Watch the Close Pass of NEO Asteroid 2014 DX110 Wednesday Night

The orbital path and position of Apollo NEO asteroid 2014 DX110 just a week prior to disocvery. Credit- Created using NASA/JPL's Solar System Dynamics Small-Body Database Browser.

BREAKING- No sooner than the cyber-ink was dry on this post than we got notice of another 10-metre NEO asteroid 2014 EC passing Earth at just under 0.2 times the Earth-Moon distance – less than 64,000 kilometres – on Thursday, March 6th at 21:18 UT/4:18 PM EST. And the Virtual Telescope will be carrying this passage live as well on March 6th starting at 19:00 UT/2:00 PM EST. Bring in on, universe!

The Earth-Moon system gets a close shave on the night of Wednesday, March 5th 2014 when Near Earth Object (NEO) asteroid 2014 DX110 passes our fair planet at 216,000 miles or about 345,600 distant at around 21:06 Universal Time (UT)/ 4:06 PM EST.

About 30 metres in diameter, 2014 DX110 was discovered by the Pan-STARRS 1 survey on February 28th, and its orbit was initially refined using follow up observations made by the Great Shefford Observatory in West Berkshire, England.

And although the asteroid is no threat to Earth or the Moon – it makes a pass 232,800 miles from our natural satellite one hour and 22 minutes after its closest passage from the Earth – the asteroid is currently listed on NASA’s risk page for a 1 in 10,000,000 chance of impact with Earth on March 4th, 2046.

Of course, additional observations usually lower this remote possibility even further in the case of most newly discovered near Earth asteroids.  Visually, 2014 DX110 isn’t expected to brighten above +15th magnitude as it glides northward through the constellation of Camelopardalis at closest approach Wednesday night.

But the good news is, you can catch the passage of 2014 through the Earth-Moon system Wednesday night courtesy of our friends at the Virtual Telescope Project:

The webcast of the event is expected to go live at 20:30 UT, and will include live commentary.

Its been a busy last few weeks in terms of asteroid flybys, including a passage of Amor NEO asteroid 2014 DU110 earlier today at 15:54 UT/10:54 AM EST at 0.14 A.U.s or just over 20 million kilometres distant. And the folks at the Virtual Telescope Project will be covering another asteroid flyby on Sunday, March 9th starting at 23:00 UT/6:00 PM EST to track the 180 meter asteroid 2014 CU13. This large Apollo NEO is projected to pass 8 lunar distances or over 3 million kilometres away from the Earth on March 11th at 9:05 UT/4:05 AM EST.

It should be easy to pick out the motion of 2014 DX110 moving against the starry background at closest approach in real time. 2014 DX110 is an Apollo-class asteroid, and has an orbital period of 1192 days or about 3.26 years. It also has a fairly shallow inclined orbit relative to the ecliptic traced out by Earth’s path around the Sun, with a tilt of just over 5.7 degrees. This means that 2014 DX110 is approaching the Earth from just southward and behind it in its orbit around the Sun before crossing just inside of our orbit and northward of the ecliptic plane.

The discovery of asteroid 2014 DX110 was announced by the Minor Planet Center on Sunday, March 2nd in electronic circular 2014-E22. The orbit of 2014 DX110 takes it just interior of Earth’s at a perihelion of 0.83 A.U.s from the Sun and out to an aphelion of 3.6 A.U.s into the realm of the asteroid belt between Mars and Jupiter.

Generally speaking, asteroids passing interior to the Moon’s orbit grab our attention for further scrutiny. Looking back through the European Space Agency’s Near-Earth Objects Dynamics Site, asteroid 2014 DX110 also made an undocumented close passage of Earth on March 17th, 1998 at a minimum possible miss distance of 102,300 miles/163,680 kilometres distant, and a similar passage March 22nd, 1982. 2014 DX110 passed sufficiently close enough to Earth on these passages to alter its orbit so that it now returns to our terrestrial neighborhood every 13 odd years during the span of the 21st century. 2014 DX110 will be moving at a velocity of 14.8 kilometres per second relative to Earth on closest approach Wednesday night and will be inside the Earth’s Hill sphere of gravitational influence from March 4th to March 7th, though of course, it’s moving much too fast for capture.

2014 DX110 will be interior of the Moon’s orbit from 18:06 UT/1:06 PM EST on March 5th until 00:07 UT March 6th (7:07 PM EST on the night of March 5th). The large size – about the size of an office block – and the nature of its orbit, coupled with its relatively large velocity relative to the Earth rule out any potential for 2014 DX110 being space junk in solar orbit returning to Earth’s vicinity, though such objects from the Apollo missions and the Chinese Chang’e-2 Moon mission have been recovered as Earth asteroids before.

Such an impact risk, however remote, merits further study to refine the orbit of this potentially hazardous space rock. Surveys such as PanSTARRS, the Catalina Sky Survey and the B612 Foundation’s asteroid hunting Sentinel  space telescope slated for launch as early as 2017 are working to identify dangerous space rocks. The next and more difficult step will be mitigation and working to nudge these asteroids out of harm’s way, hopefully years in advance.

But you can breathe a sigh of relief Wednesday night as asteroid 2014 DX110 passes us at a safe distance. Thanks to Gianluca Masi at the Virtual Telescope Project for bringing this one to our attention!

Spectacular Views of Venus and the “Decrescent” Moon Worldwide

Credit:

Did you see it? Earlier this week, we wrote about the spectacular conjunction of the planet Venus and the waning crescent Moon this week, which culminated in a fine occultation of the planet by our large natural satellite on Wednesday morning. The footprint of the occultation crossed northern Africa in the predawn hours to greet daytime observers across southern Asia. And although the pass was a near miss for many, viewers worldwide were treated to a fine photogenic pairing of Venus and the Moon.

