David Dickinson is an Earth science teacher, freelance science writer, retired USAF veteran & backyard astronomer. He currently writes and ponders the universe as he travels the world with his wife.
Now, watch for a rare event this weekend, with the final eclipse for 2018 coming up on Saturday, August 11th, with a partial solar eclipse spanning northern Europe and the Arctic.
What’s so unique about this eclipse? Well, not only is it the last one for 2018, but it’s part of three eclipses in the second eclipse season of the year. Most seasons only feature two eclipses (one lunar and one solar) but every few years or so, it is possible to have a season with three: either lunar-solar-lunar (such as occurred in 2013) or solar-lunar-solar.
This is only possible when the middle eclipse occurs very near ascending or descending node along the ecliptic. The nodes are where the path of the Moon, inclined 5.1 degrees relative to the ecliptic plane intersect it—when these nodes are occupied by an alignment of the Earth, Sun and Moon (known as a syzygy, a fine word in Scrabble to land on a triple word score, though you’ll need a blank tile for the third ‘y’) a solar or lunar eclipse occurs. For an eclipse triple play, the middle eclipse needs to happen very near a node crossing, producing a fairly long eclipse. That’s exactly what happened on July 28th, when the Moon crossed through descending node just over an hour after crossing out of the Earth’s umbral shadow after the longest lunar eclipse for the 21st century.
This also leaves the Moon close enough to the opposite ascending node two weeks post and prior to July 28th on July 13th and August 11th to just nick the Sun for a partial solar eclipse, one over the Antarctic and one over the Arctic.
Eclipse Circumstances
Saturday’s partial eclipse touches down over the eastern coast of Canada at sunrise. From there, it sweeps eastward over Greenland, Iceland and the North Atlantic, with the Moon’s penumbra just grazing the northern United Kingdom before crossing over Scandinavia. Then, the shadow crosses over Asia, with a photogenic partial solar eclipse wrapping up at sunset over eastern China, the Koreas and the Russian far east.
Note that this eclipse is also a relative newcomer for its particular saros 155, as it is member 6 of a series of 71 eclipses. The saros just began less than a century ago on June 17th, 1928, and won’t produce its first total solar eclipse until September 12th, 2072 AD.
As of this writing, we’ve yet to see evidence of anyone carrying the eclipse live, though we’ll note it here if any webcast(s) surface.
When is the next one? Well, the next partial solar eclipse is on January 6th 2019, and the next total solar eclipse occurs on July 2nd, 2019.
Enter the Perseids
This weekend’s eclipse at New Moon also sets us up for a fine display of the Perseid meteors for 2018. This year, the Perseids are expected to peak on the morning of August 12th and August 13th. Watch for a zenithal hourly rate of 100 meteors per hour at the peak. A dependable annual favorite, the Perseids are debris remnants of period comet 109/P Swift-Tuttle.
Astronomer Gianluca Masi and the Virtual Telescope Project 2.0 will host a live webcast for the 2018 Perseids on August 12th starting at 20:30 UT.
Don’t miss the astronomical action worldwide this weekend, either live or online.
Comets are one of those great question marks in observational astronomy. Though we can plot their orbits thanks to Newton and Kepler, just how bright they’ll be and whether or not they will fizzle or fade is always a big unknown, especially if they’re a dynamic newcomer from the Oort Cloud just visiting the inner solar system for the first time.
We had just such a surprise from a cosmic visitor over the past few weeks, as comet C/2017 S3 PanSTARRSerupted twice, brightening into binocular visibility. Discovered on December 23rd 2017 during the PanSTARRS survey based on Haleakala, Hawai’i, S3 PanSTARRS is on a long-period, hyperbolic orbit and is most likely a first time visitor to the inner solar system.
S3 PanSTARRS was not only rocked by two new outbursts in quick succession, but seems to have undergone a tail disconnection event just last week, leveling off its brightness at around +8 magnitude and holding. This puts it in the range of binoculars under dark skies, looking like a fuzzy globular that refuses to snap into focus as it currently glides through the constellation of Camelopardalis the Giraffe the dawn sky.
As July closes out, the time to catch sight of Comet S3 PanSTARRS is now, before it’s lost in the Sun’s glare. From latitude 40 degrees north, the comet sits 20 degrees above the northeastern horizon, about an hour before sunrise. By August 7th however, it drops below 10 degrees altitude. From there, the comet begins to circle the Sun as seen from the Earth beginning to favor southern hemisphere observers at dawn, who may be able to track it straight through perihelion on August 16th, if its brightness holds up. From there, northern hemisphere viewers may get a second view at dawn in September, again, if its brightness holds.
You never know when it comes to comets. Here’s a brief rundown of the celestial happenings for comet C/2017 S3 PanSTARRS:
August
3- Crosses into the constellation Gemini.
4- Passes near the bright star Castor.
5- Passes near the bright star Pollux.
7- Crosses into the constellation Cancer.
7- Passes closest to the Earth, at 0.758 Astronomical Units (AU) distant.
8- Crosses southward over the ecliptic plane.
9- Passes just 4 degrees from the Beehive cluster, M44.
11- Passes 2 degrees from the open cluster M67.
12- Passes 10.5 degrees from Sun (1st apparent close pass as seen from the Earth)
13- Crosses into the constellation Hydra.
15- Reaches maximum brightness: the comet may top +2nd magnitude in mid-August.
16- Reaches perihelion at 0.21 AU from the Sun.
18- Crosses into the constellation Sextans.
30-Crosses into the constellation Leo.
31-Crosses the ecliptic plane northward.
September
3- passes 4 degrees from the Sun.
25- Crosses into the constellation Coma Berenices.
From there, Comet C/2017 S3 PanSTARRS drops back below 6th magnitude in September, then below 10th magnitude in October as it heads back off into the icy realms of the outer solar system.
Be sure to nab this icy interloper why you can. The quote comet hunter David Levy, “Comets are like cats… they have tails, and they do exactly what they want.”
One of the top astronomy events of 2018 occurs on the evening of Friday, July 27th, when the Moon enters the shadow of the Earth for a total lunar eclipse. In the vernacular that is the modern internet, this is what’s becoming popularly known as a “Blood Moon,” a time when the Moon reddens due to the refracted sunlight from a thousand sunsets falling upon it. Standing on the surface of the Moon during a total lunar eclipse (which no human has yet to do) you would see a red “ring of fire” ’round the limb of the eclipsed Earth.
