A Partial Lunar Eclipse Ushers in Eclipse Season

partial lunar eclipse
The partial lunar eclipse of June 4th, 2012. Credit: Dave Dickinson
partial lunar eclipse
The partial lunar eclipse of June 4th, 2012. Credit: Dave Dickinson

Live on the wrong continent to witness the August 21st total solar eclipse? Well… celestial mechanics has a little consolation prize for Old World observers, with a partial lunar eclipse on the night of Monday into Tuesday, August 7/8th.

A partial lunar eclipse occurs when the Moon just nicks the inner dark core of the Earth’s shadow, known as the umbra. This eclipse is centered on the Indian Ocean region, with the event occurring at moonrise for the United Kingdom, Europe and western Africa and moonset/sunrise for New Zealand and Japan. Western Australia, southern Asia and eastern Africa will see the entire eclipse.

The path of the Moon through the Earth’s shadow Monday night. Credit: adapted from NASA/GSFC/Fred Espenak

The penumbral phase of the eclipse begins on August 7th at 15:50 Universal Time (UT), though you probably won’t notice a slight tea colored shading on the face of the Moon until about half an hour in. The partial phases begin at 17:23 UT, when the ragged edge of the umbra becomes apparent on the southeastern limb of the Moon. The deepest partial eclipse occurs at 18:22 UT with 25% of the Moon submerged in the umbra. Partial phase lasts 116 minutes in duration, and the entire eclipse is about five hours long.

The viewing prospects for the partial lunar eclipse. Credit: NASA/GSFC/Fred Espenak.

This also marks the start of the second and final eclipse season for 2017. Four eclipses occur this year: a penumbral lunar eclipse and annular solar eclipse this past February, and this month’s partial lunar and total solar eclipse.

Eclipses always occur in pairs, or very rarely triplets with an alternating lunar-solar pattern. This is because the tilt of the Moon’s orbit is inclined five degrees relative to the ecliptic, the plane of the Earth’s orbit around the Sun. The Moon therefore misses the 30′ wide disk of the Sun and the 80′ – 85′ wide inner shadow of the Earth on most passes.

partial lunar eclipse
The partial lunar eclipse of April 26th, 2013. Image credit and copyright: Henna Khan

Fun fact: at the Moon’s 240,000 mile distance from the Earth, the ratio of the apparent size of the Moon and the shadow is approximately equivalent to a basketball and a hoop.

When celestial bodies come into alignment, however, things can get interesting. For an eclipse to occur, the nodes – the point where the Moon’s orbit intersects the ecliptic – need to align with the position of the Moon and the Sun. There are two nodes, one descending with the Moon crossing the ecliptic from north to south, and one ascending. The time it takes for the Moon to return to the same node (27.2 days) is a draconitic month. Moreover, the nodes are moving around the Earth due to drag on the Moon’s orbit mainly by the Sun, and move all the way around the zodiac once every 18.6 years.

Got all that? Let’s put it into practice with this month’s eclipses. First, the Moon crosses its descending node at 10:56 UT on August 8th, just over 16 hours after Monday’s partial eclipse. Two weeks later, however, the Moon crosses ascending node just under eight hours from the central conjunction with the Sun, and a total solar eclipse occurs.

Tales of the Saros

The August 7th lunar eclipse is member number 62 of the 83 lunar eclipses in saros series 119, which started on October 14th, 935 AD and will end with a final shallow penumbral eclipse on March 25th, 2396 AD. If you witnessed the lunar eclipse of July 28th, 1999, then you saw the last lunar eclipse in the same saros. Saros 119 produced its last total lunar eclipse on June 15th, 1927.

The next lunar eclipse, a total occurs on January 31st, 2018, favoring the Pacific rim regions.

 

Partial lunar eclipses have occasionally work their way into history, usually as bad omens. One famous example is the partial lunar eclipse of May 22nd, 1453 which preceded the Fall of Constantinople to the Ottoman Turks by a week. Apparently, a long standing legend claimed that a lunar eclipse would be the harbinger of the fall of Byzantium, and the partially eclipsed Moon rising over the besieged city ramparts seemed to fulfill the prophecy.

In our more enlightened age, we can simply enjoy Monday’s partial lunar eclipse as a fine celestial spectacle. You don’t need any special equipment to enjoy a lunar eclipse, just a view from the correct Moonward facing hemisphere of the Earth, and reasonably clear skies.

See the curve of the Earth’s shadow? This is one of the very few times that you can see that the Earth is indeed round (sorry, Flat Earthers) with your own eyes. And this curve is true for observers watching the Moon on the horizon, or high overhead near the zenith.

This month’s lunar eclipse occurs in the astronomical constellation of Capricornus. The Moon will also occult the +5th magnitude star 29 Capricorni for southern India, Madagascar and South Africa shortly after the eclipse.

The viewing footprint for the 29 Capricorni occultation shortly after the eclipse. Credit: Occult 4.2.

Finally, anyone out there planning on carrying the partial lunar eclipse live, let us know… curiously, even Slooh seems to be sitting this one out.

Update: we have one possible broadcast, via Shahrin Ahmad (@shahgazer on Twitter). Updates to follow!

The final eclipse season for 2017 is now underway, starting Monday night. Nothing is more certain in this Universe than death, taxes and celestial mechanics, as the path of the Moon now sends it headlong to its August 21st destiny and the Great American Total Solar Eclipse.

-We’ll be posting on Universe Today once more pre-total solar eclipse one week prior, with weather predictions, solar and sunspot activity and prospects for viewing the eclipse from Earth and space and more!

-Read more about this year’s eclipses in our 2017 Guide to 101 Astronomical Events.

-Eclipse… science fiction? Read our original eclipse-fueled tales Exeligmos, Shadowfall, Peak Season and more!

New Comet: C/2017 O1 ASAS-SN Takes Earth by Surprise

Comet ASAS-SN
Getting brighter... Comet O1 ASAS-SN from July 23rd. Image credit and copyright: iTelescope/Rolando Ligustri.
Comet ASAS-SN
Getting brighter… Comet O1 ASAS-SN from July 23rd. Image credit and copyright: iTelescope/Rolando Ligustri.

A new comet discovery crept up on us this past weekend, one that should be visible for northern hemisphere observers soon.

We’re talking about Comet C/2017 O1 ASAS-SN, a long period comet currently visiting the inner solar system. When it was discovered on July 19th, 2017 by the All Sky Automated Survey for Supernovae (ASAS-SN) system, Comet O1 ASAS-SN was at a faint magnitude +15.3 in the constellation Cetus. In just a few short days, however, the comet jumped up a hundred-fold in brightness to magnitude +10, and should be in range of binoculars now. Hopes are up that the comet will top out around magnitude +8 or so in October, as it transitions from the southern to northern hemisphere.