Credit: SculptorLil
An “aircraft/Moon/Venus tri-conjunction” captured February 26th from London, UK. Credit: Sculptor Lil

This was a highlight event of the 2014 dawn apparition of Venus, and some great pics have been pouring in to us here at Universe Today via Twitter, Google+ and our Flickr pool. We also learned a new word this week while immersed in astronomical research: a decrescent Moon.  We first thought this was a typo when we came across it, but discovered that it stands for a waning crescent Moon going from Last Quarter phase to New. Hey, it’s got a great ring to it, and its less characters than “waning crescent” and thus comes ready Tweet-able.

Credit: Gadi Eidelheit
Venus and the Moon in the predawn sky captured from Israel. Credit: Gadi Eidelheit @gadieid

Some great video sequences have emerged as well, including this fine grazing sequence of a daytime crescent Venus brushing past the crescent Moon taken by Shahrin Ahmad:

Shahrin journeyed to the northern tip of Peninsular Malaysia to the town of Perlis near near the Thai border to capture the graze. “It was a really close event,” he noted. “Today, the clouds began to appear and posed some real tense moments during the occultation.”

And although many weren’t fortunate enough to be in the path of the occultation, many observers worldwide captured some very photogenic scenes of the conjunction between the Moon and Venus as the pair rose this morning, including this great video sequence from  Ryan Durnall:

And clear skies greeted a series of early morning astronomers worldwide, who shared these amazing images with us:

Brad Timerson
This morning’s conjunction as imaged from Newark, New York. Credit- Brad Timerson @btimerson
Venus and the Moon the day prior to the occultation, shot by Ken Lord from Maple Ridge, British Columbia. Credit- Ken Lord.
Venus and the Moon the day prior to the occultation, shot by Ken Lord from Maple Ridge, British Columbia. Credit- Ken Lord.
The Moon approaching Venus on February 25th as seen from Carbon County, Pennsylvania. Credit: Tom Wildoner.
The Moon approaching Venus on February 25th as seen from Carbon County, Pennsylvania. Credit: Tom Wildoner.
Venus and the Moon rising through the fog: Credit: Joanie Boloney @jstabila
Venus and the Moon rising through the fog: Credit: Joanie Boloney @jstabila

John Chumack was also up early this morning and was able to capture this fine image of the pair rising above the University of Dayton’s PAC Center:

Credit: John Chumack, www.galacticimages.com
Venus and the Moon as seen from Dayton, Ohio. Credit: John Chumack, www.galacticimages.com

“All I had available was a point and shoot camera (not even mine!)” Chumack told Universe Today. “I’m surprised it came out okay, considering all the ambient light on Campus!!!” Chumack used a Fujifilm Finepix S1000 point and shoot camera, and went sans tripod, doing a 2″ exposure with the camera perched atop a trash can. The results of this ad hoc setup look great!

Astrophotographer Giuseppe Petricca based in Pisa, Italy north of the occultation path also grabbed this outstanding closeup image of the crescent pair:

Credit: Giuseppe Petricca
Taken using a Nikon Coolpix P90 Bridge camera on a tripod mount. Credit: Giuseppe Petricca

“This morning was awesome!” Petricca told Universe Today. “The weather forecast showed a compact high layer of clouds, but there were enough gaps between them that allowed me to see the conjunction in a lot of different moments.”

You can compare and contrast the twin crescents of Venus and the Moon evident in the above image. “You can easily see the phase of the Planet Venus and a lot of details on the lunar surface, despite the high clouds that partially blocked the view sometimes!” Petricca noted.

And finally, I give you our own humble entry, a  conjunction over suburbia snapped pre-caffeination:

DSC_0584   We think its great that you can sometimes catch a memorable glimpse of the celestial even from your own doorstep.

And when is the next occultation of a planet by the Moon? That would be next month, when Saturn is occulted by the waxing gibbous Moon for South Africa and Brazil after sunset on March 21st, 2014. We’re in the midst of a cycle of occultations of the ringed planet by the Moon, occurring every lunation through the final one this year on October 25th.

The next occultation of Venus occurs on October 23rd 2014, but is only one degree from the Sun and is unobservable. The next observable event occurs on July 19th 2015 for northern Australia in the daytime, and for a remote stretch of the South Pacific at dusk.

And its still not too late to spy Venus in the daytime today, using the nearby Moon as a guide. Here’s a handy simulation to aid you in your quest generated for mid-noon, February 26th:

stellarium
The orientation of the Moon and Venus at ~17:00UT, including a five degree Telrad bullseye. Created by the author using Stellarium.

And finally here’s handy chart of maps of occultations of Venus by the Moon for the current decade, just click to enlarge:

Occult 4.0
Occultations of Venus by the Moon from 2011-2020. Created using Occult 4.0.

Enjoy!

Watch the Moon Meet Venus in the Dawn this Wednesday

The view of Wednesday's conjunction from selected sites based on four separate continents. Credit: Created by the author using Stellarium.

Are you ready for some lunar versus planetary occultation action? One of the best events for 2014 occurs early this Wednesday morning on February 26th, when the waning crescent Moon — sometimes referred to as a decrescent Moon — meets up with a brilliant Venus in the dawn sky. This will be a showcase event for the ongoing 2014 dawn apparition of Venus that we wrote about recently.

This is one of 16 occultations of a planet by our Moon for 2014, which will hide every naked eye classical planet except Jupiter and only one of two involving Venus this year.

An occultation occurs when one celestial body passes in front of another, obscuring it from our line of sight. The term is used to refer to planets or asteroids blocking out distant stars or the Moon passing in front of stars or planets.

