David Dickinson is an Earth science teacher, freelance science writer, retired USAF veteran & backyard astronomer. He currently writes and ponders the universe as he travels the world with his wife.
A space-faring friend pays our fair planet a visit this week on the morning of December 3rd, as the Japanese Space Agency’s Hayabusa 2 spacecraft passes the Earth.
The Flyby
Rick Baldridge on the SeeSat-L message board notes that Hayabusa-2 will pass 9,520 kilometers from the Earth’s center or 3,142 kilometers/1,885 miles from the Earth’s surface at 10:08 UT/5:08 AM EST on Thursday, December 3rd, passing from north-to-south above latitude 18.7 north, longitude 189.8 east just southwest of the Hawaiian Islands.
Unfortunately, the sighting opportunities for Hayabusa-2 aren’t stellar: even at its closest, the 1.5 meter-sized spacecraft is about nine times more distant than the International Space Station and satellites in low Earth orbit. To compound the challenge, Hayabusa-2 passes into the Earth’s shadow from 9:58 UT to 10:19 UT.
Still, skilled observers with large telescopes and sophisticated tracking rigs based along the Pacific Rim of North America might just catch sight of Hayabusa-2 as it speeds by. The JPL Horizons ephemeris generator is a great resource to create a customized positional chart in right ascension and declination for spacecraft for your given location, including Hayabusa-2.
Hayabusa-2 won’t crack 20 degrees elevation for observers along the U.S. West Coast, putting it down in the atmospheric murk of additional air mass low to the horizon. This also tends to knock the brightness of objects down a magnitude or so… estimates place Hayabusa-2 at around magnitude +13 shortly before entering the Earth’s shadow. That’s pretty faint, but still, there are some dedicated observers with amazing rigs out there, and it’s quite possible someone could nab it. Hawaii-based observers should have the best shot at it, though again, it’ll be in the Earth’s shadow at its very closest…
Amateur radio satellite trackers are also on the hunt for the carrier-wave signal of the inbound Hayabusa-2 mission. You can also virtually fly along with the spacecraft until December 5th: (H/T @ImAstroNix):
Probably the best eye-candy images will come from the spacecraft itself: already, Hayabusa-2 has already snapped some great images of the Earth-Moon pair using its ONC-T optical navigation camera during its inbound leg.
Other notable missions used Earth flybys en route to their final destinations, including Cassini in 1999, and Juno in 2013. Cassini’s return caused a bit of a stir as it has a plutonium-powered RTG aboard, though Earth and its inhabitants were never in danger. A nuclear RTG actually reentered during the return of Apollo 13, with no release of radioactive material. Meant for the ALSEP science package on the surface of the Moon, it was deposited on the reentry of the Lunar Module over the Marinas Trench in the South Pacific. And no, Hayabusa-2 carries no radioactive material, and in any event, it’s missing the Earth by about a quarter of its girth.
The successor to the Hayabusa (‘Peregrine Falcon’ in Japanese) mission which carried out a historic asteroid sample return from 25143 Itokawa in 2010, Hayabusa-2 launched atop an H-IIA rocket from Tanegashima, Japan exactly a year ago tomorrow on a six year mission to asteroid 162173 Ryugu. This week’s Earth flyby will boost the spacecraft an additional 1.6 kilometers per second to an outbound velocity towards its target of 31.9 kilometers per second post-flyby.
Like its predecessor, Hayabusa-2 is a sample return mission. Unlike the original Hayabusa, however, Hayabusa-2 is more ambitious, also carrying the MASCOT (Mobile Asteroid Surface Scout) lander and an explosive seven kilogram impactor. Hayabusa-2 will deploy a secondary camera in orbit to watch the detonation and will briefly touch down at the impact site to collect material.
If all goes as planned, Hayabusa-2 will return to Earth in late 2020.
NASA has its own future asteroid sample return mission planned, named OSIRIS-REx. This mission will launch in September of next year to rendezvous with asteroid 101955 Bennu in September 2019 and return to Earth in September 2023.
We’re entering the golden age of asteroid exploration, for sure. And this all comes about as the U.S. authorized asteroid mining just last week (or at least, as stated, ‘asteroid utilization’) under the controversial U.S. Commercial Space Launch Competitiveness Act. But the original Hayabusa mission brought back mere micro-meter-sized dust grains, highlighting just how difficult asteroid mining is using present technology…
Perhaps, for now, its more cost effective to simply wait for the asteroids to come to us as meteorites and just scoop ’em up. We’ll be keeping an eye out over the next few days for images of Hayabusa-2 as it speeds by, and more postcards of the Earth-Moon system from the spacecraft as it heads towards its 2018 rendezvous with destiny.