ASAS-SN
ASAS-SN North on the hunt. Credit: ASAS-SN

Never heard of ASAS-SN? It’s an automated sky survey hunting for supernovae in both hemispheres, with instruments based at Haleakala in Hawaii and Cerro Tololo in Chile. Though the survey targets supernovae, it does on occasion pick up other interesting astronomical phenomena as well. This is the first comet discovery for the ASAS-SN team, as they join the ranks of PanSTARRS, LINEAR and other prolific robotic comet hunters.

Evoking the very name “ASAS-SN” seems to have sparked a minor controversy as well, as the International Astronomical Union (IAU) declined to name the comet after the survey, listing it simply as “C/2017 O1”. Word is, “ASAS-SN” was to close to the word “Assassin” (this is actually controversial?) For our money, we’ll simply keep referring to the comet as “O1 ASAS-SN” as a recognition of the team’s hard work and their terrific discovery.

The orbit of Comet C/2017 O1 ASAS-Sn through the inner solar system. Credit: NASA/JPL

But what’s in a name, and does an interplanetary iceball really care? On a long term parabolic orbit probably measured in the millions of years, O1 ASAS-SN has an orbit inclined 40 degrees to the ecliptic, and reaches perihelion 1.5 AU from the Sun just outside the orbit of Mars on October 14th. This is most likely Comet C/2017 O1 ASAS-SN’s first passage through the inner solar system.

Currently located in the constellation Eridanus, hopefully comet O1 ASAS-SN’s current outburst holds. Expect it to climb northward through Taurus and Perseus over the next few months as it begins the long climb towards the north celestial pole.

Anatomy of an outburst: Comet ASAS-SN shortly after discovery over the span of a week. Credit ASAS-SN1.

As seen from latitude 30 degrees north, the comet will move almost parallel to the eastern horizon, and clears about 20 degrees altitude around local midnight, very well placed for northern hemisphere observers.

The path of Comet C/2017 O1 ASAS-SN parallel to the eastern horizon through September as seen from latitude 30 degrees north. Credit: Stellarium

At its closest in mid-October, Comet O1 ASAS-SN will be moving a degree a day through the constellation Camelopardalis

Here’s a month-by-month blow by blow for Comet O1 ASAS-SN:

August

14- Crosses into Cetus.

16- Crosses the celestial equator northward.

20- Crosses into Taurus.

The celestial path of Comet C/2017 O1 ASAS-SN from late July through mid-October (click to enlarge). Credit: Starry Night.

September

11-The waning gibbous Moon passes two degrees to the south.

17- Crosses the ecliptic northward.

20- Photo op: passes 4 degrees from the Pleiades open star cluster (M45).

28-Crosses into Perseus.

The projected light curve for Comet C/2017 O1 ASAS-SN. Note the outburst from actual observations (black dots). Credit: Seiichi Yoshida’s Weekly Information About Bright Comets.

October

1-Reaches max brightness?

12-Crosses the galactic equator northward.

14-Reaches perihelion 1.5 AU from the Sun.

17-Crosses into Camelopardalis.

18- Passes closest to Earth at 0.722 AU distant.

29-Passes 10′ from the +4 mag star Alpha Camelopardalis.

November

17-Crosses into Cepheus

December

6-Passes 3 degrees from the north celestial pole.

12-Reaches opposition.

31-Drops back down below +10th magnitude

At the eyepiece, a small comet generally looks like a small fuzzy globular cluster that refuses to snap into focus. Seek out dark skies in your cometary quest, as the least bit of light pollution will dim it below visibility. And speaking of which, the Moon is also moving towards Full next week so the time to hunt for the comet is now.

We’ve still got a few weeks left before the August 21st total solar eclipse for a bright “eclipse comet” to show up… unlikely, but it has happened once in 1948.

Comet C/2017 O1 ASAS-SN from July 23rd. Credit: Remanzacco Observatory.

Keep in mind, current magnitude estimates for Comet O1 ASAS-SN are still highly speculative, as we seem to have caught this one in outburst… hey, remember Comet Holmes back about a decade ago in 2007? One can only dream!

-Also check out this recent NEOWISE study suggesting that large long period comets may be more common that generally thought.

One. More. Month: Our Guide to the Total Solar Eclipse

Totality
Totality!
Totality! An incredible moment from the March 29th, 2006 total solar eclipse. Credit and copyright: Alan Dyer/Amazing Sky Photography

Have you heard?

I remember, getting into astronomy as a kid back in the 1970s, building a pinhole projector in a shoe box and watching the partial solar eclipse of February 26th, 1979 from our living room in northern Maine. I had no Learjet, no magic carpet to whisk me off to that thin thread of a path of totality way out west along the Pacific coast. As I settled for the 66% partial solar eclipse, I remember news reports stating that a total solar eclipse won’t cross the United States again until… August 21st, 2017.

That date is almost upon us now, only one month from this coming Friday.

An animation of the August 21st eclipse. Credit: NASA/GSFC/AT Sinclair

This total solar eclipse is one for the ages, THE big ticket event for 2017. Umbraphiles (those who chase eclipses) have been planning for this one for decades, and it’s already hard to find a room along the path. Fear not, as you only need to be within striking distance the day of the eclipse to reach totality, though expect the roads to be congested that Monday morn.

The eclipse is indeed the first time totality touches the contiguous (“lower 48”) United States since 1979, and the first total solar eclipse to cross the United States since almost a century ago on June 8th 1918. A total solar eclipse did cross Hawaii on July 11th, 1991.

total solar eclipse
The path of the August 21st eclipse over the U.S. Credit: Michael Zeiler/Eclipse-Maps.

Partial phases for the eclipse begin at 15:47 Universal Time (UT) and span 5 hours and 18 minutes until 21:04 UT. The partial aspect of the eclipse touches all continents except Antarctica and Australia. The 115 kilometer wide shadow of Earth’s moon (known as the umbra) first makes landfall over the Oregon coast at 17:16 UT /10:16 Pacific Daylight Saving time (PDT) and races eastward at 3,900 kilometers per second. The shadow touches 14 states, just briefly nicking Montana and Iowa. Maximum totality of 2 minutes, 40 seconds occurs near Carbondale, Illinois.

Seen a partial solar eclipse before and wonder what the big deal is? You really need to get to the path of totality for the full eclipse experience. Millions live in the path of the August 21st eclipse, and millions more within an easy day drive. We witnessed the May 10th, 1994 annular eclipse from the shores of Lake Erie in Sandusky, Ohio, and can attest that 1% of the Sun at midday is still pretty darned bright.