Wednesday’s event has a central conjunction time of 5:00 Universal. Viewers in northwestern Africa based in Mali and southern Algeria and surrounding nations will see the occultation occur in the dawn sky before sunrise, while viewers eastward across the Horn of Africa, the southern Arabian peninsula, India and southeast Asia will see the occultation occur in the daylight.

January 29th, 2014
A comparison of Venus versus the Moon in the daytime taken by Sharin Ahmad (@shahgazer) from Malaysia during the last lunation on January 29th, 2014.

Observers worldwide, including those based in Australia, Europe and the Americas will see a near miss, but early risers will still be rewarded with a brilliant dawn pairing of the second and third brightest objects in the night sky. This will also be a fine time to attempt to spot Venus in the daytime, using the nearby crescent Moon as a guide. It’s easier than you might think!  In fact, Venus is actually brighter than the Moon per apparent square arc second of surface area, owing to its higher average reflectivity (known as albedo) of 80% versus the Moon’s dusky 14%.

The International Occultation Timing Association also maintains a chart of ingress and egress times for specific locations along the track of the occultation.

Credit: Created using Occult 4.0.11.
The footprint of the Wednesday occultation of Venus by the Moon. Solid lines indicate where the occultation occurs before sunrise, while the dashed area denotes where the occultation occurs after sunrise. Credit: Created using Occult 4.1.0.11.

The Moon occults Venus 21 times in this decade. The last occultation of Venus by the Moon occurred on September 8th, 2013, and the next occurs October 23rd 2014 over the South Pacific in daylight skies very close to the Sun, and is unobservable.

Wednesday’s event also offers a unique opportunity to catch a crescent Venus emerging from behind the dark limb of the Moon. On Wednesday, Venus presents a 34” diameter disk that is 35% illuminated and shining at magnitude -4.3, while the Moon is a 12% illuminated crescent three days from New. Fun fact: February 2014 is missing a New Moon, meaning that both January and March will each contain two!

Apparent path of Venus in relation to the Moon
Apparent path of Venus in relation to the Moon Wednesday morning as seen from a theoretical geocentric (Earth-centered) location. Created using Starry Night Education software.

This also means that a well positioned observer in northwestern Africa would be able to see able to catch the dark limb of Venus creeping out from behind the nighttime side of the Moon against a dark sky. Such favorable occurrences only happen a handful of times per decade, and this week would be a great time to try and briefly spot – or perhaps even video or photograph – a phenomenon know as the ashen light of Venus as the dazzling crescent daytime side of the planet lay obscured by the Moon. Is this effect reported by observers over the years a fanciful illusion, or a real occurrence?

Perhaps, due to the remote location, this chance to spy and record this elusive effect will go unnoticed this time ‘round. The next chance with optimal possibilities to catch a crescent Venus occulted by the Moon against a dark sky occurs next year on October 8th, 2015, favoring the Australian outback. Anyone out there down for an observing expedition to prove or disprove the ashen light of Venus once and for all? Astronomy road trip!

Photo by Author
April 22nd, 2009 conjunction of Venus and the Moon as seen from Hudson, Florida. The Photo by author.

This event also provides optimal circumstances as Venus heads towards greatest elongation west of the Sun on March 22nd and the Moon-Venus pair lay 43 degrees west of the Sun during Wednesday’s event. Compare this to the impossible to observe occultation this October, when the pairing is only one degree east of the Sun! The next occultation of Venus for North America occurs next year on December 7th, 2015 and will be visible in the daytime across the extent of the track except for Alaska and Northwestern Canada.

Vexillographers may also want to take note: this week’s Venus-Moon pairing will closely emulate the familiar crescent Moon plus star pairing seen on many national flags worldwide. Did an ancient and unrecorded occultation of Venus by the Moon inspire this meme?   Tradition has it that Sultan Alp Arslan settled on the star and crescent for the flag of the Turks after witnessing a close conjunction after the defeat of the Byzantine Army at the Battle of Manzikert on August 26th, 1071 A.D. This tale, however, is almost certainly apocryphal, as no occultations of planets or bright stars by the Moon occurred on or near that date, and only two occultations of Venus by the Moon occurred that year. And Venus was less than two degrees from the Sun on that date, yet another strike against it. In fact, the only occultations of Venus by the Moon in 1071 occurred on June 29th and November 27th. Perhaps Arslan just took a while to decide…

Still, this week’s event provides a great photo-op to have “Fun with Flags” and capture the pair behind your favorite astronomical conjunction-depicting banner. And be sure to send those pics into Universe Today… methinks there’s a good chance of us running a post occultation photo-essay later this week!

Dazzling New Views of a Familiar Cluster

Credit: ESO

Wow. It’s always amazing to get new views of familiar sky targets. And you always know that a “feast for the eyes” is in store when astronomers turn a world-class instrument towards a familiar celestial object.

Such an image was released this morning from the European Southern Observatory (ESO). Astronomers turned ESO’s 2.2-metre telescope towards Messier 7 in the constellation Scorpius recently, and gave us the star-studded view above.

Also known as NGC 6475, Messier 7 (M7) is an open cluster comprised of over 100 stars located about 800 light years distant. Located in the curved “stinger” of the Scorpion, M7 is a fine binocular object shining at a combined magnitude of about +3.3. M7 is physically about 25 light years across and appears about 80 arc minutes – almost the span of three Full Moons – in diameter from our Earthly vantage point.

One of the most prominent open clusters in the sky, M7 lies roughly in the direction of the galactic center in the nearby astronomical constellation of Sagittarius. When you’re looking towards  M7 and the tail of Scorpius you’re looking just south of the galactic plane in the direction of the dusty core of our galaxy. The ESO image reveals the shining jewels of the cluster embedded against the more distant starry background.