Flashback to 1995: Clinton was in the White House, Star Trek Voyager premiered, we all carried pagers in the pre-mobile phone era, and Windows 95 and the Internet itself was shiny and new to most of us. It was also on this day in late 1995 when our premier eyes on the Sun—The SOlar Heliospheric Observatory (SOHO)—was launched. A joint mission between NASA and the European Space Agency, SOHO lit up the pre-dawn sky over the Florida Space Coast as it headed space-ward atop an Atlas IIAS rocket at 3:08 AM EST from launch complex 39B at Cape Canaveral Air Force Station.
Envisioning SOHO
There aren’t a whole lot of 20th century spacecraft still in operation; SOHO joins the ranks of Hubble and the twin Voyager spacecraft as platforms from another era that have long exceeded their operational lives. Seriously, think back to what YOU were doing in 1995, and what sort of technology graced your desktop. Heck, just thinking of how many iterations of mobile phones spanned the last 20 years is a bit mind-bending. A generation of solar astronomers have grown up with SOHO, and the space-based observatory has consistently came through for researchers and scientists, delivering more bang for the buck.
“SOHO has been truly extraordinary and revolutionary in countless ways,” says astrophysicist Karl Battams at the Naval Research Laboratory in Washington D.C. “SOHO has completely changed our way of thinking about the Sun, solar active regions, eruptive events, and so much more. I honestly can’t think of a more broadly influential space mission than SOHO.”
SOHO has monitored the Sun now for the complete solar cycle #23 and well into the ongoing solar cycle #24. SOHO is a veritable Swiss Army Knife for solar astrophysics, not only monitoring the Sun across optical and ultraviolet wavelengths, but also employing the Michelson Doppler Imager to record magnetogram data and the Large Angle Spectrometric Coronograph (LASCO) able to create an artificial solar eclipse and monitor the pearly white corona of the Sun.
SOHO observes the Sun from its perch one million miles sunward located at the L1 Sun-Earth point. It actually circles this point in space in what is known as a lissajous, or ‘halo’ orbit.
SOHO has revolutionized solar physics and the way we perceive our host star. We nearly lost SOHO early on in its career in 1998, when gyroscope failures caused the spacecraft to lose a lock on the Sun, sending it into a lazy one revolution per minute spin. Quick thinking by engineers led to SOHO using its reaction wheels as a virtual gyroscope, the first spacecraft to do so. SOHO has used this ad hoc method to point sunward ever since. SOHO was also on hand to document the 2003 Halloween flares, the demise of comet ISON on U.S. Thanksgiving Day 2013, and the deep and strangely profound solar minimum that marked the transition from solar cycle 23 to 24.
What was your favorite SOHO moment?
SOHO is also a champion comet hunter, recently topping an amazing 3000 comets and counting. Though it wasn’t designed to hunt for sungrazers, SOHO routinely sees ’em via its LASCO C2 and C3 cameras, as well as planets and background stars near the Sun. The effort to hunt for sungrazing comets crossing the field of view of SOHO’s LASCO C3 and C2 cameras represents one of the earliest crowd-sourced efforts to do volunteer science online. SOHO has discovered enough comets to characterize and classify the Kreutz family of sungrazers, and much of this effort is volunteer-based. SOHO grew up with the internet, and the images and data made publicly available are an invaluable resource that we now often take for granted.
NASA/ESA has extended SOHO’s current mission out to the end of 2016. With any luck, SOHO will complete solar cycle 24, and take us into cycle 25 to boot.
“Right now, it (SOHO) is operating in a minimally funded mode, with the bulk of its telemetry dedicated solely to the LASCO coronagraph,” Battams told Universe Today. “Many of its instruments have now been superseded by instruments on other missions. As of today it remains healthy, and I think that’s a testament to the amazing collaboration between ESA and NASA. Together, they’ve kept a spacecraft designed for a two-year mission operating for twenty years.”
Today, missions such as the Solar Dynamics Observatory, Hinode, and Proba-2 have joined SOHO in watching the Sun around the clock. The solar occulting disk capabilities of SOHO’s LASCO C2 and C3 camera remains unique, though ESA’s Proba-3 mission launching in 2018 will feature a free-flying solar occulting disk.