A partial eclipse rising over the Vehicle Assembly Building at the Kennedy Space Center. Credit: Dave Dickinson

Action really gets interesting moments before totality sweeps over the landscape. Be sure to keep an eye out for shadow bands flitting across the ground, an effect notoriously hard to photograph. It’s safe to drop those glasses moments before totality, when you’ll see those final rays of sunlight streaming through the valleys along the limb of the Moon, creating what’s known as Baily’s Beads or the Diamond Ring Effect. You’re now in the realm of the shadow of the Moon, an ethereal shadow world turned on its head. I dare you to blink. Looking sunward, you’ll see the pearly corona of the Sun, a white halo about as bright as a Full Moon spied only during totality.

Think about it: you knew this moment was coming, perhaps you’d been planning for it for years… but would you think as an average citizen thousands or millions of years ago if you were suddenly confronted with such as strange sky?

And all too soon, it’s over.

Be sure to keep an eye out for planets and bright stars during the eclipse. Totality is a late morning affair out west, and an early afternoon event for the US East Coast. All naked eye planets except Saturn are above the horizon during totality, covering a span of about 80 degrees from Jupiter to Venus. Look just one degree from the eclipsed Sun and you might just spy the star Regulus occulted by the Moon shortly after the eclipse.

The orientation of the planets and bright stars during totality. Credit: Stellarium.

Perhaps you’re planning on aiming a battery of cameras skyward during the eclipse, or maybe, you’re simply planning on simply enjoying the moment, then photographing the next one. The Eclipse MegaMovie project is planning on capturing the scene down the eclipse path. NASA will also be flying overhead with converted WB-57F aircraft, looking to capture high definition video in the visible and infrared wavelengths during the eclipse.

Preparing for the eclipse. Credit: Dave Dickinson

You need to take the same safety precautions observing the partial phases of the eclipse as you would during ordinary solar observing. Use only a filtered telescope designed to look at the Sun, or solar eclipse glasses with an ISO 12312-2 rating. Make sure that filter fits snugly over the aperture of the telescope and cannot be removed by curious prying hands or high winds, and that all finder-scopes are removed, stowed and/or covered. Also, don’t try and use one of those old screw-on eyepiece solar filters that came with old department store 60mm refractors, as they can heat up and crack. Likewise, be careful when projecting the Sun through a telescope onto a piece of paper, as it can heat up and damage the optics.

If you don’t think the danger is real, read this amazing recent interview with an optometrist on Space.com, where he states you can actually see the crescent Sun burned into the backs of patient’s eyes who stared too long at a partial solar eclipse (!) It’s a permanent souvenir you don’t want to have. Don’t be like 18th century psychologist Gustav Fechner who blinded himself staring at the Sun, mesmerized by the glare of lingering afterimages.

Seen on the streets of Paducah, Kentucky… a harbinger of things to come? Credit: Dave Dickinson

 

And though we can predict eclipses centuries out, there’s one thing we won’t know eclipse day: what the weather plans on doing. Best bets are for clear skies out west, though you only need a gap in the clouds to see the Sun. We’ll be running a final post on Universe Today just days prior to the eclipse looking at weather prospects, solar activity and prospects for transits of the International Space Station and possible views from space.

The umbra of the Moon on Earth as seen from Mir in 1999. Credit: NASA/Roscosmos.

The second eclipse season for 2017 begins with a partial lunar eclipse favoring on August 7th… we’ve got you covered on that as well. And us? We’ll be watching the event from the Pisgah Astronomical Research Institute (PARI) in Smoky Mountains just outside of Asheville, North Carolina for a glorious 107 seconds of totality.

And after that? Well, totality visits that same living room in northern Maine on April 8th, 2024… I think I know where I’ll be then.

The path of the 2017 and 2024 eclipses. Credit: Michael Zeiler/Eclipse Maps.

A request- observing the eclipse from the path of totality? I’m planning on doing a state-by-state roundup post eclipse, perhaps with a paragraph of personal impressions from each observer. Let us know what your plans are!

-Read more about the August 21st total solar eclipse, plus the true tale of Edison’s Chickens and the 1878 total solar eclipse in out free e-guide to 101 Astronomical Events for 2017.

-Eclipse… fiction? Read our original eclipse-fueled sci-fi tales Exeligmos, Peak Season, Shadowfall and more!

NASA to Use Converted Bombers to Chase Totality

NASA WB-57B
WB57B total solar eclipse
A NASA WB-57F on the ramp at Ellington Field near Houston ready to chase totality next month during the historic August 21st total solar eclipse. Credit: NASA/JSC

In a classic swords-to-plowshares move, two converted WB-57F aircraft flown by NASA’s Airborne Science Program will greet the shadow of the Moon as it rushes across the contiguous United States on Monday, August 21st on a daring mission of science.

“We are going to be observing the total solar eclipse with two aircraft, each carrying infrared and visible light cameras taking high definition video,” Southwest Research Institute (SwRI) Principal Investigator on the project Amir Caspi told Universe Today. “These will be the highest quality observations of their kind to date, looking for fast dynamic motion in the solar corona.”

Total solar eclipses provide researchers with a unique opportunity to study the solar corona – the ghostly glow of the Sun’s outer atmosphere seen only during totality. NASA plans a battery of experiments during the eclipse, including plans to intercept the Moon’s shadow using two aircraft near the point of greatest totality over Carbondale, Illinois. Flying out of Ellington Field near Houston Texas and operated by NASA’s Johnson Spaceflight Center, NASA is the only remaining operator of the WB-57F aircraft.

NASA fleet total solar eclipse
Group photo of NASA’s three WB-57F aircraft fleet. Credit: NASA/Robert Markowitz

Flying at an altitude of 50,000 feet, the aircraft will intercept the 70 mile wide shadow of the Moon. The shadow will be moving at 1,400 miles per hour – twice the speed of sound – versus the WB-57F aircraft’s max speed of 470 miles per hour. The flight will extend the length of totality from the 2 minutes 40 seconds seen on the ground, to a total of about 8 minutes between the two aircraft.

The two converted WB-57F Canberra tactical bombers will track the eclipse using DyNAMITE (Day Night Airbourne Motion Imagery for Terrestrial Environments), two tandem gimbal-mounted 8.7-inch imagers, one for visible light and one for infrared. These are located in the nose of the aircraft and will shoot 30 frames per second.

DyNAMITE
The new DyNAMITE system mounted in the nose of NASA’s WB-57F aircraft. Credit: NASA/Amir Caspi

This system was originally designed about a decade ago to chase down the U.S. Space Shuttle during reentry following the 2003 Columbia disaster and has, on occasion, provided amazing footage SpaceX Falcon-9 Stage 1 returns during reentry.

DyNAMITE total solar eclipse
The WAVE system, a precursor to DyNAMITE, seen up close. NASA/JSC

The solar corona is about as bright as the Full Moon, and the team plans to make a precise ‘map’ of the solar corona in an effort to understand just how the corona interacts with the solar photosphere and the chromosphere. Of particular interest is understanding how wave energy and ‘nanoflares’ heat the solar corona.