Messier 7 is middle-aged as open clusters go, at 200 million years old. Of course, that’s still young for the individual stars themselves, which are just venturing out into the galaxy. The cluster will lose about 10% of its stellar population early on, as more massive stars live their lives fast and die young as supernovae. Our own solar system may have been witness to such nearby cataclysms as it left its unknown “birth cluster” early in its life.

Loading player…

Other stars in Messier 7 will eventually mature, “join the galactic car pool” in the main sequence as they disperse about the plane of the galaxy.

But beyond just providing a pretty picture, studying a cluster such as Messier 7 is crucial to our understanding stellar evolution. All of the stars in Messier 7 were “born” roughly around the same time, giving researchers a snapshot and a chance to contrast and compare how stars mature over there lives. Each open cluster also has a unique spectral “fingerprint,” a chemical marker that can even be used to identify the pedigree of a star.

For example, there’s controversy that the open cluster Messier 67 may actually be the birth place of our Sun. It is interesting to note that the spectra of stars in this cluster do bear a striking resemblance in terms of metallicity percentage to Sol. Remember, metals in astronomer-speak is any element beyond hydrogen and helium. A chief objection to the Messier 67 “birth-place hypothesis” is the high orbital inclination of the open cluster about the core of our galaxy: our Sun would have had to have undergone a series of improbable stellar encounters to have ended up its current sedate quarter of a billion year orbit about the Milky Way galaxy.

Still, this highlights the value of studying clusters such as Messier 6. It’s also interesting to note that there’s also data in what you can’t see in the above image – dark gaps are thought to be dust lanes and globules in the foreground. Though there is some thought that this dust is debris that may also be related to the cluster and may give us clues as to its overall rotation, its far more likely that these sorts of “dark spirals” related to the cluster have long since dispersed. M7 has completed about one full orbit about the Milky Way since its formation.

Another famous binocular object, the open cluster Messier 6 (M6) also known as the Butterfly Cluster lies nearby. Messier 7 also holds the distinction as being the southernmost object in Messier’s catalog. Compiled from Parisian latitudes, Charles Messier entirely missed southern wonders such as Omega Centauri in his collection of deep sky objects that were not to be mistaken for comets. We also always thought it curious that he included such obvious “non-comets” such as the Pleiades, but missed fine northern sky objects as the Double Cluster in the northern constellation Perseus.

Finding Messier 6: the view from latitude 30 degrees north before dawn in mid-February. Credit: Stellarium.
Finding Messier 6: the view from latitude 30 degrees north before dawn in mid-February. Credit: Stellarium.

Messier 7 is also sometimes called Ptolemy’s Cluster after astronomer Claudius Ptolemy, who first described it in 130 A.D. as the “nebula following the sting of Scorpius.” The season for hunting all of Messier’s objects in an all night marathon is coming right up in March, and Messier 7 is one of the last targets on the list, hanging high due south in the early morning sky.

Interested in catching how Messier 7 will evolve, or might look like up close?  Check out Messier 45 (the Pleiades) and the V-shaped Hyades high in the skies in the constellation Taurus at dusk to see what’s in store as Messier 7 disperses, as well as the Ursa Major Moving Group.

And be sure to enjoy the fine view today of Messier 7 from the ESO!

Got pics of Messier 7 or any other deep sky objects? Send ’em, in to Universe Today!

Now’s the Time to See Asteroid Pallas at its Best

2 Pallas

Looking for something off of the beaten celestial path to observe? The coming weeks will offer telescope users a rare chance to catch a well known asteroid, as it puts on its best show for over two decades.

Over the coming weeks, 2 Pallas, one of the “big four” asteroids – or do you say minor/dwarf planet/planetoid? – reaches a favorable observing point known as opposition. Gliding northward through the constellations of Hydra and Sextans through February and March 2014, 2 Pallas presents a favorable binocular challenge for both northern and southern hemisphere observers as it rises to the east opposite to the setting Sun and transits the local meridian around midnight.

And although 2 Pallas reaches opposition roughly every 16 months as seen from our Earthly vantage point, 2014 provides a chance to catch it under exceptional circumstances. And to top it off, the other “Big 4” asteroids – 1 Ceres, 3 Juno and 4 Vesta – are all currently visible as well and reach opposition in the January through April time frame.

Pallas HST
2 Pallas as imaged by the Hubble Space Telescope. Credit: NASA

Pallas and its brethren also have a checkered history though the course of 19th century astronomy.  The second minor planet to be discovered, Heinrich Wilhelm Olbers spied 2 Pallas near opposition on the night of March 28th, 1802. Olbers made this discovery observing from his home rooftop observatory in Bremen, Germany using a five foot – telescopes were often measured in focal length rather than aperture in those days – Dollond refractor.

Olbers discovered 2 Pallas on the border of the astronomical constellations of Virgo and Coma Berenices shining at magnitude +7.5.

Pallas orbit
A simulation of the orbit of 2 Pallas near opposition this month. Credit: NASA/JPL Horizons.

If the name Olbers sounds familiar, it’s because he also lent it to the paradox that now bears his name. Obler’s paradox was one of the first true questions in cosmology posed in a scientific framework that asked: if the universe is actually infinite in time and space, then why isn’t the sky infinitely bright? And, on a curious side note, it was American horror author Edgar Allan Poe that delivered the answer.

But now back to our solar system. Olbers also discovered 4 Vesta just five years after Pallas.