This is the second total lunar eclipse for 2018, and the middle of a unique eclipse season bracketed by two partial solar eclipses, one on July 13th, and another crossing the Arctic and Scandinavia on August 11th.
The July 27th total lunar eclipse technically begins around 17:15 Universal Time (UT), when the Moon enters the bright penumbral edge of the Earth’s shadow. Expect the see a slight shading on the southwest edge of the Moon’s limb about 30 minutes later. The real action begins around 18:24 UT, when the Moon starts to enter the dark inner umbra and the partial phases of the eclipse begin. Totality runs from 19:30 UT to 21:13 UT, and the cycle reverses through partial and penumbral phases, until the eclipse ends at 23:29 UT.
Centered over the Indian Ocean region, Africa, Europe and western Asia get a good front row seat to the entire total lunar eclipse. Australia and eastern Asia see the eclipse in progress at moonset, and South America sees the eclipse in progress at moonrise just after sunset. Only North America sits this one out.
Now, this total lunar eclipse is special for a few reasons.
First off, we’ll have the planet Mars at opposition less than 15 hours prior to the eclipse. This means the Red Planet will shine at a brilliant magnitude -2.8, just eight degrees from the crimson Moon during the eclipse, a true treat and an easy crop to get both in frame. We fully expect to see some great images of Mars at opposition along with the eclipsed Moon.
How close can the two get? Well, stick around until April 27th, 2078 and you can see the Moon occult (pass in front of) Mars during a penumbral lunar eclipse as seen from South America.
And speaking of occultations, the Moon occults some interesting stars during totality Friday, the brightest of which is the +5.9 magnitude double star Omicron Capricorni (SAO 163626) as seen from Madagascar and the southern tip of Africa. Omicron Capricorni has a wide separation of 22″.
The second unique fact surrounding this eclipse is one you’ve most likely already heard: it is indeed the longest one for this century… barely. This occurs because the Moon reaches its descending node along the ecliptic on July 27th at 22:40 UT, just 21 minutes after leaving the umbral shadow of the Earth. This makes for a very central eclipse, nearly piercing the umbral shadow of the Earth right through its center.
Totality on Friday lasts for 1 hour, 42 minutes and 57 seconds. This was last beat on July 16th, 2000 with a duration of 1 hour, 46 minutes and 24 seconds (2001 is technically the first year of the 21st century). The duration for Friday’s eclipse won’t be topped until June 9th 2123 (1 hour 46 minutes six seconds), making it the longest for a 123 year span.
The longest total lunar eclipse over the span of 5,000 years from 2000 BC to 3000 AD was on May 31st, 318 AD at 106.6 minutes in duration.
A Minimoon Eclipse
Finally, a third factor is assisting this eclipse in its longevity is the onset of the MiniMoon: The Moon reaches apogee at July 27th, 5:22 UT, 14 hours and 37 minutes prior to Full and the central time of the eclipse. This is the most distant Full Moon of the year for 2018 (406,222 km at apogee) the 2nd most distant apogee for 2018. Apogee on January 15th, beats it out by only 237 kilometers. This not only gives the Moon a slightly smaller size visually at 29.3′, versus 34.1′ near perigee, less than half of the 76′ arcminute diameter of the Earth’s shadow. This also means that the Moon is moving slightly slower in its orbit, making a more stately pass through the Earth’s shadow.
What will the Moon look like during the eclipse? Not all total lunar eclipses are the same, but I’d expect a dark, brick red hue from such a deep eclipse. The color of the Moon during a eclipse is described as its Danjon number, ranging from a bright (4) to dark murky copper color (0) during totality.
Tales of the Saros
This particular eclipse is member 38 of the 71 lunar eclipses in saros series 129, running from June 10th, 1351 all the way out to the final eclipse in the series on July 24th, 2613 AD. If you caught the super-long July 16th, 2000 eclipse (the longest for the 20th century) then you saw the last one in the series, and the next one for the series occurs on August 7th, 2036. Collect all three, and you’ve completed a triple exeligmos series, a fine word in Scrabble to land on a triple word score.
Photographing the Moon
If you can shoot the Moon, you can shoot a total lunar eclipse, though a minimum focal length lens of around 200mm is needed to produce a Moon much larger that a dot. The key moment is the onset of totality, when you need to be ready to rapidly dial the exposure settings down from the 1/100th of a second range down to 1 second or longer. Be careful not to lose sight of the Moon in the viewfinder all together!
Are you watching the eclipse during moonrise or moonset? This is a great time to shoot the eclipsed Moon along with foreground objects… you can also make an interesting observation around this time, and nab the eclipsed Moon and the Sun above the local horizon at the same time in what’s termed a selenelion. This works mainly because the Earth’s shadow is larger than the apparent diameter of the Moon, allowing it to be cast slightly off to true center after sunrise or just before sunset. Gaining a bit of altitude and having a low, flat horizon helps, as the slight curve of the Earth also gives the Sun and Moon a tiny boost. For this eclipse, the U2-U3 umbral contact zone for a selenelion favors eastern Brazil, the UK and Scandinavia at moonrise, and eastern Australia, Japan and northeastern China at moonset.
Incidentally, a selenelion is the second visual proof you see during a lunar eclipse that the Earth is indeed round, the first being the curve of the planet’s shadow seen at all angles as it falls across the Moon.
Another interesting challenge would be to capture a transit of the International Space Station during the eclipse, either during the partial or total phases… to our knowledge, this has never been done during a lunar eclipse. This Friday, South America gets the best shots at a lunar eclipse transit of the ISS:
Live on the wrong continent, or simply have cloudy skies? Gianluca Masi and the Virtual Telescope Project 2.0 have you covered, with a live webcast of the eclipse from the heart of Rome, Italy on July 27th starting at 18:30 UT.
Be sure to catch Friday’s total lunar eclipse, either in person or online… we won’t have another one until January 21st, 2019.
Learn about eclipses, occultations, the motion of the Moon and more in our new book: Universe Today’s Guide to the Cosmos: Everything You Need to Know to Become an Amateur Astronomer now available for pre-order.
Have you checked out Mars this season? Mars reaches opposition on July 27th at 5:00 Universal Time (UT) shining at magnitude -2.8 and appearing 24.3” across—nearly as large as it can appear, and the largest since the historic opposition of 2003. We won’t have an opposition this favorable again until September 15th, 2035.
Mars starts this week near the +4th magnitude star Psi Capricorni, loops westward through retrograde briefly into the astronomical constellation of Sagittarius the Archer in late August before heading back into Capricornus in September.
