JWST Sees Organic Molecules Swirling Around a Newborn Star

A newborn star in the Lupus 1 Molecular cloud is showing complex organic molecules that could be life precursors. The Webb space telescope is studying this cloud to find these chemicals. Courtesy Gabriel Rodrigues Santos. From https://science.nasa.gov/barnard-228-dark-wolf-nebula-lupus
A newborn star in the Lupus 1 Molecular cloud is showing that complex organic molecules exist it its birth cloud. They could be life precursors. The Webb space telescope is studying this cloud to find these chemicals. Courtesy Gabriel Rodrigues Santos. From https://science.nasa.gov/barnard-228-dark-wolf-nebula-lupus

One of the most interesting questions we can ask is, “How did life form?”. To answer it, scientists go back to look at the basic chemical building blocks of life. Those are water, carbon-based organic molecules, silicates, and others. The James Webb Space Telescope offered a peek at the gases, ice particles, and dust surrounding a newborn star and found organic molecules exist there.

Continue reading “JWST Sees Organic Molecules Swirling Around a Newborn Star”

Watch the Chelyabinsk Meteor Breakup in this Detailed Simulation

The Chelyabinsk impactor vapor trail.
This image of a vapor trail was captured about 125 miles (200 kilometers) from the Chelyabinsk meteor event, about one minute after the house-sized asteroid entered Earth’s atmosphere. Credits: Alex Alishevskikh

The people of Chelyabinsk in Russia got the surprise of their lives on the morning of February 15, 2013. That’s when a small asteroid exploded overhead. The resulting shockwave damaged buildings, injured people, and sent a sonic boom thundering across the region.

Continue reading “Watch the Chelyabinsk Meteor Breakup in this Detailed Simulation”

Planets Might Protect their Water Until their Star Settles Down

Artist's conception of early planetary formation from gas and dust around a young star. Outbursts from newborn and adolescent stars might drive planetary water beneath the surface of rocky worlds. Credit: NASA/NASA/JPL-Caltech

Creating rocky planets is a messy, dangerous, hot business. Planetesimals accrete together, which creates heat and pressure on the newborn world. The nearby adolescent star bombards them with intense radiation. That likely “bakes off” any surface oceans, lakes, or rivers, which is a disaster if you’re looking for places where life might arise or exist. That’s because life needs water and planets around these stars are among the most likely to harbor life. But, that doesn’t look too hopeful if the radiation steams the water away.

Continue reading “Planets Might Protect their Water Until their Star Settles Down”

The State of Suborbital Space Science

Virgin Galactic's SpaceShipTwo during a test flight. Suborbital science experiments fly aboard this craft, as well as Blue Origin's New Shepard, and other suborbital flights, providing scientists, students, and others with valuable microgravity access. Credit: Virgin Galactic

Think there’s nothing to learn through suborbital flight and that space science is only done in orbit? Think again. Recently, a group of school students in Canada asked the question: do Epi-Pens work in space? These are epinephrine-loaded injectors used to help people with allergies survive a severe attack. To get an answer, the class at St Brother André Elementary School worked with NASA, the University of Ottawa, and the non-profit Cubes in Space program to launch some Epi-Pens on suborbital flights aboard a rocket and a high-altitude balloon. The result? Post-flight analysis showed that the pens lost their efficacy in space. It was a surprise to NASA as well as to the students.

Continue reading “The State of Suborbital Space Science”

What Time is It on the Moon? It May Get its Own Timezone

Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. How will they store power on the Moon? 3D printed batteries could help. Credit: NASA
Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. How will they store power on the Moon? 3D printed batteries could help. Credit: NASA

When the first people set foot on the Moon for long-term projects, they’ll need a lot of things, including their own time zone. That makes sense since they’ll be on an entirely different world. And, they’ll depend on a whole new set of technologies that will need time coordination with each other. So, space agencies are now figuring out what time zone the Moon will have.