He was definitely on a roll. The discoveries of these space rocks also grabbed the attention of Olbers contemporary, Johann Bode. Bode had formulated a law now known as the Titus-Bode Law that seemed to put the spacing of then known bodies of the solar system in tidy order. In fact, the Titus-Bode law seemed to predict that a body should lie between Mars and Jupiter, and for a brief time in the 18th century — and again in 2006 when the International Astronomical Union let Eris and Pluto in the door before kicking them back out — Ceres, Pallas, Juno and Vesta were all considered planets.

Comparison
A size comparison of the first ten asteroids discovered compared to Earth’s moon. Wikimedia Commons graphic in the Public Domain.

Today, we now know that 2 Pallas is a tiny world about 575 kilometres in diameter. 2 Pallas orbits the Sun once every 4.62 years and has a relatively high inclination of 34.8 degrees relative to the ecliptic. Pallas has no confirmed satellites, though one was once hinted at during a May 29th, 1979 stellar occultation. And though we’ve yet to send a mission to examine Pallas up close, there were early planning considerations to send NASA’s Dawn spacecraft there after its visit to 1 Ceres.

wide
The path of 2 Pallas from February 16th though March 21st. Created by the author using Stellarium.

This month, look for 2 Pallas as a +7th magnitude wandering star at dusk. Mid-February finds 2 Pallas in the constellation Hydra, and it crosses briefly into Sextans starting on March 22nd until it passes just three degrees east of the 2nd magnitude Alphard (Alpha Hydrae) on March 1st, making a good guidepost to find it at its brightest.

2 Pallas last broke +7th magnitude visibility as seen from Earth in 1991 and won’t do so again til 2028. This is because 18.5 Earth years very nearly equals four orbits of Pallas around the Sun, bringing the two worlds back “into sync.” According to calculations by Belgian astronomer Jean Meeus, the 2014 opposition season offers the closest passage to Earth for Pallas from 1980-2060. Pallas can appear at a maximum brightness of magnitude +6.5 — just on the threshold of naked eye visibility — as seen from Earth.

Narrow
A narrow field finder chart  for 2 Pallas with sample comparison magnitudes, decimal points omitted. Created by the author using Stellarium.

Opposition for Pallas occurs on February 22nd, 2014, when the asteroid is 1.23 AUs distant from our fair planet. Watch for 2 Pallas near opposition this year moving at just under half a degree a day — about the diameter of the Full Moon — headed northward at closest approach.

Hunting asteroids at the eyepiece can be a challenge, as they visually resemble pinpoint stars and show no apparent disks even at high magnification. Sketching or photographing the field of view on successive nights is a fun and easy way to cross this object off of your life list. For those who own scopes with digital setting circles, Heavens-Above is a great quick look source for current coordinates.

2 Pallas just passed perihelion at 2.13 Astronomical Units from the Sun on December 6th, 2013, and passes closest to Earth on February 24th at 1.2 A.U.s distant.

Don’t miss the chance to spy this fascinating an enigmatic worldlet coming to a sky near you this season!

-Got pics of 2 Pallas and friends? Be sure to send ‘em in to Universe Today!

What to Wear? The History and Future of Spacesuits

Credit:

The issue of “what to wear?” takes on an extra dimension of life and death when it comes to space travel. Upon exiting a spacecraft on a spacewalk, an astronaut becomes his very own personal satellite in orbit about the Earth and must rely on the flimsy layer of his suit to provide them with a small degree of protection from radiation and extreme fluctuations of heat and cold.

We recently had a chance to see the past, present and future of space suit technology in the Smithsonian Institutions’ touring Suited for Space exhibit currently on display at the Tampa Bay History Center in Tampa, Florida.

Tampa Bay History Center Director of Marketing Manny Leto recently gave Universe Today an exclusive look at the traveling display. If you think you know space suits, Suited for Space will show you otherwise, as well as give you a unique perspective on a familiar but often overlooked and essential piece of space hardware. And heck, it’s just plain fascinating to see the design and development of some of these earlier suits as well as videos and stills of astronauts at work – and yes, sometimes even at play – in them.

One of the highlights of the exhibit are some unique x-ray images of iconic suits from space travel history. Familiar suits become new again in these images by Smithsonian photographer Mark Avino, which includes a penetrating view of Neil Armstrong’s space suit that he wore on Apollo 11.

Credit
X-ray images of Neil Armstrong’s historic suit on display in Suited for Space. (Photo by author).

Space suits evolved from pressure suits developed for high-altitude flights in the 1950’s, and Suited for Space traces that progression. It was particularly interesting to see the depiction of Wiley Post’s 1934 suit, complete with steel cylindrical helmet and glass portal! Such early suits resembled diving bell suits of yore — think Captain Nemo in a chemsuit. Still, this antiquated contraption was the first practical full pressure suit that functioned successfully at over 13,000 metres altitude.

Credit:
Wiley Post’s 1934 “rubber bladder suit.” (Photo by author).

No suit that has been into space is allowed to tour due to the fragility of many historic originals that are now kept at the Smithsonian, though several authentic suits used in training during the U.S. space program are on display. We thought it was  interesting to note how the evolution of the spacesuit closely followed the development of composites and materials through the mid-20th century. You can see the progression from canvas, glass and steel in the early suits right up though the advent of the age of plastic and modern fabrics. Designs have flirted with the idea of rigid and semi-rigid suits before settling on the modern day familiar white astronaut suit.

credit
A x-ray photo of an EX-1A spacesuit. (Photo by author).

Spacesuit technology has also always faced the ultimate challenge of protecting an astronaut from the rigors of space during Extra-Vehicular Activity, or EVA.