Happy 20th SOHO… you’ve taught us lots about our often tempestuous host star.
Author’s note: In the wake of the November 13th terrorist attacks, the French Space Agency CNES canceled the celebration of the 50th anniversary of the launch of Asterix. This post commemorates the launch of France’s first satellite 50 years ago this week, and pays a small tribute to the noblest of human endeavors, namely the exploration of space and the pioneering spirit of humanity exemplified by a heroic nation.
A milestone in space flight occurred 50 years ago tomorrow, when France became the sixth nation—behind the U.S.S.R., the United States, Canada, the United Kingdom and Italy—to field a satellite. The A1 mission, renamed Asterix after a popular cartoon character, launched from a remote desert base in Algeria a few hours after dawn at 9:52 UT on November 26th.
Though France was 6th nation in space, it was 3rd—following the Soviet Union and the United States—to launch a satellite atop its very own rocket: the three stage Diamant-A.
The satellite launch was intended mainly to test the ability of the French-built rocket, which flew 11 more times before its retirement in 1975. Asterix did carry a signal transmitter, and was due to carry out ionospheric measurements during its short battery-powered life span. With a high elliptical orbit, Asterix won’t reenter the Earth’s atmosphere for several centuries to come.
The launch occurred from the remote desert air base of Hammaguir, located 31 degrees north of the equator in western Algeria. Then as today, the site is a forlorn and austere location with very few creature comforts, though we can personally attest from our deployment to a similar French Air Base in Djibouti that the French military does serve wine in their mess hall…
The French space program started in 1961 under president Charles de Gaulle and centered around the construction and use of the Diamant rocket. Three variants were built, including the one used to place Asterix in orbit. One of the stranger tales of the early space age involved the first—and thus far only—sub-orbital launch of a cat into space from the same Algerian site in 1963, though Iran recently made a vague statement that it would do the same in 2013.
Contact with Asterix was lost due to a damaged satellite antenna shortly after launch. Founded in 1961, the French space agency CNES (The Centre National d’Etudes Spatiales, or National Centre for Space Studies) now partners with NASA and the European Space Agency on missions including micro-gravity studies on the International Space Station, Rosetta’s historic exploration of comet 67P Churyumov-Gerasimenko and more. And although the Hammaguir space facility in Algeria is no longer in use, CNES operates out of the Kourou Space Center in French Guiana and the Toulouse Space Center in southern France today.
Tracking Asterix
Though inoperative, Asterix still orbits the Earth once every 107 minutes in an elliptical low Earth orbit. Asterix ranges from a perigee of 523 kilometers to an apogee of 1,697 kilometers. In an orbit inclined 34 degrees relative to the Earth’s equator, Asterix isn’t expected to reenter for several centuries.
A 42 kilogram satellite approximately a meter across, Asterix is visible worldwide from about 40 degrees north to 40 degrees south latitude. Essentially a binocular object, you can nonetheless see Asterix from your backyard if you know exactly where and when to look for it in the sky. Asterix will appear brightest on a perigee pass directly overhead.
Asterix’s NORAD ID satellite catalog number is 01778/COSPAR ID 1965-096A.
When it comes to hunting for binocular satellites, you need to now exactly where it’ll be in the sky at what time. We use Heavens-Above to discern exactly when a given satellite will pass a bright star, then simply watch at the appointed time with binoculars. We also run WWV radio in the background for a precise audio time hack. This allows us to keep our eyes continuously on the sky. This simple method is similar to that used by Project Moonwatch volunteers to track and record satellites starting in the late 1950s.
Other satellite challenges from the early Space Age include Alouette-1 (Canada’s first satellite), Prospero (UK’s first and only indigenous satellite) and the oldest of them all, the first three Vanguard satellites launched by the United States.
Don’t miss a chance to see this living relic of the early space age, still in orbit. Happy 50th to the CNES space agency: may your spirit of space exploration continue to soar and inspire us all.
Up for one more? Well, this week’s offering is a bit chancy, but we ‘may’ be in for a minor outburst from a usually quiescent shower. On any given year, the Alpha Monocerotid meteors wouldn’t rate a second look.
First, however, a caveat is in order. Meteor showers never read prognostications and often prove to be fickle, and wild card meteor storms doubly so.
Not to be confused with the straight up Monocerotids which peak in early December, the Alpha Monocerotids are moderately active from November 15th through the 25th, with a soft peak on the 22nd. And though the radiant derives its name from the brightest star in the rambling constellation of Monoceros the Unicorn, the radiant is actually located at its peak at right ascension 7 hours 46 minutes and declination +00 degrees 24 minutes, just across the border in the constellation Canis Minor.