Continue reading “What Time is It on the Moon? It May Get its Own Timezone”

The Neutron Star That Thinks It’s a Black Hole

Artist's impression of the blazing eruption of the neutron star Swift J1858 compared to the black hole GRS 1915+105. Credit: Gabriel Pérez Díaz (IAC)
Artist's impression of the blazing eruption of the neutron star Swift J1858 compared to the black hole GRS 1915+105. Credit: Gabriel Pérez Díaz (IAC)

Black holes and neutron stars are among the odder denizens of the cosmic zoo. They’re both dense collections of matter and, except for supermassive black holes, are the end states of massive stars. Fundamentally, they’re two different types of objects that are detectable via the activity in the accretion disks that form around them. Astronomers recently observed an object that acted like a black hole but turned out to be a neutron star. The clues lay in the accretion disk surrounding it.

Continue reading “The Neutron Star That Thinks It’s a Black Hole”

Not Just Water. Enceladus is Also Blasting Silica Into Space

A false-colour image of the plumes erupting from Enceladus. Image Credit: NASA/ESA
A false-colour image of the plumes erupting from Enceladus. Image Credit: NASA/ESA

Deep beneath the icy surface of Saturn’s moon Enceladus, something’s happening that causes particles of icy silica to spew out to space. They eventually end up in Saturn’s E ring. Planetary scientists knew that this was happening, but didn’t have a good explanation for why or how. Now, they do.

Continue reading “Not Just Water. Enceladus is Also Blasting Silica Into Space”

A New Survey of the Sky Contains Over One Billion Galaxies

Ten areas in the sky were selected as “deep fields” that the Dark Energy Camera imaged several times during the survey, providing a glimpse of distant galaxies and helping determine their 3D distribution in the cosmos. The image is teeming with galaxies — in fact, nearly every single object in this image is a galaxy. Some exceptions include a couple of dozen asteroids as well as a few handfuls of foreground stars in our own Milky Way. Credit: Dark Energy Survey/DOE/FNAL/DECam/CTIO/NOIRLab/NSF/AURA Acknowledgments: T.A. Rector (University of Alaska Anchorage/NSF’s NOIRLab), J. Miller, M. Zamani & D. de Martin (NSF’s NOIRLab)
Ten areas in the sky were selected as “deep fields” that the Dark Energy Camera imaged several times during its survey, providing a glimpse of distant galaxies and helping determine their 3D distribution in the cosmos. Nearly every single object in this image is a galaxy. Credit: Dark Energy Survey/DOE/FNAL/DECam/CTIO/NOIRLab/NSF/AURA Acknowledgments: T.A. Rector (University of Alaska Anchorage/NSF’s NOIRLab), J. Miller, M. Zamani & D. de Martin (NSF’s NOIRLab)

What contains a petabyte of data on more than a billion galaxies in one of the most extensive sky maps? The answer: the ever-expanding Dark Energy Spectroscopic Instrument (DESI) Legacy Imaging Survey. The galaxies it charts are part of the largest two-dimensional map of the sky ever made. And, just recently, it grew even larger with the addition of new data from telescopes in the U.S. and Chile.

Continue reading “A New Survey of the Sky Contains Over One Billion Galaxies”

Recreating the Extreme Forces of an Asteroid Impact in the Lab

Barringer Meteor Crater in Arizona. Scientists studied the forces in the event that created this impact scar. Image credit: NASA
Barringer Meteor Crater in Arizona. Scientists studied the forces in the event that created this impact scar. Image credit: NASA

About 50,000 years ago, a nickel-iron meteorite some 50 meters across plowed into the Pleistocene-era grasslands of what is now Northern Arizona. It was traveling fast—about 13 kilometers per second. In just a few seconds, an impact dug out a crater just over a kilometer wide and spread rocks from the site for miles around.

Continue reading “Recreating the Extreme Forces of an Asteroid Impact in the Lab”

Supermassive Black Holes on a Collision Course

Artist's impression of two merging black holes. Credit: Bohn, Throwe, Hébert, Henriksson, Bunandar, Taylor, Scheel/SXS
Artist's impression of two merging black holes. Credit: Bohn, Throwe, Hébert, Henriksson, Bunandar, Taylor, Scheel/SXS

The early Universe was swimming with dwarf galaxies only a few hundred million years after the Big Bang. They merged with each other over time, building larger and more massive galaxies. At the same time, the giant black holes inside these dwarfs merged, too.

Continue reading “Supermassive Black Holes on a Collision Course”