Mars opened up 2018 just 4.8” across, trekking through the early dawn sky. What a difference a few months make: Mars broke 15” arc seconds—a maximum size for an unfavorable opposition near aphelion—on May 30th, and now dominates the summer sky around midnight.
There’s one downside, however, to the 2018 opposition of Mars: it’s occurring very nearly as far south along the ecliptic as it can. This is great news for observers in Australia, South Africa and South America, as the Red Planet rides high near the zenith at local midnight. Up north, however, we are still looking at Mars through the murk of the atmosphere lower to the horizon. For example, here in Norfolk, Virginia at latitude 37 degrees north, we never see Mars rise more than 29 degrees altitude above the southern horizon this season.
Down with Dust Storms
Does Mars seem a bit… peachy colored to you this season? It’s not your imagination: a planetary dust storm is indeed underway. It’s the middle of autumn for northern hemisphere of Mars, and this seems to be shaping up to be one of those oppositions where the planet, though at its closest, presents a featureless, dust-shrouded disk. This seems to be the case roughly every third opposition or so… our best hope now is that it may clear in the coming final weeks of July. We checked out Mars over the past weekend, and could just spy the pole cap and some slight detail under a veil of haze.
Despite the depiction of Martian dust storms in science fiction blockbusters such as The Martian as furious and unrelenting, these storms are actually pretty mild-mannered, barely able to chase a leaf before them through the tenuous Martian atmosphere, if deciduous trees grew on Mars. One thing Martian dust storms can do, however, is coat solar panels with a battery-killing film, and it has yet to be seen if the aging Opportunity rover will awaken and phone home from Meridiani Planum.
Unlike the Earth, Mars has a markedly elliptical orbit, varying from 1.7 (AU) astronomical units from the Sun at aphelion to 1.4 AU near perihelion. This all means that not every opposition of Mars is equal; in fact, Mars can range from 55 million to 102 million kilometers from the Earth near opposition and appear 13.8” to 25.1” across, depending on where it’s at in its orbit. And although Mars laps the Earth roughly every 26 months, a cycle of favorable oppositions repeat every 15 years.
In 2018, Mars reaches opposition on July 27th at 5:00 UT/1:00 AM EDT 57.8 million kilometers from the Earth, then makes its closest approach four days later on July 31st at 8:00 UT/4:00 AM EDT, 57.6 million kilometers distant. Why the discrepancy? Well, opposition is simply reckoned as the point where an outer planet reaches an ecliptic longitude of 180 degrees opposite from the Sun. Mars, however, is still headed inward towards perihelion on September 16th, while Earth just came off of aphelion on July 6th.
Visually, Mars can on occasion “go yellow” and present a saffron color even to the naked eye if a planetary wide sandstorm is underway. At the eyepiece, the most prominent feature is always the pole cap, a white dollop on the planet’s pumpkin hued limb. Crank up the magnification, and dark patches come into view, as Mars is the only planet in the solar system presenting an actual surface available for amateur scrutiny. Mars has a day very similar to Earth’s at only 37 minutes longer in duration, meaning that if you observe Mars at the same time every evening, you’ll see nearly the same longitude of the planet turned towards you, shifted 10 degrees westward. A great tool for comparing what features on Mars are currently turned Earthward is Mars Previewer.
Can you spy Mars… daytime? This month is a good time to try, as it currently shines brighter than Jupiter. The easiest thing to do is lock on to it with a telescope near dawn as it sets to the west and the Sun rises in the east, then simply track it into the daytime sky. We’ve seen Mars in 2003 and again this year while the Sun is still above the horizon… having the Moon nearby also helps, though of course, Mars is very close to the horizon at sunset/sunrise right at opposition.
And speaking of which, viewers in Europe, Africa, Asia and Australia are in for a special treat on the evening of July 27th, as a total eclipse of the Moon occurs just 15 hours after Mars passes opposition. Ironically, this is also a Minimoon eclipse, as the Moon also passes apogee just 14 hours prior to entering the Earth’s shadow. Expect to see the Red Planet just seven degrees from the blood red Moon at mid-eclipse (more on the eclipse next week).
The Moon won’t occult (pass in front of) Mars again until November 16th, 2018 for the very southernmost tip of South America. Stick around until July 26th, 2344 AD, and you can witness the Moon occulting the planet Saturn during an eclipse, though you’ll have to journey to southern Japan to do it.
But you may not have to wait that long… stick around until April 27th, 2078, and you can witness the Moon occult Mars… during a penumbral lunar eclipse:
This current evening apparition of Mars ends over a year from now on September 2nd, 2019, as Mars reaches solar conjunction on the farside of the Sun.
Finally, opposition is a great time to try and check the tiny Martian moons Phobos and Deimos off of your life list. These two moons were actually discovered by Asaph Hall from the United States Naval Observatory’s newly installed 26-inch refractor during a favorable parihelic apparition of Mars in 1877.
Shining at magnitude +12.4 (Deimos) and +11.3 (Phobos), seeing these moons would be a cinch… were it not for the presence of Mars shining a million times brighter nearby. Your best bet is to construct an occulting bar eyepiece (we’ve used a thin strip of foil and a guitar string affixed to an eyepiece to accomplish this) or simply place brilliant Mars just out of view. Phobos orbits once every 7.7 hours and substends 20” from the disk of Mars, while Deimos goes around Mars once every 30.35 hours and journeys 66” with each elongation from the Martian disk. PDS rings node or a good planetarium program such as Starry Night or Stellarium will show the current orientation of the Martian moons, aiding in your decision of whether or not to take up the quest.
Don’t miss out on Mars this opposition season… it’ll be almost another two decades before we get another favorable view.
Read all about viewing the planets, from observation to imaging and sketching in our new book: The Universe Today Guide to the Cosmos out October 23rd, now available for pre-order.
Eclipse season in nigh… though most of us won’t notice the start this week. The second eclipse season for 2018 commences with the arrival of New Moon and Brown Lunation number 1182 at 3:01 Universal Time on (triskaidekaphobics take note) Friday July 13th, 2018. This eclipse is a shallow partial, just skimming the southern hemisphere of the Earth between the Australian and Antarctic continents.
The Eclipse
We doubt many eclipse chasers will make the pilgrimage to Tasmania to see such a slim partial, though we know of at least one, veteran eclipse chaser Jay Pasachoff who has expressed intent on the Yahoo! Solar Eclipse Message List (SEML) message board to head southward this week.