The Alpha Monocerotids have a curious history. They first caught the keen eye of observers in 1925, when F.T. Bradley watching from rural Virginia noted 37 meteors over a 13 minute span. In the 20th century, small outbursts seemed to ply the skies around November 22nd on the fifth year of each decade, with brief outbursts seen in 1935 and 1985. NASA astronomer and SETI Institute research scientist Peter Jenniskens predicted a 1995 outburst, and as predicted, a brief 30 minute display greeted members of the Dutch Meteor Society based under dark skies in southern Spain. The shower had a brief 5-minute climax in 1995, with an extrapolated zenithal hourly rate of 420.
Prospects for the shower in 2015
As of this writing, a major outburst from the Alpha Monocerotids isn’t predicted for 2015… but you just never know. It’s always worth watching for an outburst on the night of November 21/22nd, especially in years ending in five.
In 2015, the Moon phase for the night of Saturday/Sunday November 21st/22nd is waxing gibbous and about 79% illuminated and setting at around 1:00 AM local, putting it safely out of view.
The predicted peak for the 2015 Alpha Monocerotids is centered on 4:25 UT/11:25 PM EST as per the International Meteor Organization (IMO), favoring western European longitudes in a similar fashion as 1995 at dawn on Sunday, November 22nd.
Thus far, the source comet for the Alpha Monocerotids remains a mystery, though a prime contender is Comet C/1943 W1 van Gent-Peltier-Daimaca. Discovered during the Second World War, this comet has an undefined long period orbit, and reached perihelion 0.87 AU from the Sun on January 12th, 1944.
Jenniskens notes that orbital configurations of Jupiter and Saturn may play a role in the long term modification of meteor streams such as the Alpha Monocerotids. A fascinating discussion on predicting meteor outbursts and the evolution of meteor streams by Mr Jenniskens can be read here.
The stream seems to have a very brief burst of activity of less than an hour, reminiscent of the elusive January Quadrantids. The Alpha Monocerotid radiant sits highest in the sky at around 4 AM local, and the incoming speed of the meteors is a very respectable 65 kilometers a second, making for brief swift trails.
Meteor Watching and Reporting
But beyond just observing, many sky watchers choose to log what they see and report it. Meteor shower streams—especially obscure ones such as the Alpha Monocerotids—are often poorly understood, and observers provide a valuable service by counting and reporting the number of meteors seen over a particular period of time.
Imaging meteors is as simple as setting up a DSLR on a tripod for wide angle shots, and taking repeated exposures of the sky. We generally take a few test shots to get the ISO/f-stop mix just right for the current sky conditions, then set our intervalometer to take repeated 30-second exposures while we visually observe. Aim about 45 degrees away from the radiant to catch meteors in profile, and check the camera lens periodically for morning dew. We generally keep a hair dryer handy to combat condensation under moisture-laden Florida skies.
Maybe a vigil for an Alpha Monocerotid outburst is an exercise in hunting unicorns… but watching an outburst would be an unforgettable sight. Perhaps, the Alpha Monocerotid stream is on the wane in the 21st century… or a new outburst is still in the wings, waiting to greet dawn residents of the Earth.
Leonid meteor storms. Taurid meteor swarms. Earth is no stranger to meteor showers, that’s for sure. Now, it turns out that the planet Mercury may experience periodic meteor showers as well.
The news of extraterrestrial meteor showers on Mercury came out of the annual Meeting of the Division of Planetary Sciences of the American Astronomical Society currently underway this week in National Harbor, Maryland. The study was carried out by Rosemary Killen of NASA’s Goddard Spaceflight Center, working with Matthew Burger of Morgan State University in Baltimore, Maryland and Apostolos Christou from the Armagh Observatory in Northern Ireland. The study looked at data from the MErcury Surface Space Environment Geochemistry and Ranging (MESSENGER) spacecraft, which orbited Mercury until late April of this year. Astronomers published the results in the September 28th issue of Geophysical Research Letters.
Micrometeoroid debris litters the ecliptic plane, the result of millions of years of passages of comets through the inner solar system. You can see evidence of this in the band of the zodiacal light visible at dawn or dusk from a dark sky site, and the elusive counter-glow of the gegenschein.
