Solar Orbiter Captures the First Ever Image of a Magnetic Solar Switchback on the Sun

A Solar Dynamics Observatory view of solar magnetic loops. A Solar Orbiter captured an image of a solar magnetic switchback in loops similar to these. Courtesy NASA/SDO

On March 25, 2022, the ESA/NASA Solar Orbiter spacecraft closed in on the Sun, getting ready to study it during a flyby. Its Metis coronagraph instrument, which blocks out the Sun so the spacecraft can study its outer atmosphere, recorded an image of something strange: a distorted, S-shaped “kink” in a small area of plasma flowing from the Sun. It was a magnetic solar switchback.

Continue reading “Solar Orbiter Captures the First Ever Image of a Magnetic Solar Switchback on the Sun”

Saturn Might Have Torn a Moon Apart to Make its Rings

Saturn's rings in all their glory. Image from the Cassini orbiter as Saturn eclipsed the Sun. Image Credit: By NASA / JPL-Caltech / Space Science Institute
Saturn's rings in all their glory. Image from the Cassini orbiter as Saturn eclipsed the Sun. Image Credit: By NASA / JPL-Caltech / Space Science Institute

Saturn is a world of surprises. The Voyager 1 and 2 flybys and later on, the Cassini mission, opened our collective eyes to intricate details in its rings and atmosphere. They also gave us up-close and personal looks at those amazing moons. But, one thing they didn’t show us was Saturn’s proposed moon Chrysalis. That’s because it doesn’t exist. Well, actually, it is there, but in the form of those dazzling rings.

Continue reading “Saturn Might Have Torn a Moon Apart to Make its Rings”

Without Water and Life, Geology on Mars is Driven by the Wind

Murray formation: rocks laid down by water and sculpted by wind
Finely layered rocks within the "Murray formation" layer of lower Mount Sharp on Mars. Credit: NASA

On Earth, we all know what changes our landscapes: water and wind erosion, tectonic activity, and volcanism. Today on Mars, wind-driven erosion is hard at work. Wind is an inexorable sculptor everywhere. And, it might have created places where planetary scientists and astrobiologists hunt for traces of primordial Martian life today.

Continue reading “Without Water and Life, Geology on Mars is Driven by the Wind”

The Webb Image you’ve Been Waiting For: the Orion Nebula

Orion Nebula by JWST
The inner region of the Orion Nebula as seen by the James Webb Space Telescope’s NIRCam instrument. Credit: NASA, ESA, CSA, PDRs4All ERS Team; image processing Salomé Fuenmayor

This is it, folks. Feast your eyes! It’s what we’ve been training for—seeing the James Webb Space Telescope’s first detailed view of the Orion Nebula! JWST’s NIRCam gazed at this starbirth nursery and revealed incredible details hidden from view by gas and dust clouds.

Continue reading “The Webb Image you’ve Been Waiting For: the Orion Nebula”

Just 2,000 Years Ago, Betelgeuse Was Yellow, Not Red

Artist's impression of Betelgeuse. Credit: ESO/L. Calçada

Compared to the lifespan of stars, human lives are pretty short. Stars such as Betelgeuse (in Orion) live for millions of years. Others exist for billions of years. We (if we’re lucky) get maybe 100 years (more or less). So, to us, stars don’t appear to change much over our lifetimes, unless they blow up as supernovae. But, what about over the course of 20 or 30 successive lifetimes?

Continue reading “Just 2,000 Years Ago, Betelgeuse Was Yellow, Not Red”

What’s Being Done to Protect Astronauts From Radiation in Deep Space?

astronauts faced possible radiation dangers on the Moon.
Apollo 17 astronaut Harrison "Jack" Schmitt at Tracy Rock on the lunar surface. If a solar storm had hit the Moon while the astronauts were on the surface exploring, it could have been a disaster. Credit: NASA.

In 1982, author James Michener published his sprawling Space Race novel, Space. In it, he describes a fictional Apollo 18 mission to the Moon. While the astronauts are on the surface, the Sun unleashes a huge storm, trapping them outside of their protective capsule. The two men get blasted by lethal amounts of radiation before they can get to safety.

Continue reading “What’s Being Done to Protect Astronauts From Radiation in Deep Space?”

Yeast Will Fill in for Humans on Artemis I, Soaking up a Lunar Mission’s Worth of Radiation

SLS and Orion at launch pad
A full Moon looms over NASA's Space Launch System and its Orion capsule containing yeast cells bound for an epic trip. (NASA Photo / Ben Smegelsky)

When Artemis 1 finally takes flight (possibly this Saturday), twelve bags of baker’s yeast will go along for the ride. Millions of these cells of Saccharomyces cerevisiae will experience deep space as it grows and reproduces. The yeast is a stand-in for actual people. The idea is to see what threat the radiation environment in deep space poses to living cells. The data from the experiment will point to how genetic engineering might help reduce damage to astronauts.

Continue reading “Yeast Will Fill in for Humans on Artemis I, Soaking up a Lunar Mission’s Worth of Radiation”

Astronomers Find the Oldest Planetary Nebula

Abell 39 is a good example of a planetary nebula, similar to the one discovered in M37. Credit: WIYN/NOAO/NSF

Planetary nebulae are short-lived “leftovers” of sun-like stars. Most of these “star ghosts” only last—at most—about 25,000 years. Usually, their clouds of debris disperse so broadly that they fade out fairly quickly. However, there’s one that has lasted at least 70,000 years. That makes it a “grande dame” of planetary nebulae.

Continue reading “Astronomers Find the Oldest Planetary Nebula”

A Merger Completely Shut Down Star Formation

star formation stopped by galaxy merger
Scientists observing the newly-dormant galaxy SDSS J1448+1010 found that most of its fuel for star formation had been tossed out of the system as it merged with another galaxy. That gas is not forming new stars for the galaxy but remains nearby in new structures known as tidal tails. This artist’s conception shows the stream of gas and stars that were flung away during the merger. Credit: ALMA (ESO/NAOJ/NRAO), S.Dagnello (NRAO/AUI/NSF)

What’s the recipe for forming stars? Yep, lots of gas and dust. Galaxies rich in these materials get to make a lot of stars. When the supply runs out, star formation stops. That’s what’s happened in the galaxy SDSS J1448+1010, but there’s a twist. The galaxy didn’t stop making stars because it made so many it ran out of material. No, that happened because it merged with another galaxy. That action flung most of the available gas and dust out of the galaxy entirely. Essentially, the galaxy to went “dormant” and ceased star-forming operations.

Continue reading “A Merger Completely Shut Down Star Formation”

Problem Solved! Voyager 1 is no Longer Sending Home Garbled Data!

Voyager 1
Artist's concept of NASA's Voyager spacecraft. Image credit: NASA/JPL-Caltech

Earlier this year, the teams attached to the Voyager 1 mission noticed that the venerable spacecraft was sending weird readouts about its attitude articulation and control system (called AACS, for short). The data it’s providing didn’t really reflect what was actually happening onboard. That was the bad news. The good news was that it didn’t affect science data-gathering and transmission. And, the best news came this week: team engineers have fixed the issue with the AACS and the data are flowing normally again.

Continue reading “Problem Solved! Voyager 1 is no Longer Sending Home Garbled Data!”