Tasmania gets the best view, with a maximum 9.5% obscuration of Sol as seen from the capital Hobart around 3:25 UT. The upper limit of the eclipse path just skims the southern coast of Australia across the Great Australian Bight and the southern Indian Ocean, and nicks the very southern tip of the south island of New Zealand and Steward Island at 3:48 UT with a barely discernible 1% eclipse before the lunar penumbra departs the Earth. If skies are clear, the very best view just might come along the coast of Antarctica, as the 33% eclipsed Sun rolls along the northern horizon.
Perhaps a few lone penguins will notice, if they bother to look at the Sun filtered through the murk of the atmosphere along the horizon. France does have one permanently occupied research station in Antarctica named Dumont D’urville along the coast that will see a 30% eclipsed Sun on the horizon right around 3:00-3:15 UT.
We say that this heralds the start of eclipse season, as the ascending node where the Moon’s orbit intersects the ecliptic plane is very near the current position of the Sun. In fact, node crossing occurs at 18:50 UT on July 13th, just 24 hours after New Moon. Eclipses always occur in at least pairs, and the Full Moon two weeks later is close enough to the descending node for a nearly central total lunar eclipse on July 27th (more on that in a bit). This season, however, is special, with a third eclipse ending the cycle on August 11th, 2018, this time gracing the Arctic pole of the Earth along with Scandinavia and Russia.
We’re already seeing some hype surrounding this event as a “Supermoon eclipse,” as the Moon reaches perigee 5 hours 27 minutes past maximum eclipse. Note that this also sets us up for a Minimoon total lunar eclipse two weeks later, as the Moon is near apogee on July 27th.
The Moon’s orbit is tilted 5.145 degrees relative to the plane of the ecliptic, and the nodes make one full revolution around the Earth relative to the equinoctial points once every 18.6 years in what’s known as the precession of the line of apsides.
Viewing a Partial
A partial solar eclipse means that all safety precautions must be taken throughout all phases of the eclipse. This means using approved solar filters that fit snugly over the aperture of a telescope, and solar glasses with the approved ISO 12312-2 rating for solar viewing. We built a safe binocular filter out of a set of spare eclipse safety glasses for the August 21st, 2017 total solar eclipse last year.
Unfortunately as of writing this, the disk of Sol is blank in terms of Earthward facing sunspots, and may be so on eclipse day. We’re currently headed towards a profound solar minimum and the Sun has already been spotless for more than half of 2018 thus far.
Don’t own a solar filter, safety glasses or a telescope? You can always use our tried and true method of projecting the eclipse using a spaghetti strainer.
It’s all in the gamma. This eclipse is partial only, because the dark inner shadow or umbra misses the Earth by 35.4% of the radius of the planet or about 1,400 miles. The gamma for an eclipse states how many Earth radii an eclipse deviates from central (where the Moon’s umbra is aimed straight at the center of the Earth) and Friday’s eclipse has a gamma value of 1.3541.
Tales of the Saros
Friday’s eclipse is part of an older saros series, member 69 of 71 eclipses for saros series 117. This saros started waaaaaay back on June 24th, 792 AD, and produced its last total solar eclipse on May 9th, 1910. This was also the last total solar eclipse for Tasmania until June 25th, 2131. This series only has two more eclipses to go, with its last event occurring briefly over the Antarctic on August 3rd, 2054. Perhaps, Friday’s event will be the very last one witnessed by human eyes for saros 117.
This also sets us up for the best of the three eclipses this season, the total lunar eclipse at the end of the month on July 27th. This eclipse will be widely visible across Africa, Europe, Asia and Australia—only the Americas miss out.
A Possible Views… “From Spaaaaaaace…”
The International Space Station also threads its way through the outer shadow of the Moon towards the end of the event Friday at ~3:50 UT. ESA’s solar observing Proba-2 spacecraft might just get a very brief view as well from its vantage point in low Earth orbit, around 3:09 UT.
And although most of us miss out on Friday’s eclipse, you can still try and spot the slender crescent Moon on the evening of Friday, July 13th. The U.S. East Coast is particularly well placed to try and spy the slim Moon low to the west, only 22 hours after New. After that, the Moon tours all of the naked eye planets, passing Mercury and Venus this weekend and passing Jupiter, Saturn and Mars en route to the July 27th total lunar eclipse.
Will anyone webcast the eclipse live? So far, no webcasts (not even from the venerable Slooh site) have surfaced… if anyone else is planning on featuring the July 13th partial solar eclipse, let us know!
It’s the biggest question when it comes to solar eclipses. When’s the next total? Well, just under a year from now, the next total solar eclipse crosses Chile and Argentina on July 2nd, 2019. Note that this event crosses over several major astronomical observatories at La Silla. How many newly minted eclipse chasers fresh off last year’s Great American Eclipse experience can’t wait until totality next visits the United States on April 8th , 2024 and plan to head to South America next summer?
A partial eclipse may not inspire many eclipse chasers to hop on a plane, but we can still marvel at the celestial ticks of a clockwork Universe carry on, right on schedule.
-Got the eclipse chasing bug? Read all about eclipse chasing, observing and photography in our new book, the Universe Today Guide to Viewing the Cosmos: Everything You Need to know to Become and Amateur Astronomer out on October 23rd.
An unusual celestial spectacle unfolds for observers around the Great Lakes region next Tuesday at dawn. The Moon has been faithfully occulting (passing in front of) the bright star Aldebaran for every lunation now since January 29th, 2015. These split-second events have touched on nearly every farflung corner of the Earth. Now the United States and Canada get to see the penultimate event, as the waning crescent Moon occults Aldebaran one last time for North America.
Many news outlets are advertising this as the “last occultation of Aldebaran until 2033” which isn’t entirely true: the Moon will occult Aldebaran twice more worldwide, once on August 6th and September 3rd. Both of these events, however, involve a thin crescent Moon and occur over high Arctic climes, so I wouldn’t be surprised if they go unwitnessed by human eyes. The next cycle of Aldebaran occultations then resumes on August 18th, 2033.
Four stars brighter than +1st magnitude lie along the Moon’s celestial path in our current epoch: Antares in Scorpius, Regulus in Leo, Spica in Virgo, and Aldebaran in the eye of Taurus the Bull. Fun fact: this celestial situation is also slowly changing, partly because of the slow 26,000 year-plus long top-like wobble of the Earth’s axis known as the Precession of the Equinoxes, but also because of stellar proper motion, which is slowly bringing stars into and out of the Moon’s path over millennia. For example, until 117 BC, the Moon could also occult Pollux in the constellation of Gemini the Twins.