Researchers have tagged meteoroid impacts as a previous source of the tenuous exosphere tails exhibited by otherwise airless worlds such as Mercury. The impacts kick up a detectable wind of calcium particles as Mercury plows through the zodiacal cloud of debris.
“We already knew that impacts were important in producing exospheres,” says Killen in a recent NASA Goddard press release. “What we did not know was the relative importance of comet streams over zodiacal dust.”
This calcium peak, however, posed a mystery to researchers. Namely, the peak was occurring just after perihelion—Mercury orbits the Sun once every 88 Earth days, and travels from 0.31 AU from the Sun at perihelion to 0.47 AU at aphelion—versus an expected calcium peak predicted by researchers just before perihelion.
A key suspect in the calcium meteor spike dilemma came in the way of periodic Comet 2P Encke. Orbiting the Sun every 3.3 years—the shortest orbit of any known periodic comet—2P Encke has made many passages through the inner solar system, more than enough to lay down a dense and stable meteoroid debris stream over the millennia.
With an orbit ranging from a perihelion at 0.3 AU interior to Mercury’s to 4 AU, debris from Encke visits Earth as well in the form of the November Taurid Fireballs currently gracing the night skies of the Earth.
The Encke connection still presented a problem: the cometary stream is closest to the orbit of Mercury about a week later than the observed calcium peak. It was as if the stream had drifted over time…
Enter the Poynting-Robertson effect. This is a drag created by solar radiation pressure over time. The push on cometary dust grains thanks to the Poynting-Robertson effect is tiny, but it does add up over time, modifying and moving meteor streams. We see this happening in our own local meteor stream environment, as once great showers such as the late 19th century Andromedids fade into obscurity. The gravitational influence of the planets also plays a role in the evolution of meteor shower streams as well.
Researchers in the study re-ran the model, using MESSENGER data and accounting for the Poynting-Robertson effect. They found the peak of the calcium emissions seen today are consistent with millimeter-sized grains ejected from Comet Encke about 10,000 to 20,000 years ago. That grain size and distribution is important, as bigger, more massive grains result in a smaller drag force.
This finding shows the role and mechanism that cometary debris plays in exosphere production on worlds like Mercury.
“Finding that we can move the location of stream to match MESSENGER’s observations is gratifying, but the fact that the shift agrees with what we know about Encke and its stream from independent source makes us confident that the cause-and-effect relationship is real, says Christou in this week’s NASA Goddard press release.
Launched in 2004, MESSENGER arrived at Mercury in March 2011 and orbited the world for over four years, the first spacecraft to do so. MESSENGER mapped the entire surface of Mercury for the first time, and became the first human-made artifact to impact Mercury on April 30th, 2015.
The joint JAXA/ESA mission BepiColombo is the next Mercury mission in the pipeline, set to leave Earth on 2017 for insertion into orbit around Mercury on 2024.
An interesting find on the innermost world, and a fascinating connection between Earth and Mercury via comet 2P Encke and the Taurid Fireballs.
A November rain hails from the Sickle of the Lion.
Hot on the heels of the October Orionids and the Halloween fireballs of the Taurid meteors comes the Leonid meteor shower. On most years, the Leonids are a moderate shower, with hourly local rates reaching around 20. Once every 33 years, however, the Leonids are responsible for putting on one of the greatest astronomical shows ever witnessed, producing a grand storm with a zenithal hourly rate topping thousands per hour.
Prospects for 2015
First, the bad news. 2015 isn’t forecast to be a ‘storm year’ for the Leonids, though that shouldn’t stop a vigilant observer from watching. The good news is, we’re just about midway betwixt the storm years of 1998-99 and 2031-32. The Leonids intensify once every 33 years, and if the increased activity seen in the late 1990s was any indication, we’d bet we’ll start seeing a pickup in rates from the Leonids in the late 2020’s or so. The good news for 2015, however, is that the peak for the Leonids occur on November 18th at around 4:00 Universal Time (UT)/ (11:00 PM EST on November 17th). This places the waxing crescent Moon out of the picture, just a day before reaching First Quarter phase. New Moon for November 2015 occurs on November 11th at 17:47 UT/12:47 PM EST.
Fun fact: the August Perseids, November Leonids and the December Geminid meteor showers are spaced out on the calendar in such a way that, when the Moon phase is favorable for one shower on a particular year, it is nearly always favorable across all of them.
The Leonids are mildly active from November 6th through November 30th, and though the above prediction for activity in 2015 favors European longitudes at dawn, some predictions have the peak arriving up to seven hours early this year.