“What we’re hoping to learn is what makes the corona so hot, with temperatures of 1 to 2 million degrees Celsius — or even 4 to 10 million degrees Celsius in some regions — far hotter than the photosphere below,” Caspi told Universe Today. “What keeps it organized in terms of structure? Why don’t we see a snarled, tangled mess?”

As a secondary objective, the team will also make observations of the planet Mercury in the infrared 30 minutes before and after totality, located 11 degrees to the east of the Sun during the eclipse. Mercury never strays far from the Sun, making it a tough target to study in the infrared as seen from the Earth.

Totality total solar eclipse
Totality! Credit: Alan Dyer/Amazing Sky Photography.

And of course, all of this has to happen during the scant few minutes up to and during totality. Each aircraft will fly just inside opposite ends of the shadow of the Moon in a challenging long distance precision formation.

The WB-57F aircraft will also participate in a tertiary objective, hunting for Vulcanoid asteroids near the Sun during the eclipse. Though the 19th century idea of a tiny inter-Mercurial world perturbing Mercury’s orbit was banished to the dust bin of astronomical history by Einstein’s general theory of relativity, there’s still room for undiscovered asteroids dubbed ‘Vulcanoids’ close in to the Sun. NASA flew observations hunting for Vulcanoids aboard modified F-18 Hornet aircraft in 2002 scanning twilight realms near the Sun, and came up with naught.

Eclipse chaser Landon Curt Noll noted during an interview with Universe Today in 2015 that NASA’s Solar Heliospheric Observatory SOHO mission has pretty much ruled out objects brighter than +8th magnitude near the Sun, which translates into asteroids 60 kilometers in diameter or larger.

“We have searched down to magnitude +13.5,” Noll told Universe Today. “Assuming the objects are ‘Mercury like’ in reflectivity (in) the Vulcanoid zone (0.08 to 0.18 AU from the Sun), the search has looked for and failed to find objects as small as 2 to 6 kilometers in diameter.” NASA’s Mercury Messenger carried out a similar search en route to the innermost planet.

Stellarium total solar eclipse
Mercury versus the Sun during totality. Credit: Stellarium.

Knoll has scoured the sky near the eclipsed Sun with a specialized near-infrared telescope rig during the 2006 total solar eclipse over Libya. Next month, he plans to continue his quest from a site near Jackson Hole, Wyoming.

The action leading up to the the long awaited August 21st total solar eclipse begins at 17:16 Universal Time (UT)/ 10:16 AM Pacific Daylight Saving Time (PDT), when the Moon’s dark inner shadow or umbra touches down along the Oregon Pacific coast. From there, the 70 mile wide shadow will race eastward, gracing 14 states (just nicking Iowa and Montana) before departing land over the Atlantic coast of South Carolina 92 minutes later. Viewers along the path will witness a maximum totality of 2 minutes and 40 seconds, centered on a location very near Carbondale, Illinois. Millions are expected to make the pilgrimage to the eclipse path, while those outside the path in the remainder of North America as well as northern South America, western Africa, Europe and northeast Asia will see varying levels of a partial solar eclipse.

eclipse maps total soalar eclipse
The August 21st total solar eclipse over the United States. Credit: Michael Zeiler/Eclipse Maps

This is the end of a long “total solar eclipse drought” for the United States, marking the first time totality touched the continental United States since February 26, 1979, (totality crossed Hawaii on July 11th, 1991). The last total solar eclipse to cross the United States from coast-to-coast was June 8th, 1918.

NASA has a long history of airborne astronomy campaigns. Noll notes that NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) flying observatory based out of Armstrong research center would make an ideal platform for Vulcanoid hunting during totality. Looking at SOFIA’s flight schedule, however, reveals no plans to carry out such a chase on August 21st. SOFIA’s predecessor, the Kuiper Observatory built into a U.S. Air Force C-141 Starlifter discovered the rings of Uranus during a stellar occultation in 1977.

“This is the first use of DyNAMITE and NASA’s WB-57F platform for astronomy,” Caspi told Universe Today. “This showcases the potential for the platform for possible future observations.”

The DyNAMITE/WB-57B campaign will also be part of the live NASA TV webcast on eclipse day.

Airborne total solar eclipse chasing goes all the way back to August 19th 1887, when Dmitri Mendeleev (he of the periodic table) observed totality from aloft. There’s a great old video of an effort to chase a 1925 total solar eclipse using the airship the USS Los Angeles:

A team also chased a total solar eclipse across North Africa on June 30th, 1973 aboard a supersonic Concorde:

Today, you can even book a ticket for an eclipse-chasing experience aloft. Alaska Airlines plans to attempt to duplicate its 2016 success, and will once again chase totality with a lucky few observers aboard next month.

As for us, we’re planning on watching the eclipse from terra firma at the Pisgah Astronomical Research Institute (PARI) in North Carolina while intrepid researchers fly high above. Watch for our complete eclipse guide out around July 21st on Universe Today and an update on weather prospects, solar activity etc. about a week prior. Finally, we’ll have an after action report out post total solar eclipse, with reader images from across the country.

-This promises to be a total solar eclipse for the ages. Don’t miss the Great American Eclipse!

-Also, be sure to check out the Eclipse MegaMovie Project.

-Read more about the August 21st total solar eclipse and the true tale of Vulcan, Totality and Edison’s Chickens in our free e-guide to 101 Astronomical Events for 2017, out from Universe Today.

-Be sure to read our original tales of eclipse science fiction.

Amazing New Views of Betelgeuse Courtesy of ALMA

This orange blob shows the nearby star Betelgeuse, as seen by the Atacama Large Millimeter/submillimeter Array (ALMA). ALMA/ESO/NRAO
This orange blob is the nearby star Betelgeuse, as imaged recently by the Atacama Large Millimeter/submillimeter Array (ALMA). ALMA/ESO/NRAO

Just. Wow.

An angry monster lurks in the shoulder of the Hunter. We’re talking about the red giant star Betelgeuse, also known as Alpha Orionis in the constellation Orion. Recently, the Atacama Large Millimeter Array (ALMA) gave us an amazing view of Betelgeuse, one of the very few stars that is large enough to be resolved as anything more than a point of light.

Located 650 light years distant, Betelgeuse is destined to live fast, and die young. The star is only eight million years old – young as stars go. Consider, for instance, our own Sun, which has been shining as a Main Sequence star for more than 500 times longer at 4.6 billion years – and already, the star is destined to go supernova at anytime in the next few thousand years or so, again, in a cosmic blink of an eye.

Still lumpy… Betelgeuse imaged by Hubble in 1996. Hubble/ESA/STScI

An estimated 12 times as massive as Sol, Betelgeuse is perhaps a staggering 6 AU or half a billion miles in diameter; plop it down in the center of our solar system, and the star might extend out past the orbit of Jupiter.