The circumstances for the July 10 event: The morning of July 10th sees the 11% illuminated, waning crescent Moon meet the +0.9 magnitude star Aldebaran under pre-dawn skies. When the Moon is waning, the bright limb leads the way, covering up the star during ingress and revealing once again during egress. The Moon moves its own half a degree (30 arcminute) diameter once every hour, and how long you’ll see Aldebaran covered up depends on your location. The geographic “sweet spot” for the occultation is eastern Minnesota, northeastern Iowa, northern Wisconsin, Lake Superior, the Upper Peninsula of Michigan, Ontario and northern Quebec… though the farther east you are, the brighter the skies will be, until the occultation begins under dark to twilight dawn skies and ends after sunrise.
Tales from the Graze Line
Folks based along a narrow path running for Iowa, across Wisconsin and Michigan into Ontario and Quebec are in for a very special treat, as Aldebaran just grazes in southern limb of the Moon. Instead of one single wink out, Aldebaran will flash multiple times, as it shines down through the jagged valleys along the limb of the Moon, an amazing sight to witness and catch on video.
Here are some times and circumstances for selected cities in the path of the occultation:
Location
Ingress
Egress
Moon altitude
Sun altitude
Duration
Minneapolis
8:30
8:47
1deg/3deg
-16deg/-14deg
17 minutes
Green Bay
8:39
8:40
5deg/5 deg
-13deg
<1 minute
Thunder Bay
8:32
8:54
5deg/8 deg
-12deg/-9 deg
22 minutes
Fort Dodge, Iowa
N/A
8:37
0.1 deg
-18 deg
<1 minute
Notes: all locations listed are in the Central (CDT) time zone (UT-5 for summer time). All times listed are in Universal Time (UT), with the Moon and Sun altitude listed for the beginning and end of the event, rounded to the nearest minute.
Not on the graze line? Well, the rest of us will see a very photogenic near miss on the morning of July 10th… and you might just be able to track Aldebaran up into the daytime sky (make sure you physically block the Sun out of view) if you’ve got clear blue, high contrast skies.
The Moon also occults several fainter stars across the V-shaped Hyades open star cluster around the same time worldwide, as well. One such notable event is the occultation of the +3.7 magnitude star Gamma Tauri for the United Kingdom:
You can follow the July 10th occultation using nothing more than a Mk-1 eyeball, as you can see both the star and the Moon… though binoculars or a telescope will definitely help, as Aldebaran will be tough to pick out against the bright limb of the Moon. Occultations—especially grazing events—really lend themselves to video astrophotography and are simple to capture through a telescope. Just be sure to balance the exposure setting so you can follow the star all the way up to the bright limb of the Moon.
Occultations have inspired those who witnessed them back through pre-telescopic times. A Greek coin from 120 BC may depict an occultation of Jupiter by the Moon. Sultan Alp Arslan was said to have been inspired by a close pairing of Venus and the crescent Moon after the Battle of Manzikert in 1071 AD, adopting the celestial spectacle of the star and crescent which adorns several national flags today.
Also, keep an eye out for an optical illusion described in The Rime of the Ancient Mariner (the poem, not the song by Iron Maiden inspired by the epic tale of the same name), where the protagonist witnesses:
“While clome above the Eastern Bar,
The horned Moon, with one bright Star,
Almost atween the tips.”
This illusion is often referred to as the Coleridge Effect.
Don’t miss this fine occultation of Aldebaran… it’ll be awhile before we see the Moon meet the star again.
-Extra credit: if anyone is planning a live stream of the occultation next Tuesday, let us know.
-The International Occultation Timing Association (IOTA) welcomes observations of any occultations worldwide… in the case of a lunar graze, observations can be used to map out the profile of mountains and valleys along the edge of the Moon.
Missed the planets in the dusk sky in early 2018? This summer’s astronomical blockbuster sees the return of all the classical naked eye planets in the dusk sky, in a big way.
The Sky Scene in July
This coming July 2018 features a rare look at the solar system in profile: you can see Mercury and Venus low in the dusk looking westward immediately after sunset, with Jupiter high to the south, Saturn rising in the east, and Mars rising just behind. This isn’t a true grouping or grand conjunction, as the planets span a 170 degree swath of the ecliptic from Mercury to Mars (too bad they’re not in orbital order!) but a product of our Earthly vantage point looking out over the swath of inner solar system in the evening sky.
Can you manage a “planetary marathon” and collect all five this coming Fourth of July weekend? Here’s a quick rundown of all the planetary action from west to east:
Mercury’s July apparition – fleeting Mercury is always the toughest of the planets to catch, low to the west. -0.3 magnitude Mercury actually forms a straight line with the bright +1st/2nd magnitude stars Castor and Pollux in Gemini the Twins later this week on the evening of June 27th. Mercury reaches greatest elongation 26 degrees east of the Sun on July 12th, presenting a half illuminated, 8” disk. The angle of the evening ecliptic is canted southward in July, meaning that the position of the planets in the evening sky also favors southern viewers. July also presents another interesting mercurial challenge, as Mercury passes in front of the Beehive Open cluster (Messier 44) in the heart of the constellation Cancer on the night of July 3rd/4th.
Venus this summer – higher up at dusk, brilliant Venus rules the evening sky, shining at magnitude -4. Venus is so bright that you can easily pick it up this month before sunset… if you know exactly where to look for it. Venus reaches greatest elongation 46 degrees east of the Sun on August 17th, presenting a featureless half-illuminated disk 25” in diameter near a point known as dichotomy. Venus also flirts with the bright star Regulus (Alpha Leonis) in July, passing a degrees from the star on July 10th. Fun fact: Venus can actually occult (pass in front of) Regulus and last did so on July 7th, 1959 and will do so next on October 1st, 2044.
Jupiter Rules – The King of the Planets, Jupiter rules the sky after darkness falls, crossing the astronomical constellation Libra the Scales. Fresh off of its May 9th opposition, Jupiter still shines at a respectable magnitude -2 in July, with a disk 36” across. Jupiter heads towards quadrature 90 degrees east of the Sun on August 6th, meaning the planet and its retinue of four Galilean moons cast their respective shadows off to one side. In fact, we also see a series of fine double shadow transits across the Jovian cloud tops involving Io and Europa starting on July 29th.