The Leonids are the dusty remnants laid down by periodic comet 55P Tempel-Tuttle on its 33-year path through the inner solar system. The Leonids are fast-movers, hitting the Earth nearly head-on in the dawn. You can see this in the relative position of the radiant, which rises in mid-November around 11PM local, and reaches the zenith around 6AM local time.
Often bluish in color, the Leonids hit the Earth’s atmosphere at over 70 km/sec… almost the fastest theoretical speed possible. For best results, watch for Leonids to spike in activity close to local dawn.
The Leonids have a storied history, going back 902 AD report from Arabic annals of the ‘Year of Stars.’ The Great Meteor Storm of 1833 dazzled (and terrified) residents of the eastern seaboard of the United States, and the spectacle not only inspired astronomer Denison Olmsted to pioneer studies into the fledgling field of meteor shower science, but has been attributed to adding fervor to many of the religious revivalist movements that sprang up in the 1830s in the United States as well.
The last outburst from the Leonids that reached such an apocalyptic scale was in 1966, when observers across the southwestern United States reported hourly rates approaching an amazing ZHR=144,000. Witnesses that remember this spectacle say it produced an illusion reminiscent of the Star Trek ‘warp speed’ effect, as Earth rammed headlong into the dense Leonid meteor stream.
Our own personal encounter with a Leonid meteor storm in 1998 from the dark desert skies of Kuwait wasn’t quite that intense, but thrilling to see nonetheless. Rates neared one every few seconds towards sunrise, with several fireballs punctuating the action, lighting up the desert floor. Here, as US coalition forces were on the verge of unleashing what would become Operation: Desert Fox over Iraq, the Universe was putting on a fireworks show of its own.
The Leonid meteor storms are the stuff of astronomical legend, a once in a lifetime event. Ever since we witnessed just what the Leonids are capable of, we never miss this annual shower, as we remember one night back in 1998, and look forward to the storms of 2032.
Here’s what the Leonids have been doing on previous recent years:
So, did this past weekend’s shift back to Standard Time for most of North America throw you for a loop? Coming the day after Halloween, 2015 was the earliest we can now shift back off Daylight Saving Time. Sunday won’t fall on November 1st again until 2020. Expect evenings get darker sooner for northern hemisphere residents, while the planetary action remains in the dawn sky.
Though Mercury has exited the morning twilight stage, the planets Jupiter, Venus and Mars continue to put on a fine show, joined by the waning crescent Moon later this week. The action starts today on November 3rd, which finds +1.9 magnitude Mars passing just 0.68 degrees (40’, just over the apparent diameter of a Full Moon) from brilliant -3.9 magnitude Venus. Though the two nearest planets to the Earth appear to meet up in the dawn sky, Mars is actually 2.5 times more distant than Venus, which sits 74.4 million miles (124 million kilometres) from the Earth. Venus exhibits a 57% illuminated gibbous phase 21” across this week, versus Mars’ paltry 4.5” disc.
Watch the scene shift, as the Moon joins the dance this weekend. The mornings of Friday, November 6th and Saturday, November 7th are key, as the Moon passes just two degrees from the Jupiter and Mars pair and just over one degree from Venus worldwide. Similar close pairings of the Moon and Venus adorn many national flags, possibly inspired by a close grouping of Venus and the Moon witnessed by skywatchers of yore.
Saturday November 7th is also a fine time to try your hand at seeing Venus in the daytime, using the nearby crescent Moon as a guide. The Moon will be only four days from New, and the pair will be 46 degrees west of the Sun, an optimal situation as Venus just passed greatest western elongation 46.4 degrees west of the Sun on October 26th.
Though Venus may seem like a difficult daytime object, it’s actually intrinsically brighter than the Moon per square arc second. Difficulty finding it stems from seeing it against a low contrast blue daytime sky, its small size, and lack of context and depth. The larger but dimmer Moon actually serves as a good anchor to complete this feat of visual athletics.
Looking for more? Comet C/2013 US10 Catalina will join the planetary lineup next lunation ‘round, hopefully shining at magnitude +5 as it glides past Venus and the Moon on December 7th. Karl Battams at the U.S. Naval Research Labs has confirmed that Comet US10 Catalina—which reaches perihelion this month on November 15th –should also briefly graze the field of view for SOHO’s LASCO C3 camera on November 7th.
There’s also a few notable lunar occultations this week. The Moon also occults the +5 magnitude star Chi Leonis for viewers around the Gulf of Mexico on November 4th, including a dramatic grazing event for Northern Florida. The Moon also occults the +3.5 magnitude star Omicron Leonis on Nov 4th for Alaska as well.