Cosmonaut Alexey Leonov performed the first 12 minute space walk during Voskhod 2 back in 1965, and NASA astronaut Ed White became the first American to walk in space on Gemini 4 just months later. Both space walkers had issues with over-heating, and White nearly didn’t make it back into his Gemini capsule.

credit
Early evolution of space suits on display at the Suited for Space exhibit. (Photo by author).

Designing a proper spacesuit was a major challenge that had to be overcome. In 1962, Playtex (yes THAT Playtex) was awarded a contract to develop the suits that astronauts would wear on the Moon. Said suits had 13 distinct layers and weighed 35 kilograms here on Earth. The Playtex industrial division eventually became known as the International Latex Corporation or ILC Dover, which still makes spacesuits for ISS crewmembers today. It’s also fascinating to see some of the alternate suits proposed, including one “bubble suit” with arms and legs (!) that was actually tested but, thankfully, was never used.

These suits were used by astronauts on the Moon, to repair Hubble, build the International Space Station and much more. Al Worden recounts performing the “most distant EVA ever” on the return from the Moon in his book Falling to Earth. This record will still stand until the proposed asteroid retrieval mission in the coming decade, which will see astronauts performing the first EVA ever in orbit around Earth’s Moon.

credit
An A5-L Spacesuit. Credit: Smithsonian/Suited for Space.

And working in a modern spacesuit during an EVA is anything but routine. CSA Astronaut Chris Hadfield said in his recent book An Astronaut’s Guide to Life on Earth that “Spacewalking is like rock climbing, weightlifting, repairing a small engine and performing an intricate pas de deux – simultaneously, while encased in a bulky suit that’s scraping your knuckle, fingertips and collarbone raw.”

And one only has to look at the recent drama that cut ESA astronaut Luca Parmitamo’s EVA short last year to realize that your spacesuit is the only thin barrier that exists between yourself and the perils of space.

“We’re delighted to host our first Smithsonian Institution Travelling Exhibition Service (SITES) and we think that Florida’s close ties to NASA and the space program make it a great fit for us,” said Rodney Kite-Powell, the Tampa Bay History Center’s Saunders Foundation Curator of History.

Be sure to catch this fascinating exhibit coming to a city near you!

-And you can see these suits in action on the up and coming future EVAs for 2014.

-Here’s the schedule for Suited for Space Exhibit tour.

-Astronaut Nicole Stott (veteran of STS-128, -129, -133, & ISS Expeditions 20 and 21) will also be on hand at the Tampa Bay History Center on March 2014 (Date to be Announced) to present Suited for Space: An Astronaut’s View.

– Follow the Tampa Bay History Museum of Twitter as @TampaBayHistory.

 

Space Station to Get a ‘Laser Cannon’

CATS in the laboratory. Credit: NASA/GSFC.

What’s a space station without a laser cannon?

The International Space Station will be getting its very own laser at the end of 2014. And unlike the planet-smashing capabilities of the Death Star of Star Wars fame, this laser will to be enlisted for the purpose of science.

It’s called CATS, and no, it isn’t the latest attempt to put feline astronauts in space. CATS stands for the Cloud Aerosol Transport System. The goal of CATS is to study the distribution of tiny particles of dust and air contaminants known as aerosols.

Developed by research scientist Matt McGill at NASA’s Goddard Space Flight Center in Greenbelt Maryland, CATS is slated to head to the International Space Station later this year on September 12th aboard SpaceX’s CRS-5 flight of the Dragon spacecraft. CATS will be installed on the Japanese Experiment Module-Exposed Facility (JEM-EF) and will demonstrate the utility of state-of-the-art multi-wavelength laser technology to study aerosol distribution and transport in the atmosphere.

Such knowledge is critical in understanding the path and circulation of aerosols and pollutants worldwide. When the Eyjafjallajökull volcano erupted in Iceland back in 2010, many trans-Atlantic flights were grounded as a precaution. These measures are necessary as several flights have suffered engine failures in the past due to encounters with volcanic ash clouds, such as the four engine failure of KLM Fight 867 in 1989 and the British Airways Flight 9 incident over Southeast Asia in 1982. Knowing where these dangerous ash clouds are is crucial to the safety of air travel.

The expanding ash cloud spewing from Iceland's Eyjafjallajökull volcano as seen from space in 2010. Credit: NASA.
The expanding ash cloud spewing from Iceland’s Eyjafjallajökull volcano as seen from space in 2010. Credit: NASA.

To accomplish this, CATS will emit 5,000 1 milliJoule laser pulses a second at the 1064, 532 and 355 nanometer wavelengths.  This represents a vast improvement in power requirements and thermal capabilities over a similar instrument currently in service aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Earth remote sensing spacecraft.

And it’s that third 355 nanometer wavelength that will make CATS stand out from CALIPSO. This will also allow researchers to differentiate between particle size and measure the horizontal and vertical distribution of aerosol particles in the atmosphere. CATS will also be capable of measuring the number of individual photons being reflected back at it, which will provide a much better resolution and understanding of current atmospheric activity.

“You get better data quality because you make fewer assumptions, and you get, presumably, a more accurate determination of what kind of particles you’re seeing in the atmosphere,” McGill said in a recent press release.

The International Space Station also provides a unique vantage point for CATS. In a highly inclined 51.7 degree orbit, the station passes over a good swath of the planet on 16 orbits daily on a westward moving ground track that repeats roughly every three days. This will assure CATS has coverage over a large percentage of the planet, including known pollutant transport routes across the northern Pacific and down from Canada over the U.S. Great Lakes region.

While the first two lasers will operate in the infrared and visual wavelengths, said third laser will work in the ultraviolet. And while this will give CATS an enhanced capability, engineers also worry that it may also be susceptible to contamination.  “If you get contamination on any of your outgoing optics, they can self-destruct, and then your system is dead. You end up with a very limited instrument lifetime,” McGill said.