As with many astronomical images, the wow factor comes from knowing just what you’re seeing. The orange blob in the image is the hot roiling chromosphere of Betelgeuse, as viewed via ALMA at sub-millimeter wavelengths. Though massive, the star only appears 50 milliarcseconds across as seen from the Earth. To give you some idea just how small a milliarcsecond is, there’s a thousand of them in an arc second, and 60 arc seconds in an arc minute. The average Full Moon is 30 arc minutes across, or 1.8 million milliarcseconds in apparent diameter. Betelgeuse has one of the largest apparent diameters of any star in our night sky, exceeded only by R Doradus at 57 milliarcseconds.

The apparent diameter of Betelgeuse was first measured by Albert Michelson using the Mount Wilson 100-inch in 1920, who obtained an initial value of 240 million miles in diameter, about half the present accepted value, not a bad first attempt.

You can see hints of an asymmetrical bubble roiling across the surface of Betelgeuse in the ALMA image. Betelgeuse rotates once every 8.4 years. What’s going on under that uneasy surface? Infrared surveys show that the star is enveloped in an enormous bow-shock, a powder-keg of a star that will one day provide the Earth with an amazing light show.

The bowshock created by Betelgeuse as it plows through the local interstellar medium. JAXA/Akari

Thankfully, Betelgeuse is well out of the supernova “kill zone” of 25 to 100 light years (depending on the study). Along with Spica at 250 light years distant in the constellation Virgo, both are prime nearby supernovae candidates that will on day give astronomers a chance to study the anatomy of a supernova explosion up close. Riding high to the south in the northern hemisphere nighttime sky in the wintertime, +0.5 magnitude Betelgeuse would most likely flare up to negative magnitudes and would easily be visible in the daytime if it popped off in the Spring or Fall. This time of year in June would be the worst, as Alpha Orionis only lies 15 degrees from the Sun!

An early springtime supernova in the future? Stellarium

Of course, this cosmic spectacle could kick off tomorrow… or thousands of years from now. Maybe, the light of Betelgeuse gone supernova is already on its way now, traversing the 650 light years of open space. Ironically, the last naked eye supernova in our galaxy – Kepler’s Star in the constellation Ophiuchus in 1604 – kicked off just before Galileo first turned his crude telescope towards the heavens in 1610.

You could say we’re due.

An Astronomical Detective Tale and the Moon of 2007 OR10

2007 OR10 Moon
These two images reveal a moon orbiting the dwarf planet 2007 OR10. NASA/Hubble/ESA/STScI
2007 OR10 Moon
These two images reveal a moon orbiting the dwarf planet
2007 OR10. NASA/Hubble/ESA/STScI

It isn’t every day we get a new moon added to the list of solar system satellites. The combined observational power of three observatories — Kepler, Herschel and Hubble — led an astronomical detective tale to its climatic conclusion: distant Kuiper Belt Object 2007 OR10 has a tiny moon.

The dwarf planet itself is an enigma wrapped in a mystery: with a long orbit taking it out to a distant aphelion 101 astronomical units (AU) from the Sun, back into the environs of Neptune and Pluto for a perihelion 33 AU from the Sun once every 549 years, 2007 OR10 was discovered by Caltech astronomers Megan Schwamb and Mike Brown in 2007. Nicknamed “Snow White” by Mike Brown for its presumed high albedo, 2007 OR10 was 85 AU distant in the constellation Aquarius at the time of discovery and outbound towards aphelion in 2135. 2007 OR10 is about 1,500 kilometers in diameter, the third largest body known beyond Neptune in our solar system next to Pluto and Eris (nee Xena).

2007 OR10 moon
See the moon (circled?) at +21st magnitude, it’s a tough catch! NASA/Hubble/STScI

Enter the Kepler Space Telescope, which imaged 2007 OR10 crossing the constellation Aquarius as part of its extended K2 exoplanet survey along the ecliptic plane. Though Kepler looks for transiting exoplanets — worlds around other stars that betray their presence by tiny dips in the brightness of their host as they pass along our line of sight — it also picks up lots of other things that flicker, including variable stars and distant Kuiper Belt Objects. But the slow 45 hour rotational period of 2007 OR10 noted by Kepler immediately grabbed astronomers interest: could an unseen moon be lurking nearby, dragging on the KBO like a car brake?

“Typical rotation periods for Kuiper Belt Objects are under 24 hours,” says Csaba Kiss (Konkoly Observatory) in a recent press release. “We looked in the Hubble archive because the slower rotation period could have been caused by the gravitational tug of a moon.”

And sure enough, digging back through archival data from the Hubble Space Telescope taken during a survey of KBOs, astronomers turned up two images of the faint moon from 2009 and 2010. Infrared observations of 2007 OR10 and its moon by the European Space Agency’s Herschel Space Telescope cinched the discovery, and noted an albedo of 19% (similar to wet sand) for 2007 OR10, much darker than expected. The moon is about 200 miles (320 kilometers) in diameter, in a roughly 9,300 mile (15,000 kilometer) orbit.

The discovery was announced at an AAS meeting just last year, and even now, we’re still puzzling out what little we know about these distant worlds. Just what 2007 OR10 and its moon looks like is any guess. New Horizons gave us our first look at Pluto and Charon two short summers ago in 2015, and will give us a fleeting glimpse of 2014 MU69 on New Year’s Day 2019. All of these objects beg for proper names, especially pre-2019 New Horizons flyby.

This also comes on the heels of two new moons for Jupiter, recently announced last month S/2017 J1 and J2.

What would the skies from the tiny moon look like? Well, ancient 2007 OR10 must loom large in its sky, though Sol would only shine as a bright -15th magnitude star, (a little brighter than a Full Moon) its illumination dimmed down to 1/7,000th the brightness enjoyed here on sunny Earth, which would be lost in its glare.

2007 Or10 in the sky
The current position of 2007 OR10 in the night sky. Stellarium

And looking at the strange elliptical orbits of these outer worldlets, we can only surmise that something else must be out there. Will the discovery of Planet 9 be made before the close of the decade?

One thing’s for sure: this isn’t your parent’s tidy solar system with “Excellent Mothers” serving “Nine Pizzas.”

Summer Astronomy, Minimoon & Saturn Opposition 2017

Saturn from June 1st. Image credit and copyright: Peter on the Universe Today Flickr forum.
Saturn on June 1st, nearing opposition. Image credit and copyright: Peter on the Universe Today Flickr forum

Summertime astronomy leaves observers with the perennial question: when to observe? Here in Florida, for example, true astronomical darkness does not occur until 10 PM; folks further north face an even more dire situation. In Alaska, the game in late July became “on what date can you first spot a bright planet/star? around midnight.

And evening summer thunder showers don’t help. Our solution is to get up early (4 AM or so) when the roiling atmosphere has settled down a bit.

But there’s one reason to stay up late, as the planet Saturn reaches opposition next week on June 15th and crosses into the evening sky.

