Could black holes like these (which represent those detected by LIGO on Dec. 26, 2015) collide in the dusty disk around a quasar's supermassive black hole explain gravitational waves, too? Credit: LIGO/T. Pyle
This illustration shows the merger of two supermassive black holes and the gravitational waves that ripple outward as the black holes spiral toward each other. Credit: LIGO/T. Pyle

Perhaps the most surprising prediction of general relativity is that of gravitational waves. Ripples in space and time that spread through the universe at the speed of light. Gravitational waves are so faint that for decades their detection was thought impossible. Even today, it takes an array of laser interferometers several kilometers long to see their effect. But what if we could detect them with a table-top experiment in a university lab?

In a recent paper published in the New Journal of Physics, a team of physicists proposes just such a device. Rather than using beams of light, they suggest using the quantum superposition of a single electron.

Continue reading “Could a tabletop experiment detect gravitational waves and determine the quantum nature of gravity?”

The Last Supernovae

Artist's conception of SN2016aps, a candidate pulsational pair instability supernova. The explosion energy of SN2016aps, fueled by the shedding of a massive shell of gas, was ten times that of a normal-sized supernova, making SN2016aps the most massive supernova ever identified. Credit: M. Weiss

A supernova is a powerful event. For a brief moment in time, a star shines as bright as a galaxy, ripping itself apart in a last, desperate attempt to fight against its gravity. While we see supernovae as rare and wondrous things, they are quite common. Based on observations of isotopes in our galaxy, we know that about twenty supernovae occur in the Milky Way every thousand years. These brilliant cosmic flashes fill the universe with heavy elements, and their remnant dust makes up almost everything we see around us. But supernovae won’t keep happening forever. At some point in the far future, the universe will see the last supernova.

Continue reading “The Last Supernovae”

Fastest Star Ever Seen is Moving at 8% the Speed of Light

This artist's impression shows part of the orbit of one of the stars very close to the supermassive black hole at the centre of the Milky Way. Analysis of data from ESO’s Very Large Telescope and other telescopes suggests that the orbits of these stars may show the subtle effects predicted by Einstein’s general theory of relativity. There are hints that the orbit of this star, called S2, is deviating slightly from the path calculated using classical physics. This close-up of the orbit of star S2 shows how the path of the star is slightly different when it passed the same part of its orbit for the second time, 15 years later, due to the effects of general relativity.

In the center of our galaxy, hundreds of stars closely orbit a supermassive black hole. Most of these stars have large enough orbits that their motion is described by Newtonian gravity and Kepler’s laws of motion. But a few orbits so closely that their orbits can only be accurately described by Einstein’s general theory of relativity. The star with the smallest orbit is known as S62. Its closest approach to the black hole has it moving more than 8% of light speed.

Continue reading “Fastest Star Ever Seen is Moving at 8% the Speed of Light”

Why Can Black Hole Binaries Have Dramatically Different Masses? Multiple Generations of Mergers

Simulated merger of two black holes. Credit: NASA's Goddard Space Flight Center

On the 12th of April, 2019, the LIGO and Virgo gravitational wave observatories detected the merger of two black holes. Named GW190412, one of the black holes was eight solar masses, while the other was 30 solar masses. On the 14th of August that year, an even more extreme merger was observed, when a 2.5 solar mass object merged with a black hole nearly ten times more massive. These mergers raise fundamental questions about the way black hole mergers happen.

Continue reading “Why Can Black Hole Binaries Have Dramatically Different Masses? Multiple Generations of Mergers”

The Universe is the Same, Everywhere We Look. Even More than Cosmologists Predicted

Several superclusters revealed by the 2dF Galaxy Redshift Survey. This contains the structure known as the "Sloan Great Wall". Courtesy 2dF Galaxy Redshift Survey.
Several superclusters revealed by the 2dF Galaxy Redshift Survey. This contains the structure known as the "Sloan Great Wall". Courtesy 2dF Galaxy Redshift Survey.

No matter which direction you look in the Universe, the view is basically the same if you look far enough. Our local neighborhood is populated with bright nebulae, star clusters, and dark clouds of gas and dust. There are more stars toward the center of the Milky Way than there are in other directions. But across millions, and billions, of light-years, galaxies cluster evenly in all directions, and everything starts to look the same. In astronomy, we say the Universe is homogeneous and isotropic. Put another way, the Universe is smooth.

Continue reading “The Universe is the Same, Everywhere We Look. Even More than Cosmologists Predicted”

How Loop Quantum Gravity Could Match Anomalies in the CMB with Large Structures in the Modern Universe

Map of the cosmic microwave background (CMB) sky produced by the Planck satellite. The Cold Spot is shown in the inset, with coordinates and the temperature difference in the scale at the bottom. Credit: ESA/Durham University.

Our universe is best described by the LCDM model. That is an expanding universe filled with dark energy (Lambda), and dense clumps of cold dark matter (CDM). It is also sprinkled with regular matter that makes up planets, stars, and us, but that only makes up about 4% of the cosmos. While we don’t know what dark matter and dark energy are, we know how they behave, so the ?CDM model works exceptionally well. There’s just one small problem.

Continue reading “How Loop Quantum Gravity Could Match Anomalies in the CMB with Large Structures in the Modern Universe”

There Might Be an Entire Orbit, Filled with Asteroids that Came from Outside the Solar System

An illustration of the orbit of a Centaur asteroid. Credit: Namouni and Morais, NASA

Aliens could be all around us. Lurking on the edge, waiting to invade our solar system. Not little green creatures, but asteroids from other stars. That’s the conclusion of a new study published in the Monthly Notices of the Royal Astronomical Society.

Continue reading “There Might Be an Entire Orbit, Filled with Asteroids that Came from Outside the Solar System”

Gamma-Ray Telescopes Can Measure the Diameters of Other Stars

The VERITAS array, an air Cherenkov telescope designed to detect low-energy cosmic rays. Credit: VERITAS

In astronomy, the sharpness of your image depends upon the size of your telescope. When Galileo and others began to view the heavens with telescopes centuries ago, it changed our understanding of the cosmos. Objects such as planets, seen as points of light with the naked eye, could now be seen as orbs with surface features. But even under these early telescopes, stars still appeared as a point of light. While Galileo could see Jupiter or Saturn’s size, he had no way to know the size of a star.

Continue reading “Gamma-Ray Telescopes Can Measure the Diameters of Other Stars”

A Black Hole Popping Out of a Traversable Wormhole Should Give Off a Very Specific Signal in Gravitational Waves

Artist view of colliding neutron stars. Credit: ESO/L. Calçada/M. Kornmesser

Gravitational wave astronomy has changed the way we view the cosmos. In only a few years we have observed the collisions of black holes and neutron stars, confirming our theoretical understanding of these strange objects. But as gravitational wave astronomy matures, it will allow us to probe the very nature of space and time itself. While that day is a long way off, it hasn’t stopped the theory folks from dreaming up new discoveries. For example, how it might look if a black hole and a wormhole interact.

Continue reading “A Black Hole Popping Out of a Traversable Wormhole Should Give Off a Very Specific Signal in Gravitational Waves”