Still, if CATS is successful, it may pave the way for larger, free-flying versions that will monitor long-range atmospheric patterns and shifts in climate due to natural and man-made activity. And the ISS makes a good platform to test pathfinder missions like CATS at low cost. “In our current budget-constrained environment, we need to use what we already have, such as the [station], to do more with less,” McGill said.

CALIPSO's LiDAR imaged from the ground by Gregg Hendry in 2008. Used with permission.
CALIPSO’s LiDAR imaged from the ground by Gregg Hendry in 2008. Used with permission.

The advent of a LiDAR system aboard the ISS has also generated a spirited discussion in the satellite tracking community concerning prospects for spotting CATS in operation from the ground. The CALIPSO LiDAR has been captured by ground spotters in the past. However, CALIPSO fires a much more powerful 110 milliJoule pulse at a rate of 20 times a second. Still, the lower power CATS system will be firing at a much faster rate, delivering a cumulative 5,000 milliJoules a second.  CATS won’t be bright enough to show up on an illuminated pass of the ISS, but it just might be visible during darkened passes of the ISS through the Earth’s shadow. And, unlike CALLIPSO — which is part of the difficult to observe A-Train of Earth-observing satellites — the ISS passes in view of a majority of humanity. At very least, activity from CATS will be worth watching out for, and may well be seen either visually or photographically.

We’ll soon be adding CATS to the long list of outstanding science experiments being conducted aboard the International Space Station, and the sight of this “fully armed and operational battle station” may soon be coming to a dark sky site near you!

Enter the Red Planet: A Guide to the Upcoming Mars 2014 Opposition Season

Astrophotographers are already getting some great images of Mars, such as this sequence captured by Efrain Morales Rivera on January 9th, 2014.

Get those telescopes ready: the coming months offer Earthbound viewers some great views of the planet Mars.

Mars reaches opposition for 2014 on April 8th. This is approaching season represents the best time to observe Mars, as the Red Planet is closest to us in April and rises in the east as the Sun sets opposite to it in the west.  Mars reaches 10” in apparent size this week. Mars is already beginning to show surface detail through a moderate-sized telescope as it continues to grow. In mid-February, Mars currently rises at around midnight local, and rides high to the south at local sunrise.

Mars imaged by Leo Aerts on February 3rd. Shot using a Celestron 14" scope, DMK 21AU618 webcam with a 2.5 powermate projection and a RGB Baader filter set.
Mars imaged by Leo Aerts on February 3rd. Shot using a Celestron 14″ scope, DMK 21AU618 webcam with a 2.5 powermate projection and a RGB Baader filter set.

The 2014 opposition of Mars offers a mixed bag for observers. Hanging around 5-10 degrees south of the celestial equator just east of the September equinoctial point in Virgo, viewing opportunities are roughly equal for both northern and southern hemisphere observers. At opposition, Mars will shine at magnitude -1.5 and present a 15.2” disk, only slightly larger than the near minimum apparition of 2012, when it appeared 13.9” across. This is a far cry from the historic 2003 appearance, when Mars nearly maxed out at 25.1” across.

Why such a difference? Because the planet Mars has an exceptionally eccentric orbit. In fact, the eccentricity for Mars is 9.3% compared to 1.7% for the relatively sedate Earth.

A decade of Mars oppositions.
A decade plus of Mars oppositions, from 2012 through 2025. Graphic created by the author.

This guarantees that all oppositions of Mars – which occur roughly 26 months/780 days apart – are not created equal. In our current epoch, Mars can pass anywhere from 0.683 to 0.373 Astronomical Units (A.U.s) from the Earth. This year’s passage sees Mars overtake us at 0.62 A.U.s or over 96 million kilometres from Earth on the night of opposition. Mars is slightly closer to us at 0.618 A.U.s six nights later on April 14th.

Why the slight difference? Well, the speedier Earth is on the inside track headed towards aphelion in July, while Mars is lagging but headed slightly inward towards perihelion just afterwards in September. This combined motion makes for a slightly closer approach just after opposition until the Earth begins to pull away.

And this also means that Mars will make its apparent retrograde loop through Virgo on the months surrounding opposition:

Mars retrograde credit-Starry Night
The motion of Mars through Virgo from March 1st through July 31st. Created by the author using Starry Night Education software.

Now for the good news. Oppositions of Mars also follow a rough 15-year cycle, meaning that they get successively closer or more distant with every two year passage. For example, the 1999 opposition of Mars had a very similar geometry to this year’s, as will to the future opposition in 2029.

And we’re currently on an improving trend: the next opposition in 2016 is much better than this year’s at 18.6” in size, and during the 2018 opposition, Mars will present a disc 24.3” across and will be nearly as favorable as the one in 2003!

It’s also worth noting that Mars sits within four degrees of the rising Moon on the evening of April 14th. The bright star Spica also sits even closer to the Full Moon on the same evening, at less than two degrees away. This particular evening is also noteworthy as it hosts the first of two lunar eclipses for 2014, both of which favor North America.

Mars April 14th.
Mars, the Full Moon and Spica rising in the east on April 14th. Created using Stellarium.

Can you catch Mars near the Moon before sundown on the 14th using binoculars? The Moon will also occult Mars on July 6th for viewers across central and South America.

Though Mars is nicknamed the Red Planet, we’ve seen it appear anywhere from a pumpkin orange to a sickly yellow hue. In fact, such a jaundiced color change can be a sign that a planet-wide dust storm is under way. Such a variation can be readily seen with the naked eye. What color does Mars appear like to you tonight?