Southern hemisphere observers have it best this year, as the ringed planet loiters in southern declinations for the next few years. In fact, Saturn won’t pop up over the celestial equator again until April, 2026. You’ll still be able to see Saturn from mid-northern latitudes, looking low to the south.

First, a brief rundown of the planets this summer. Mars is currently on the far side of the Sun and headed towards solar conjunction of July 26th. Meanwhile, Mercury is headed towards greatest eastern (dusk) elongation on June 21st. Early AM viewers, can follow Venus, which has just passed greatest elongation west of the Sun on June 3rd, just last week. Finally, Jupiter joins Saturn in the dusk sky, high to the south at sunset and headed towards quadrature 90 degrees east of the Sun on July 6th.

Looking eastward on the evening of June 9th. Credit: Stellarium.

There’s another astronomical curiosity afoot this coming weekend: the MiniMoon for 2017. This is the Full Moon nearest to lunar apogee, a sort of antithesis of the over-hyped “SuperMoon.” Lunar apogee occurs on Thursday, June 8th and the Full Moon occurs just 14 hours after.

2017 sees Saturn traveling from the dreaded “13th constellation” of zodiac Ophiuchus the Serpent Bearer into Sagittarius. This also means that Saturn is headed towards bottoming out near 23 degrees southern declination next year in late 2018. Saturn truly lives up to its “father time” namesake, marking up its slow 29 year passage once around the zodiac. This struck home to us a few years back when Saturn passed Spica in the constellation Virgo, right back where I first started observing the planet as a teenager three decades before.

The path of Saturn through the last half of 2017. Credit: Starry Night Education Software.

The rings are also at their widest tilt in 2017, making for an extra photogenic view. 27 degrees wide as seen from our Earthly vantage point is as wide as Saturn’s ring system ever gets. Saturn isn’t really “tipping” back and forth as much as it’s orbiting the Sun and dipping one hemisphere towards us, and then another. In 2017, it’s the planet’s northern hemisphere time to shine.

Saturn: the changing view. Image credit and copyright: Andrew Symes (@failedprotostar)

Here’s the last/next cycle rundown:

-Rings wide open: (southern pole of Saturn tipped earthward): 2003

Rings edge on: 2009

Rings wide open: (northern pole of Saturn tipped earthward): 2017

-Rings edge on: 2025

-Rings wide open: (southern pole of Saturn tipped earthward): 2032

Even a small 60 mm refractor and a low power eyepiece will reveal the most glorious facet of Saturn: its glorious rings. Galileo first saw this confounding view in 1610, and sketched Saturn as a curious double-handled world. In 1655 Christaan Huygens first correctly deduced that Saturn’s rings are a flat plane, fully disconnected from the planet itself.

Crank up the magnification a bit, and the large Cassini Gap in the rings and the shadow play of the rings and the planet becomes apparent. This gives the view an amazing 3-D effect unparalleled in observational astronomy. The shadow cast by the bulk of the planet disappears behind it during opposition, then slowly starts to reemerge to one side after. Other things to watch for include the retro-reflector Seeliger Effect ( also known as opposition surge) as the planet brightens near opposition. And can you spy the bulk of the planet through the Cassini gap?

The moons of Saturn. Image credit and copyright: John Chumack

Hunting for Saturn’s moons is also a fun challenge. Saturn has more moons visible to a backyard telescope than any other planet. Titan is easiest, as the +8 magnitude moon orbits Saturn once every 16 days. In a small to medium-sized (8-inch) telescope, six moons are readily visible: Enceladus, Mimas, Rhea, Dione, Iapetus and Tethys. Large light bucket scopes 10” and larger might just also tease out the two faint +15th magnitude moons Hyperion and Phoebe.

Saturn
Cassini looks back across Saturn’s rings. NASA/Cassini/JPL-Caltech/Space Science Institute

There’s also something else special about Saturn in 2017 in the world of space flight: the venerable Cassini mission comes to an end this September. Hard to believe, this mission soon won’t be with us. Launched in 1997, Cassini arrived at Saturn in in July 2004, and has since provided us with an amazing decade plus of science. The internet and science writing online has grown up with Cassini, and it’ll be a sad moment to see it go.

All thoughts to ponder, as you check out Saturn at the eyepiece this summer.

Comet V2 Johnson Takes Center Stage

Comet V2 Johnson from February 21st, 2017. Image credit and copyright: John Purvis
Comet V2 Johnson from February 21st, 2017. Image credit and copyright: John Purvis

Had your fill of binocular comets? Turns out, 2017 may have saved the best for last. The past few months has seen a steady stream of dirty snowball visitations to the inner solar system, both short term periodic and long term hyperbolic. First, let’s run through the cometary roll call for the first part of the year: There’s 41P Tuttle-Giacobini-Kresák, 2P/Encke, 45P Honda-Markov-Padjudašáková, C/2015 ER61 PanSTARRS and finally, the latecomer to the party, C/2017 E4 Lovejoy.

Next up is a comet with a much easier to pronounce (and type) name, at least to the English-speaking tongue: C/2015 V2 Johnson.

It would seem that we’re getting a year’s worth of binocular comets right up front in the very first half.

Discovered by the Catalina Sky Survey by astronomer Jess Johnson on the night of November 3rd 2015 while it was still 6.17 astronomical units (AU) distant at +17th magnitude, Comet V2 Johnson is currently well-placed for mid-latitude northern hemisphere viewers after dusk. Currently shining at magnitude +8 as it glides through the umlaut-adorned constellation Boötes the Herdsman, Comet V2 Johnson is expected to top out at magnitude +6 in late June, post-perihelion.

The path of Comet C/2015 V2 Johnson through the inner solar system. Credit: NASA/JPL

Part of what’s making Comet V2 Johnson favorable is its orbit. With a high inclination of 50 degrees relative to the ecliptic, it’s headed down through high northern declinations for a perihelion just outside of Mars’ orbit on June 12th. Though Mars is on the opposite side of the Sun this summer, we’re luckily on the correct side of the Sun to enjoy the cometary view. Comet V2 Johnson passed opposition a few weeks ago on April 28th, and will become an exclusively southern hemisphere object in late July as it continues the plunge southward.

This is likely Comet V2 Johnson’s first and only journey through the inner solar system, as it’s on an open ended, hyperbolic orbit and is likely slated to be ejected from the solar system after its brief summer fling with the Sun.

This week sees Comet V2 Johnson 40 degrees above the eastern horizon in Boötes as seen from latitude 30 degrees north, one hour after sunset. The view reaches its climax on June 6th near the comet’s closest approach to the Earth, with a maximum elevation of 63 degrees from latitude 30 degrees north, one hour after sunset.

The path of Comet V2 Johnson as seen from latitude 30 degrees north, 45 minutes after sunset from mid-May to late June. The constellation positions are for the beginning date. Credit: Starry Night Edu. software.