See a bright star near the Venus this week? It’s none other than +3.6 magnitude Beta Virginis (Zavijava). The star passes 15’ from Venus on the morning of November 6th. Stick around ‘til 2069, and you can actually witness Venus occult Beta Virginis. Between Beta Virginis and Mars, Venus has the appearance this week of having the large pseudo-moon it never possessed. From Venus, our Moon would appear near magnitude +0.4 with a disk 6.4” this week, and range 12’ from the Earth.
Now for the wow factor. All of these disparate objects merely lie along our Earthbound line of sight this week. Traveling at the speed of light (186,282 miles or 299,792 kilometers a second), the Moon lies just over a second away. Venus, Mars and Jupiter are next, at 6, 18, and 49 light minutes out, respectively… and Beta Virginis? It lies 36 light years distant.
This pass of the Moon also sets us up for an occultation of Mars and a dramatic daytime occultation of Venus for North America during the next lunation…
More to come!
-Got pictures of the planetary grouping this week with the Moon? Be sure to send ’em in to Universe Today and our Flickr forum.
Oh, to hitch a ride aboard NASA’s Cassini spacecraft this week. The Saturn orbiting sentinel recently completed an amazing series of passes near the enigmatic ice-covered moon Enceladus, including a daredevil dive only 49 km (31 miles) above the southern pole of the moon and through an ice geyser. Images of the dramatic flyby were released by the Cassini team earlier this morning, revealing the moon in stunning detail.
“Cassini’s stunning images are providing us a quick look at Enceladus from this ultra-close flyby, but some of the most exciting science is yet to come,” says NASA mission project scientist Linda Spilker in today’s NASA/JPL press release.
Launched in 1997 from Cape Canaveral Florida in a dramatic night shot, Cassini arrived at the Saturnian system in 2004, and has delivered on some amazing planetary science ever since.
Discovered in 1789 by William Herschel, we got our very first views of Enceladus via the Voyager 1 spacecraft at 202,000 kilometers distant in 1980. Cassini has flown by the moon 21 times over the past decade, and ice geysers were seen sprouting from the surface of the moon by Cassini on subsequent flybys. one final flyby of Enceladus is planned for this coming December.
Mission planners are getting more daring with the spacecraft as its mission nears completion in 2017. The idea of reaching out and ‘tasting’ an icy plume emanating from Enceladus has been an enticing one, though a fast-moving good-sized ice pellet could spell disaster for the spacecraft.
NASA successfully established contact with the spacecraft on Wednesday night October 28th after the closest approach for the flyby at 11:22 AM EDT/ 15:22 UT (Universal Time) earlier in the day. Cassini is reported to be in good health, and we should see further images along with science data returns in the weeks to come.
A second, more distant flyby of Enceladus was completed by Cassini earlier this month as it passed 1,142 miles (1,839 kilometers) from the northern pole of Enceladus on October 14th, 2015 on its E-20 flyby.
But beyond just pretty post-cards from the outer solar system, Cassini’s successive passes by the mysterious moon will characterize just what might be occurring far down below.
Why Enceladus? Well, ever since ice geysers were spotted gushing from the fractured surface of the moon, it’s been on NASA’s short list of possible abodes for life in the solar system. Other contenders include Mars, Jupiter’s moon Europa, and Saturn’s giant moon, Titan. If the story of life on Earth is any indication, you need a place where an abundant level of chemical processes are occurring, and a subsurface ocean under the crust of Enceladus heated by tidal flexing may just fit the bill.
We’ll be adding further images and info to this post as more data comes in over the weekend, plus Cassini mission highlights, a look at the mission and final objectives and the last days of Cassini and more…
Stay tuned!
The end of Cassini in 2017 as it burns up in the atmosphere of Saturn will be a bittersweet affair, as our outer solar system eyes around the ringed planet fall silent. Cassini represents the most distant spacecraft inserted into orbit around a planet, and ESA’s Huygens lander on Titan marked the most remote landing on another world as well. Will we one day see a Titan Blimp or Ocean Explorer, or perhaps a dedicated life-finding mission to Enceladus? Final mission objectives for NASA’s Cassini spacecraft include a final flyby of Saturn’s large moon Titan, which will set the course for its final death plunge into the atmosphere of Saturn on September 15th, 2017.