…and Saturn makes five: Stately Saturn never fails to impress. Also just past its June 27th opposition, the rings are still tipped open narrowing down only slightly from last year’s widest angle of 27 degrees, assuring an amazing view. Shining at magnitude 0 and subtending 42” (including rings) in July, Saturn traverses the star-rich fields of the astronomical constellation Sagittarius the Archer this summer. Look at Saturn, and you’re glimpsing the edge of the known solar system right up until William Herschel discovered Uranus on the night of March 13th, 1781.
Enter Mars: We saved the best for last. The Red Planet races towards a fine opposition on July 27th. This is the best approach of Mars since the historic 2003 opposition, and very nearly as favorable: Mars shines at magnitude -2.8 at the end of July, and presents a 24.3” disk. More to come as Mars approaches!
And as with many an opposition, dust storm season has engulfed Mars. Be vigilant, as the ‘Red’ Planet often takes on a sickly yellowish tint during a large dust storm, and this cast will often be apparent even to the naked eye. NASA’s aging Opportunity rover has fallen silent due to the lack of sunlight and solar power, and it’s to be seen if the rover can ride out the storm.
The path of the Moon – The Moon makes a good guidepost as it visits the planets in July. The first eclipse season of 2018 also begins in July, with a partial solar eclipse for Tasmania, SE Australia and the extreme southernmost tip of New Zealand on July 13th and wrapping up with a fine total lunar eclipse favoring Africa, Europe, Asia and Australia on July 27th. Note that this eclipse is only 14 hours after Mars passes opposition… we expect to see plenty of pictures of a ruddy Mars near a Blood Moon eclipse.
The Moon also makes a handy guide to catch each of the planets in the daytime sky… though you’ll need binoculars or a telescope to nab Mercury or Saturn (also, be sure the Sun is physically blocked out of view while hunting for Mercury in the daytime sky!) Here are the respective passes of the Moon near each planet in July:
Planet
Date
Time
Moon Phase/illumination
Distance
Mercury
July 14th
23UT/7PM EDT
Waxing crescent/5%
2.1 degrees
Venus
July 16th
4UT/00AM EDT
Waxing crescent/14%
1.5 degrees
Jupiter
July 21st
2UT/10PM EDT
Waxing gibbous/63%
4.2 degrees
Saturn
July 25th
5UT/1AM EDT
Waxing gibbous/94%
2 degrees
Mars
July 27th
16UT/12 EDT
Full Moon/100%
8 degrees
Unfortunately, the telescopic planets Uranus and Neptune are left out of the July evening view; Uranus is currently crossing the constellation Aries and Neptune resides in Aquarius, respectively. Pluto is, however, currently in the direction of Sagittarius, and you can also wave to NASA’s New Horizons spacecraft en route to its New Year’s Day 2019 KBO destination Ultima Thule (nee 2014 MU69) near the waxing gibbous Moon on the night of July 26th.
And finally, another solar system destination in Ophiuchus the Serpent Bearer beckons telescope owners in July: asteroid 4 Vesta.
All of this is more than enough planetary action to keep planetary observers and imagers up late on forthcoming July evenings.
Up for a challenge? Planetary action is certainly heating up this summer: Jupiter passed opposition last month, Saturn does so in June, and Mars reaches favorable viewing next month. And with dazzling Venus in the west and Mercury to joining it starting in late June, we’ll soon have all of the naked eye classical planets in the evening sky.
Now, I want to turn your attention towards a potential naked eye object, one you’ve probably never seen: asteroid 4 Vesta.
Vistas of Vesta
Vesta reaches opposition in 2018 on the night of June 19th. At 1.14 Astronomical Units (AU, 170.8 million kilometers) distant, this year’s opposition is slightly more favorable than any other since 1989. We won’t get another pass nearly as close until May 2036. Vesta orbits the Sun once every 3.6 years, ranging from a perihelion of 2.15 AU to an aphelion of 2.57 AU.
Although Vesta was the fourth asteroid discovered, it’s actually the brightest, and the only one visible with the naked eye—that is, if you have dark skies, and know exactly where to look for it. This summer, Vesta loiters in the star rich realm of the astronomical constellation Sagittarius, “in the weeds” for viewers up north, but high in the sky for southern viewers.
Early June finds Vesta about 5 degrees northwest of the +3.8 magnitude star Mu Sagittarii, threading between the deep sky objects Messier 24 and Messier 25. Vesta then loops westward through the constellation Ophiuchus the Serpent Bearer starting on July 1st, before heading back to Sagittarius on September 5th.
Vesta in 2018
Catching Vesta with the naked eye isn’t easy. You’ll need dark rural skies with a limiting magnitude down to about +5.5, and a good beforehand knowledge of the fixed stars in the region. Vesta also spends 2018 weaving around the star-dappled plane of the Milky Way galaxy, making it an especially challenging target.
Binoculars or a telescope can bring the challenge within reach of suburban and urban skies, making it a pleasure to trace the track of Vesta from night to night. Sketch the background star field and you just might tease out the presence of Vesta as it slowly moves about 30′ arcminutes per night (the diameter of a Full Moon) through June. Crank up the magnification a bit using a large (10 inches aperture or greater) light bucket telescope, and you just might see the faint hint of an oblong disk… 348 by 277 miles (560 by 446 kilometers) in size, Vesta’s apparent size is 0.7” arcseconds around opposition, 1/3 the size of Neptune at its best.
The 99% illuminated, waxing gibbous Moon will actually occult 4 Vesta for Hawaii, Central America and the Galapagos Islands just eight days after opposition on the night of June 27th.
Discovered on the night of March 29th, 1807 by prolific asteroid hunter Heinrich Olber, the Hubble Space Telescope gave us our first blurry images of 4 Vesta back in 2007. NASA’s Dawn spacecraft gave us our first good views of Vesta as a world starting in mid- 2011, orbiting the potato-shaped asteroid for just over a year before departing for 1 Ceres in late 2012.
Attack of the Vestoid(s)
And did you know: we actually have identified samples of Vesta to study, right here on Earth. Vesta sustained a massive impact about a billion years ago, raining debris through the inner solar system. Dawn chronicled the resulting Rheasilvia impact basin on Vesta’s south pole, and asteroids such as 1981 Midas match the spectral composition of Vesta and are collectively known as “Vestoids”.