The comet also sits just 5 degrees from the bright -0.05 magnitude star Arcturus on June 6th, providing a good guidepost to find the fuzzball comet. July sees the comet cross the ecliptic plane through Virgo, then head southward through Hydra and Centaurus. Another interesting pass occurs on the night of July 3rd, when the Moon just misses occulting the comet.

Comet V2 Johnson’s celestial path through August 1st. Credit: Starry Night Edu. Software.

Here are some key dates with destiny for Comet V2 Johnson through August 1st. Unless otherwise noted, all passes are less than one degree (two Full Moon diameters) away:

May 19th: passes near +3.4 magnitude Delta Bootis.

June 5th: Closest approach to the Earth at 0.812 AU distant.

June 12th: Perihelion 1.64 AU from the Sun.

June 15th: Crosses into the constellation Virgo.

June 21st: Crosses the celestial equator southward.

June 26th: Passes near the +4 magnitude star Syrma.

July 1st: Passes near (30″!) the +4.2 magnitude star Kappa Virginis

July 3rd: The waning gibbous Moon passes two degrees north of the comet.

Comet V2 Johnson vs Kappa Virginis and the Moon on July 3rd. Note: the graphic is a (very) idealized version of the comet! Credit: Starry Night Edu.

July 5th: Crosses the ecliptic southward.

July 17th: Crosses into the constellation Hydra.

July 22nd: Passes 2.5 degrees from the +3.3 magnitude star Pi Hydrae.

July 28th: Crosses into the constellation Centaurus.

V2 Johnson light curve
The projected light curve for Comet C/2015 V2 Johnson. The purple vertical line marks perihelion, and the black dots are actual brightness observations to date. Image credit: adapted from Seiichi Yoshida’s Weekly information About Bright Comets.

Binoculars and a good finder chart are your friends hunting down a comet like V2 Johnson. We like to start our search from a nearby bright star, then slowly sweep the field with our trusty Canon 15×45 image-stabilized binoculars (hard to believe, we’ve had this amazing piece of astro-tech in our observing arsenal for nearly two decades now. They’re so handy, picking up a pair of “old-tech” none stabilized binocs feels weird now!). An +8th magnitude comet will look like a fuzzy globular cluster which stubbornly refuses to resolve when focused. A wide-field DSLR shot should also tease V2 Johnson out of the background.

Comet V2 Johnson from May 3rd. Image credit and copyright: Hisayoshi Kato.

The next week is also ideal for evening comet-hunting for another reason, as the New Moon (also marking the start of the Islamic month of Ramadan) occurs on May 25th, after which, the light-polluting Moon will begin to hamper evening observations.

It’s strange to think, there are no bright comets on tap for the remainder of 2017 after V2 Johnson, though that will likely change as the year wears on.

In the meantime, be sure to check out Comet V2 Johnson, as it makes its lonesome solitary passage through the inner solar system.

Movie Review – Alien: Covenant

Promotional poster for Alien: Covenant. Credit: 20th Century Fox
Promotional poster for Alien: Covenant. Credit: 20th Century Fox

Warning: mild plot spoilers ahead for the upcoming summer film Alien: Covenant, though we plan to focus more on the overall Alien sci-fi franchise and some of the science depicted in the movie.

So, are you excited for the 2017 movie season? U.S. Memorial Day weekend is almost upon us, and that means big ticket, explosion-laden sci-fi flicks and reboots/sequels. Lots of sequels. We recently got a chance to check out Alien: Covenant opening Thursday, May 18th as the second prequel and the seventh film (if you count 2004’s Alien vs. Predator offshoot) in the Alien franchise.

We’ll say right up front that we were both excited and skeptical to see the film… excited, because the early Alien films still stand as some of the best horror sci-fi ever made. But we were skeptical, as 2012’s Prometheus was lackluster at best. Plus, Prometheus hits you with an astronomical doozy in the form of the “alien star chart” right off the bat, not a great first step. Probably the best scene is Noomi Rapace’s terrifying self-surgery to remove the alien parasite. Mark Watney had to do something similar to remove the antenna impaled in his side in The Martian. Apparently, Ridley Scott likes to use this sort of scene to really gross audiences out. The second Aliens film probably stands as the benchmark for the series, and the third film lost fans almost immediately with the death of Newt at the very beginning, the girl Sigourney Weaver and crew fought so hard to save in Aliens.

How well does Alien: Covenant hold up? Well, while it was a better attempt at a prequel than Prometheus, it approaches though doesn’t surpass the iconic first two. Alien: Covenant is very similar to Aliens, right down to the same action beats.

The story opens as the crew of the first Earth interstellar colony ship Covenant heads towards a promised paradise planet Origae-6. En route, the crew receives a distress signal from the world where the ill-fated Prometheus disappeared, and detours to investigate. If you’ve never seen an Alien film before, we can tell you that investigating a mysterious transmission is always a very bad idea, as blood and gore via face-hugging parasites is bound to ensue. As with every Alien film, the crew of the Covenant is an entirely new cast, with Katherine Waterston as the new chief protagonist similar to Sigourney Weaver in the original films. And like any sci-fi horror film, expect few survivors.

Alien: Covenant is a worthy addition to the Alien franchise for fans who know what to expect, hearkening back to the original films. As a summer blockbuster, it has a bit of an uphill battle, with a slower opening before the real drama begins.

So how does the science of Alien: Covenant hold up?

The Good: Well, as with the earlier films, we always liked how the aliens in the franchise were truly, well, alien, not just human actors with cosmetic flourishes such as antennae or pointed ears. Humans are the result of evolutionary fortuity, assuring that an alien life form will trend more towards the heptapods in Arrival than Star Trek’s Mr. Spock. Still more is revealed about the parasitic aliens in Alien: Covenant, though the whole idea of a inter-genetic human alien hybrid advanced in the later films seems like a tall order… what if their DNA helix curled the wrong way? Or was triple or single, instead of double stranded?

Spaceships spin for gravity in the Alien universe, and I always liked Scott’s industrial-looking, gray steel and rough edges world in the Alien films, very 2001: A Space Odyssey.

Now, for a very few pedantic nit picks. You knew they were coming, right? In the opening scenes, the Covenant gets hit with a “neutrino burst” dramatically disabling the deployed solar array and killing a portion of the hibernating crew. Through neutrinos are real, they, for the most part, pass right through solid matter, with nary a hit. Millions are passing through you and me, right now. The burst is later described as due to a “stellar ignition event” (a flare? Maybe a nova?) Though the crew states there’s no way to predict these beforehand… but even today there is, as missions such as the Solar Dynamics Observatory and SOHO monitor Sol around the clock. And we do know which nearby stars such as Betelgeuse and Spica are likely to go supernova, and that red dwarfs are tempestuous flare stars. An interstellar colonization mission would (or at least should) know to monitor nearby stars (if any) for activity. True, a similar sort of maguffin in the form of the overblown Mars sandstorm was used in The Martian to get things rolling plot-wise, but we think maybe something like equally unpredictable bursts high-energy cosmic rays would be a bigger threat to an interstellar mission.