Want to see Enceladus for yourself? The moon orbits Saturn once every 1.4 days, reaching a maximum elongation of 13″ from the ring tips of Saturn and a maximum brightness of magnitude +11.7. Enceladus is one of six major moons of Saturn visible in a backyard telescope, and one of 62 moons of the ring planet known overall. The other five moons within reach of an amateur telescope are: Titan, Mimas, Dione, Rhea, and Tethys, and the fainter moon Hyperion shining at magnitude +15 might just be within reach of skill observers with large light bucket instruments.
Enjoy the amazing views of Enceladus, courtesy of Cassini!
Asteroid 2015 TB145 isn’t the only cosmic visitor paying our planet a trick-or-treat visit over the coming week. With any luck, the Northern Taurid meteor shower may put on a fine once a decade show heading into early November.
About once a decade, the Northern Taurid meteor stream puts on a good showing. Along with its related shower the Southern Taurids, both are active though late October into early November.
Specifics for 2015
This year sees the Moon reaching Full on Tuesday October 27th, just a few days before Halloween. The Taurid fireballs, however, have a few things going for them that most other showers don’t. First is implied in the name: the Northern Taurids, though typically exhibiting a low zenithal hourly rate of around 5 to 10, are, well, fireballs, and thus the light-polluting Moon won’t pose much of a problem. Secondly, the Taurid meteor stream is approaching the Earth almost directly from behind, meaning that unlike a majority of meteor showers, the Taurids are just as strong in the early evening as the post midnight early morning hours. As a matter of fact, we saw a brilliant Taurid just last night from light-polluted West Palm Beach in Florida, just opposite to the Full Moon and a partially cloudy sky.
In stark contrast to the swift-moving Orionids from earlier this month, expect the Taurid fireballs to trace a brilliant and leisurely slow path across the night sky, moving at a stately 28 kilometre per second (we say stately, as the October Orionids smash into our atmosphere at over twice that speed!)
Ever since the 2005 event, the Northern Taurids seemed to have earned the name as “The Halloween Fireballs” in the meme factory that is the internet. It’s certainly fitting that Halloween should have its very own pseudo-apocalyptic shower. The last good return for the Northern Taurids was 2005-2008, and 2015 may see an upswing in activity as well.
Obviously, something interesting has to be occurring on Comet 2P Encke—the source of the two Taurid meteor streams—to shed the pea-sized versus dust-sized material seen in the Southern and Northern Taurids. With the shortest orbital period 3.3 years of all periodic comets known, the Taurid meteor stream—like Encke itself—follows a shallow path nearly parallel to the ecliptic plane.
Discovered in 1822 by astronomer Johann Encke, Comet 2P Encke has been observed through many perihelion passages over the last few centuries, and passes close to Earth once 33 years, as it last did in 2013.
What constitutes a ‘meteor swarm?’ As with many terms in meteoritics, no hard-and-fast definition of a true ‘meteor swarm’ exists. A meteor storm is generally quoted as having a zenithal hourly rate greater than 1000. Expect activity to be broad over the next few weeks, and the Taurid fireballs always have the capacity to produce the kind of brilliant events captured by security cams and dashboard video cameras that go viral across ye ole Internet.
Watching for fireballs is a thrilling pursuit. These may often leave persistent glowing meteor trails in their wake. We caught the 1998 Leonids from the dark sky deserts of Kuwait, and can attest to the persistence of glowing fireball trails from this intense storm, sometimes for minutes. Again, the 2015 Taurids aren’t expected to reach that level of intensity, though the ratio of fireballs to faint meteors will be enhanced.
The path of the stream isn’t fully understood, and that is where volunteer observations can come in handy. The International Meteor Organization is always looking for reports from skilled observers, as is the American Meteor Society (AMS).
There’s even been evidence for a recorded meteorite strike related to the northern Taurid fireballs back in 2015 on the dark limb of the Moon as well, a rare event indeed.
After a slow summer, Fall meteor shower activity is definitely heating up. And though 2015 is an off year for the November Leonids, we’re now almost midway between the 1998-99 outbursts, and the possibility of another grand meteor storm in the early 2030s. And another obscure wildcard shower known as the Alpha Monocerotids may put on a surprise showing in November 2015 as well…
More to come on that. Keep watching the skies, and don’t forget to tweet those Northern Taurid fireball sightings and images to #Meteorwatch!
-Got an image of a Northern Taurid fireball? Send ‘em in to Universe Today for our Flickr forum… we may just feature your pic in an after action round up!