On Earth, meteorites such as QUE 97053 found in Antarctica and the 1913 Moore County fall in North Carolina also match up in composition to Vesta, and make up a subgroup known as Howardite-Eucrite-Diogenite (HED) meteorites. Collectively, space rocks from this single impact on 4 Vesta contribute to an amazing 5% of all the meteorites recovered on Earth.
Fascinating thoughts to ponder, as we follow the brightest asteroid through the summer sky.
We’re in the midst of a parade of planets crossing the evening sky. Jupiter reached opposition on May 9th, and sits high to the east at dusk. Mars heads towards a fine opposition on July 27th, nearly as favorable as the historic opposition of 2003. And Venus rules the dusk sky in the west after the setting Sun for most of 2018.
June is Saturn’s turn, as the planet reaches opposition this year on June 27th, rising opposite to the setting Sun at dusk.
In classical times, right up until just over two short centuries ago, Saturn represented the very outer limit of the solar system, the border lands where the realm of the planets came to an end. Sir William Herschel extended this view, when he spied Uranus—the first planet discovered in the telescopic era—slowly moving through the constellation Gemini just across the border of Taurus the Bull using a 7-foot reflector (in the olden days, telescopes specs were often quoted referring to their focal length versus aperture) while observing from his backyard garden in Bath, England on the night of March 13th, 1781.
Orbiting the Sun once every 29.5 years, Saturn is the slowest moving of the naked eye planets, fitting for a planet named after Father Time. Saturn slowly loops from one astronomical constellation along the zodiac to the next eastward, moving through one about every two years.
2018 sees Saturn in the constellation Sagittarius the Archer, just above the ‘lid’ of the Teapot asterism, favoring the southern hemisphere for this apparition. Saturn won’t cross the celestial equator northward again until 2026. Not that that should discourage northern hemisphere viewers from going after this most glorious of planets. A low southerly declination also means that Saturn is also up in the evening in the summertime up north, a conducive time for observing. Taking 29-30 years to complete one lap around the ecliptic as seen from our Earthly vantage point, Saturn also makes a great timekeeper with respect to personal life milestones… where were you back in 1989, when Saturn occupied the same spot along the ecliptic?
Saturn also shows the least variation of all the planets in terms of brightness and size, owing to its immense distance 9.5 AU from the Sun, and consequently 8.5 to 10.5 AU from the Earth. Saturn actually just passed its most distant aphelion since 1959 on April 17th, 2018 at 10.066 AU from the Sun.
Saturn’s in 2018 Dates with Destiny
Saturn sits just 1.6 degrees south of the waning gibbous Moon tonight. The Moon will lap it again one lunation later on June 28th. Note that the brightest of the asteroids, +5.7 magnitude 4 Vesta is nearby in northern Sagittarius, also reaching opposition on June 19th. Can you spy Vesta with the naked eye from a dark sky site? 4 Vesta passes just 4 degrees from Saturn on September 23rd, and both flirt with the galactic plane and some famous deep sky targets, including the Trifid and Lagoon Nebulae.
Saturn reaches quadrature 90 degrees east of the Sun on September 25th, then ends its evening apparition when it reaches solar conjunction on New Year’s Day, 2019.
Saturn is well clear of the Moon’s path for most of this year, but stick around: starting on December 9th, 2018, the slow-moving planet will make a great target for the Moon, which will begin occulting it for every lunation through the end of 2019.
It’s ironic: Saturn mostly hides its beauty to unaided eye. Presenting a slight saffron color in appearance, it never strays much from magnitude -0.2 to +1.4 in brightness. One naked eye observation to watch for is a sudden spurt in brightness known as the opposition surge or Seeliger Effect. This is a retro reflector type effect, caused by all those tiny iceball moonlets in the rings reaching 100% illumination at once. Think of how the Full Moon is actually 3 to 4 times brighter than the 50% illuminated Quarter Moon… all those little peaks, ridges and crater rims no longer casting shadows do indeed add up.
And this effect is more prominent in recent years for another reason: Saturn’s rings passed maximum tilt (26.7 degrees) with respect to our line of sight just last year, and are still relatively wide open in 2018. They’ll start slimming down again over the next few oppositions, reaching edge-on again in 2028.
Even using a pair of 7×50 hunting binoculars on Saturn, you can tell that something is amiss. You’re getting the same view that Galileo had through his spyglass, the pinnacle of early 17th century technology. He could tell that something about the planet was awry, and drew sketches showing an oblong world with coffee cup handles on the side. Crank up the magnification using even a small 60 mm refractor, and the rings easily jump into view. This is what makes Saturn a star party staple, an eye candy feast capable of drawing the aim of all the telescopes down the row.
If seeing and atmospheric conditions allow, crank up the magnification up to 150x or higher, and the dark groove of the Cassini division snaps into view. Can you see the shadow of the disk of Saturn, cast back onto the plane of the rings? The shadow of the planet hides behind it near opposition, then becomes most prominent towards quadrature, when we get to peek around its edge. Can you spy the limb of the planet itself, through the Cassini Gap?
Though the disk of Saturn is often featureless, tiny swirls of white storms do occasionally pop up. Astrophotographer Damian Peach noted just one such short-lived storm on the ringed planet this past April 2018.
Saturn’s retinue of moons are also interesting to follow in there own right. The first one you’ll note is +8.5 magnitude smog-shrouded Titan. Larger in diameter than Mercury, Titan would easily be a planet in its own right, were it liberated from its primary’s domain.
Though Saturn has 62 known moons, only six in addition to Titan are in range of a modest backyard telescope: Enceladus, Rhea, Dione, Mimas, Tethys and Iapetus. Two-faced Iapetus is especially interesting to follow, as it varies two full magnitudes in brightness during its 79 day orbit. Arthur C. Clarke originally placed the final monolith in 2001: A Space Odyssey on this moon, its artificial coating a beacon to astronomers. Today, we know from flybys carried out by NASA’s Cassini spacecraft that the leading hemisphere of Iapetus is coated with dark in-falling material, originating from the dark Phoebe ring around Saturn.
Owners of large light bucket telescopes may also want to try from two fainter +15th magnitude moons: Hyperion and Phoebe.
Fun fact: Saturn’s moons can also cast shadows back on the planet itself, much like the Galilean moons do on Jupiter… the catch, however, is that these events only occur around equinox season in the years around when Saturn’s rings are edge-on. This next occurs starting in 2026.