The crew also decides to detour while moving at presumably relativistic speeds to investigate the strange signal. This actually happens lots in sci-fi, as it seems as easy as running errands around town to simply hop from one world to the next. In reality, mass and change of momentum are costly affairs in terms of energy. In space, you want to get there quickly, but any interstellar mission would involve long stretches of slow acceleration followed by deceleration to enter orbit at your destination… changing this flight plan would be out of the question, even for the futuristic crew of the Covenant.

Expect a high body count: the crew of the Covenant. Credit: 20th Century Fox

Another tiny quibble: the Covenant’s computer pinpoints the source of the mysterious signal, and gives its coordinates in right ascension and declination. OK, this is good: RA and declination are part of a real coordinate system astronomers use to find things in the sky… here on Earth. It’s an equatorial system, though, hardly handy when you get out into space. Maybe a reference system using the plane of the Milky Way galaxy would be more useful.

But of course, had the crew of the Covenant uneventfully made it to Origae-6 and lived happily ever after stomach-exploding parasite free, there would be no film. Alien: Covenant is a worthy addition to the franchise and a better prequel attempt than Prometheus… though it doesn’t quite live up to the thrill ride of the first two, a tough act to follow in the realm of horror sci-fi.

See Comet C/2015 ER61 PanSTARRS at its Best

ER61 PanSTARRS
Comet C/2015 ER61 PanSTARRS shortly after outburst on April 8th. Image credit and copyright: John Purvis.
ER61 PanSTARRS
Comet C/2015 ER61 PanSTARRS shortly after outburst on April 8th. Image credit and copyright: John Purvis.

Have you been following the springtime parade of bright comets? Thus far, the Oort cloud has offered up several fine binocular comets, including Comet 2/P Encke, 41/P Tuttle-Giacobini-Kresak, 45/P Honda-Mrkos-Pajdusakova, C/2016 U1 NEOWISE and C/2017 E4 Lovejoy. Now, another comet joins the dawn ranks, as it brightens up ahead of expectations: 2015 ER61 PanSTARRS.

Discovered on March 15th, 2015 by the prolific PanSTARRS-1 NEO survey atop Haleakala in Maui, Hawaii, Comet ER61 PanSTARRS made our who’s-who list of bright comets to watch for in 2017. The odd “ER61” designation stems from the early identification of the object as an asteroid, before it presented observers with a cometary appearance.

ER61 PanSTARRS Skychart
The path of Comet C/2015 ER61 PanSTARRS through the sky from early May through mid-August. Credit: Starry Night Education software.

Late northern hemisphere Spring through Summer sees the comet maintaining a decent elevation above the eastern horizon at dawn, gliding north and parallel to the ecliptic plane through the constellations Pisces, Aries and Taurus from May through mid-August. The comet passed 1.08 AU from the Earth last month on April 4th, and is now racing away from us. The comet’s location near the March equinoctial point on the celestial hemisphere assures an equally good apparition for both the northern and southern hemisphere. As seen from latitude 30 degrees north, the comet sits 30 degrees above the eastern horizon, through the remainder of May. Venus also makes a brilliant beacon to track down Comet ER61 PanSTARRS, as the planet heads towards greatest elongation 46 degrees west of the Sun on June 3rd.

The orbit of Comet ER61 PanSTARRS through the inner solar system. Credit: NASA/JPL.

The comet is also on a 7,591 year long orbit inbound, which takes it out nearly 2,500 AU from the Sun. That’s 190 times the Pluto-Sun distance, and the fourth most distant aphelion of any solar system object known. The 2015-2017 passage of the comet through the inner solar system actually shortened the orbit of Comet ER61 PanSTARRS down to an aphelion of ‘only’ 854 AU due to a 0.9 AU pass near Jupiter last year on March 28th, 2016. A similar orbital shortening by Jove occurred for Comet Hale-Bopp in 1996, which came in on an 4,200 year orbit and departed the inner solar system on a shorter 2,500 year path around the Sun.

The projected light curve for Comet C/2015 ER51 PanSTARRS. The purple line denotes perihelion, and the black dots are actual observations. Adapted from Seiichii Yoshida’s Weekly Information for Bright Comets.

Prospects and Prognostications

Observers reported an outburst from the comet last month in the first week of April, causing it to jump about 2 magnitudes in brightness. Right now, it’s holding steady at +7th magnitude. Unfortunately, the Moon reaches Full phase this week on May 10th, though you’ve still got a slim window to hunt for the comet after Moonset and before sunrise. Once the Moon moves towards a slender crescent phase next late week, we’ll once again have dark predawn skies ideal for comet hunting.

Here are some key dates for Comet C/2015 ER61 PanSTARRS as it glides through the dawn sky:

(Stars highlighted are brighter than +5th magnitude, and passes are less than a degree unless otherwise noted.)

May 10th: Reaches perihelion at 1.04 astronomical units (AU) from the Sun.

May 12th: Passes near the +4.9 magnitude star 19X Piscium.

May 20-23rd: Passes less than 10 degrees from Venus.

May 21st: The waning crescent Moon passes less than 10 degrees to the south.

June 10th: Passes near the +3.6 magnitude star Eta Piscium.

June 11th: Passes near the galaxy M74.

June 16th: Passes into the constellation Aries.

June 19th: The waning crescent Moon passes 9 degrees to the south.

July 13th: Passes near (less than 5′) the +4.6 magnitude star Epsilon Arietis.

July 18th: The waning crescent Moon passes 9 degrees to the south.

July 23rd: Passes near the +4.8 star Zeta Arietis.

The comet versus Venus in the dawn sky – looking eastward on May 15th. Credit: Stellarium.

August 2nd: Crosses into the constellation Taurus.

August 15th: The waning crescent Moon passes 8 degrees to the south.

August 16th: Passes near M45 (The Pleiades)

After mid-August, Comet 2015 ER61 PanSTARRS will drop back down below +10th magnitude, not to return for several millennia to come.

Observing a comet like ER61 PanSTARRS is as simple as knowing where and when to look, then starting to slowly sweep the suspect area with binoculars for a little fuzzball looking like a globular cluster stubbornly refusing to snap into focus. In pre-telescopic times, ER61 PanSTARRS would’ve entered and exited the inner solar system unrecorded.

April ER61 PanSTARRS
Comet C/2015 ER61 PanSTARRS from April 12th. Image credit and copyright: Joseph Brimacombe.

Next up: We’ve got one more predicted comet on tap for 2017, as C/2015 V2 Johnson brightens up to +7th magnitude in mid-June. Keep watching the skies, as the next great comet of the century could always appear unannounced at any time.