We Could Snoop on Extraterrestrial Communications Networks

The Atacama Large Millimeter/submillimeter Array (ALMA). Credit: C. Padilla, NRAO/AUI/NSF

The conditions for life throughout the Universe are so plentiful that it seems reasonable to presume there must be extra-terrestrial civilizations in the galaxy. But if that’s true, where are they? The Search for Extra-terrestrial Intelligence (SETI) program and others have long sought to find signals from these civilizations, but so far there has been nothing conclusive. Part of the challenge is that we don’t know what the nature of an alien signal might be. It’s a bit like finding a needle in a haystack when you don’t know what the needle looks like. Fortunately, any alien civilization would still be bound by the same physical laws we are, and we can use that to consider what might be possible. One way to better our odds of finding something would be to focus not on a direct signal from a single world, but the broader echos of an interstellar network of signals.

Continue reading “We Could Snoop on Extraterrestrial Communications Networks”

Gravastars are an Alternative Theory to Black Holes. Here's What They'd Look Like

Artist view of a black hole in the middle of solar system. Credit: Petr Kratochvil/PublicDomainPictures CC0

One of the central predictions of general relativity is that in the end, gravity wins. Stars will fuse hydrogen into new elements to fight gravity and can oppose it for a time. Electrons and neutrons exert pressure to counter gravity, but their stability against that constant pull limits the amount of mass a white dwarf or neutron star can have. All of this can be countered by gathering more mass together. Beyond about 3 solar masses, give or take, gravity will overpower all other forces and collapse the mass into a black hole.

Continue reading “Gravastars are an Alternative Theory to Black Holes. Here's What They'd Look Like”

Even Eris and Makemake Could Have Geothermal Activity

Illustration of the icy dwarf planets Eris and Makemake. Credit: Southwest Research Institute

Whether or not you agree that Pluto isn’t a planet, in many ways, Pluto is quite different from the classical planets. It’s smaller than the Moon, has an elliptical orbit that brings it closer to the Sun than Neptune at times, and is part of a collection of icy bodies on the edge of our solar system. It was also thought to be a cold dead world until the flyby of New Horizons proved otherwise. The plucky little spacecraft showed us that Pluto was geologically active, with a thin atmosphere and mountains that rise above icy plains. Geologically, Pluto is more similar to Earth than the Moon, a fact that has led some to reconsider Pluto’s designation as a dwarf planet.

Continue reading “Even Eris and Makemake Could Have Geothermal Activity”

Euclid Begins its 6-Year Survey of the Dark Universe

The areas that the space telescope Euclid will observe. Credit: ESA/Euclid/Euclid Consortium

On July 1, 2023, the Euclid Spacecraft launched with a clear mission: to map the dark and distant Universe. To achieve that goal, over the next 6 years, Euclid will make 40,000 observations of the sky beyond the Milky Way. From this data astronomers will be able to map the positions of billions of galaxies, allowing astronomers to observe the effects of dark matter.

Continue reading “Euclid Begins its 6-Year Survey of the Dark Universe”

Another Clue Into the True Nature of Fast Radio Bursts

Artist's concept of a magnetar. Credit: NASA/JPL-Caltech

Fast radio bursts (FRBs) are strange events. They can last only milliseconds, but during that time can outshine a galaxy. Some FRBs are repeaters, meaning that they can occur more than once from the same location, while others seem to occur just once. We still aren’t entirely sure what causes them, or even if the two types have the same cause. But thanks to a collaboration of observations from ground-based radio telescopes and space-based X-ray observatories, we are starting to figure FRBs out.

Continue reading “Another Clue Into the True Nature of Fast Radio Bursts”

Passing Stars Changed the Orbits of Planets in the Solar System

Scholz’s Star seen from Earth 70,000 years ago. Credit: José A. Peñas/SINC

The orbit of Earth around the Sun is always changing. It doesn’t change significantly from year to year, but over time the gravitational tugs of the Moon and other planets cause Earth’s orbit to vary. This migration affects Earth’s climate. For example, the gradual shift of Earth’s orbit and the changing tilt of Earth’s axis leads to the Milankovitch climate cycles. So if you want to understand paleoclimate or the shift of Earth’s climate across geologic time, it helps to know what Earth’s orbit was in the distant past.

Continue reading “Passing Stars Changed the Orbits of Planets in the Solar System”

Measuring Distances in the Universe With Fast Radio Bursts

FAST catches a real pulse from FRB 121102. Credit: NAOC

Now and then there is a bright radio flash somewhere in the sky. It can last anywhere from a few milliseconds to a few seconds. They appear somewhat at random, and we still aren’t sure what they are. We call them fast radio bursts (FRBs). Right now the leading theory is that they are caused by highly magnetic neutron stars known as magnetars. With observatories such as CHIME we are now able to see lots of them, which could give astronomers a new way to measure the rate of cosmic expansion.

Continue reading “Measuring Distances in the Universe With Fast Radio Bursts”

The Event Horizon Telescope Zooms in on a Black Hole's Jet

The jet of the black hole in 3C 84 at different spatial scales. Credit: Georgios Filippos Paraschos (MPIfR)

Although supermassive black holes are common throughout the Universe, we don’t have many direct images of them. The problem is that while they can have a mass of millions or billions of stars, even the nearest supermassive black holes have tiny apparent sizes. The only direct images we have are those of M87* and Sag A*, and it took a virtual telescope the size of Earth to capture them. But we are still in the early days of the Event Horizon Telescope (EHT), and improvements are being made to the virtual telescope all the time. Which means we are starting to look at more supermassive black holes.

Continue reading “The Event Horizon Telescope Zooms in on a Black Hole's Jet”

Did the Galileo Mission Find Life on Earth?

An image of Earth taken by the Galileo spacecraft in 1990. Credit: NASA/JPL

In the Fall of 1989, the Galileo spacecraft was launched into space, bound for Jupiter and its family of moons. Given the great distance to the king of planets, Galileo had to take a roundabout tour through the inner solar system, making a flyby of Venus in 1990 and Earth in 1990 and 1992 just to gain enough speed to reach Jupiter. During the flybys of Earth Galileo took several images of our planet, which astronomers have used to discover life on Earth.

Continue reading “Did the Galileo Mission Find Life on Earth?”

Dust Ruins Another Way of Measuring Distance in the Universe

A dusty spiral galaxy known as M66. Credit: NASA, ESA and the Hubble Heritage (STScI/AURA)-ESA/Hubble

Astronomers have many ways to measure the distance to galaxies billions of light years away, but most of them rely upon standard candles. These are astrophysical processes that have a brightness we can calibrate, such as Cepheid variable stars or Type Ia supernovae. Of course, all of these standard candles have some inherent variability, so astronomers also look for where our assumptions about them can lead us astray. As a case in point, a recent study in The Astrophysical Journal shows how galactic dust can bias distance observations.

Continue reading “Dust Ruins Another Way of Measuring Distance in the Universe”