Cassini finished up its thrilling 20 year mission just last year, with a dramatic plunge into Saturn itself. It will be a while before we return again, perhaps in the next decade if NASA selects a nuclear-powered helicopter to explore Titan. Until then, be sure to explore Saturn this summer, from your Earthbound backyard.
Have you been keeping an eye on Sol lately? One of the top astronomy stories for 2018 may be what’s not happening, and how inactive our host star has become.
The strange tale of Solar Cycle #24 is ending with an expected whimper: as of May 8th, the Earthward face of the Sun had been spotless for 73 out of 128 days thus far for 2018, or more than 57% of the time. This wasn’t entirely unexpected, as the solar minimum between solar cycle #23 and #24 saw 260 spotless days in 2009 – the most recorded in a single year since 1913. Cycle #24 got off to a late and sputtering start, and though it produced some whopper sunspots reminiscent of the Sol we knew and loved on 20th century cycles past, it was a chronic under-performer overall. Mid-2018 may see the end of cycle #24 and the start of Cycle #25… or will it?
One nice surprise during Cycle #24 was the appearance of massive sunspot AR 2192, which popped up just in time for the partial solar eclipse of October 23rd, 2014. Several times the size of the Earth, the spot complex was actually the largest seen in a quarter century. But just as “one swallow does not a Summer make,” one large sunspot group couldn’t save Solar Cycle #24.
The Sun goes through an 11-year sunspot cycle, marked by the appearance of new spots at mid- solar latitudes, which then slowly progress to make subsequent appearances closer towards the solar equator, in a pattern governed by what’s known as Spörer’s Law. The hallmark of a new solar cycle is the appearance of those high latitude spots. The Sun actually flips overall polarity every cycle, so a proper Hale Cycle for the Sun is actually 11 x 2 = 22 years long.
A big gaseous fusion bomb, the Sun actually rotates once every 25 days near its equator, and 34 days at the poles. The Sun’s rotational axis is also tipped 7.25 degrees relative to the ecliptic, with the northern rotational pole tipped towards us in early September, while the southern pole nods towards us in early March.
What’s is store for Cycle #25? One thing’s for certain: if the current trend continues, with spotless days more the rule than the exception, we could be in for a deep profound solar minimum through the 2018 to 2020 season, the likes of which would be unprecedented in modern astronomy.
Fun fact: a similar dearth of sunspots was documented during the 1645-1715 period referred to as the Maunder Minimum. During this time, crops failed and the Thames River in London froze, making “frost fairs” along its frozen shores possible. Ironically, the Maunder Minimum also began just a few decades after the dawn of the age of telescopic astronomy. During this time, the idea of “spots on the Sun” was regulated to a controversial, and almost mythical status in mainstream astronomy.
Keeping Vigil on a Tempestuous (?) Star
We’ve managed to study the last two solar cycles with unprecedented scrutiny. NASA’s STEREO-A and -B spacecraft (Only A is currently active) monitors the farside of the Sun from different vantage points. The Solar Dynamics Observatory (NASA SDO) keeps watch on the Sun across the electromagnetic spectrum. And our favorite mission, the joint NASA/European Space Agency’s SOHO spacecraft, has monitored the Sun from its sunward L1 Lagrange vantage point since it launched in 1995—nearly through one complete 22 year Hale Cycle by mid- 2020s. Not only has SOHO kept a near-continuous eye on Sol, but it’s also discovered an amazing 3,398 sungrazing comets as of September 1st, 2017… mostly due to the efforts of diligent online amateur astronomers.
…and did you know: we can actually model the solar farside currently out of view from the Earth to a high degree of fidelity thanks to the advent of powerful computational methods used in the nascent field of solar helioseismology.
Unfortunately, this low ebb in the solar cycle will also make for lackluster aurora in the years to come. It’s a shame, really… the relatively powerful cycles of the 1970s and 80s hosted some magnificent aurorae seen from mid-latitudes (and more than a few resulting blackouts). We’re still getting some minor outbursts, but you’ll have to venture “North/South of the 60” to really see the aurorae in all of its splendor over the next few years.
But don’t take our word for it: get out there and observe the Sun for yourself. Don’t let this discourage you when it comes to observing the Sun. Even near its minimum, the Sun is a fascinating target of study… and unlike most astronomical objects, the face of the Sun can change very quickly, sometimes erupting with activity from one hour to the next.
We like to use a Coronado Personal Solar Telescope to monitor the Sun in hydrogen-alpha for prominences and filaments: such a scope can be kept at the ready to pop outside at lunch time daily for a quick look. For observing sunspots and the solar photosphere in white-light, you’ll need an approved glass filter which fits snugly over the aperture end of your telescope or camera, or you can make a safe solar filter with Baader Safety Film.
Does the sunspot cycle tell the whole picture? Certainly, the Sun most likely has longer, as yet undiscovered cycles. For about a century now, astronomers have used the Wolf Sunspot Number as calculated mean average to describe the current state of activity seen on the Sun. An interesting study calls this method into question, and notes that the direction and orientation of the heliospheric current sheet surrounding the Sun seems to provide a better overall depiction of solar activity.
Other mysteries of the Sun include: just why does the solar cycle seem baked in at 11 years? Why don’t we ever see spots at the poles? And what’s in store for the future? We do know that solar output is increasing to the tune of 1% every 100 million years… and a billion years from now, Earth will be a toasty place, probably too warm to sustain liquid water on its surface…
Which brings us to the final point: what role does the solar cycle play versus albedo, global dimming and climate? This is a complex game to play: Folks have literally gone broke trying to link the solar cycle with terrestrial human affairs and everything from wheat crops to stock market fluctuations. Many a climate change-denier will at least concede that the current climate of the Earth is indeed changing, though they’ll question human activity’s role in it. The rather ominous fact is, taking only current solar activity into account, we should be in a cooling trend right now, a signal in the data that anthropogenic climate change is working hard against.
See for yourself. You can keep track of Sol’s daily activity online: our favorite sites are SpaceWeather, NOAA’s space weather/aurora activity page, and the SOHO and SDO websites.
Be sure to keep tabs of Sol, as the next solar minimum approaches and we ask the question: will Cycle #25 occur at all?
Well, we’re finally emerging from our self-imposed monastic exile that is editing to mention we’ve got a book coming out later this year: The Universe Today Ultimate Guide to Viewing the Cosmos: Everything You Need to Know to Become an Amateur Astronomer, and yes, there’s a whole chapter dedicated to solar observing and aurora. The book is up for pre-order now, and comes out on October 23rd, 2018!