On Mars, northern hemisphere summer starts on February 15th, 2014. This means that the northern pole cap of the planet is tipped towards us at opposition during 2014. The day on Mars is only slightly longer than Earth’s at 24 hours and 37 minutes, meaning that Mars will have seemed to rotated only an extra ~8 degrees if you observe it at the same time on each successive evening.

The white pole caps of the planet are the first feature that becomes apparent to the observer at the eyepiece. In February, Mars shows a noticeable gibbous phase in February as we get a peek at the edge of the nighttime side of the planet. Mars will be nearly “full” at opposition, after which it’ll once again take on a slightly distorted football shape.

A growing Mars.
A growing (& shrinking) Mars through the 2014 opposition season. Created by the author using Starry Night Education software.

Tracking the features of the Red Planet is also possible at moderate magnification. One of the largest features apparent is the dark area known as Syrtis Major. Sky & Telescope has an excellent and easy to use application named Mars Previewer that will show you which longitude is currently facing Earth.

Sketching the regions of Mars is a fun exercise. You’ll find that drawing planetary features at the eyepiece can sharpen your observing skills and give you a more critical eye to discern subtle detail. And this season also provides an excellent reason to turn that newly constructed planetary webcam towards Mars.

Up for a challenge? Opposition is also a great time to try and observe the moons of Mars.

moons Starry Night
The moons of Mars as seen on April 8th at around 9:00 Universal Time. Created by the author using Starry Night Education software.

Phobos and Deimos are a tough catch, but are indeed within range of amateur instruments. The chief problem lies in their close proximity to dazzling Mars: +11.5 magnitude, Phobos never strays 14” from the Red Planet in 2014, and 12.4 magnitude Deimos never travels farther than 45” away. Phobos orbits Mars once 7.7 hours — faster than the planet rotates beneath it — and Deimos orbits once every 30.3 hours. The best strategy for a successful Martian moon hunt is to either place Mars just out of the field of view at high power when a moon reaches greatest elongation or block it from view using an eyepiece equipped with an occulting bar.

Extra credit for anyone who nabs pics of the pair!

And opposition is also “Visit Mars season,” as MAVEN and India’s Mars Orbiter Mission arrive later this year. In 2016, NASA’s Mars InSight mission is slated to make the trip, and the window is fast-closing for Dennis Tito’s proposed crewed fly-by mission of Mars in 2018.

And finally, to aid you in your quest for those elusive Martian moons, reader and human astronomical calculator extraordinaire Ed Kotapish was kind enough to compile a list of favorable apparitions of the moons of Mars on the weeks surrounding opposition. (see below)

Good luck, and be sure to send in those pics of Mars and more to Universe Today!

ELONGATIONS OF THE MARTIAN MOONS
DATES AND TIMES IN UT
STARTING  3/30/2014
MAR 30
PHOBOS 0300 W
PHOBOS 0645 E
DEIMOS 0900 W
PHOBOS 1040 W
PHOBOS 1425 E
PHOBOS 1815 W
PHOBOS 2205 EMAR 31
DEIMOS 0005 E
PHOBOS 0155 W
PHOBOS 0545 E
PHOBOS 0935 W
PHOBOS 1320 E
DEIMOS 1515 W
PHOBOS 1715 W
PHOBOS 2100 E

APR 01
PHOBOS 0055 W
PHOBOS 0440 E
DEIMOS 0620 E
PHOBOS 0830 W
PHOBOS 1220 E
PHOBOS 1610 W
PHOBOS 2000 E
DEIMOS 2130 W
PHOBOS 2350 W

APR 02
PHOBOS 0340 E
PHOBOS 0730 W
PHOBOS 1115 E
DEIMOS 1235 E
PHOBOS 1510 W
PHOBOS 1855 E
PHOBOS 2245 W

APR 03
PHOBOS 0235 E
DEIMOS 0345 W
PHOBOS 0625 W
PHOBOS 1015 E
PHOBOS 1405 W
PHOBOS 1755 E
DEIMOS 1855 E
PHOBOS 2145 W

APR 04
PHOBOS 0130 E
PHOBOS 0525 W
PHOBOS 0910 E
DEIMOS 1000 W
PHOBOS 1305 W
PHOBOS 1650 E
PHOBOS 2040 W

APR 05
PHOBOS 0030 E
DEIMOS 0110 E
PHOBOS 0420 W
PHOBOS 0810 E
PHOBOS 1200 W
PHOBOS 1550 E
DEIMOS 1615 W
PHOBOS 1940 W
PHOBOS 2325 E

APR 06
PHOBOS 0320 W
PHOBOS 0705 E
DEIMOS 0725 E
PHOBOS 1055 W
PHOBOS 1445 E
PHOBOS 1835 W
PHOBOS 2225 E
DEIMOS 2230 WAPR 07
PHOBOS 0215 W
PHOBOS 0605 E
PHOBOS 0955 W
PHOBOS 1340 EDEIMOS 1340 E (Mutual)
PHOBOS 1735 W
PHOBOS 2120 E

APR 08
PHOBOS 0115 W
DEIMOS 0445 W
PHOBOS 0500 E
PHOBOS 0850 W
PHOBOS 1240 E
PHOBOS 1630 W
DEIMOS 1955 E
PHOBOS 2020 E

APR 09
PHOBOS 0010 W
PHOBOS 0355 E
PHOBOS 0750 W
DEIMOS 1100 W
PHOBOS 1135 E
PHOBOS 1530 W
PHOBOS 1915 E
PHOBOS 2305 W

APR 10
DEIMOS 0210 E
PHOBOS 0255 E
PHOBOS 0645 W
PHOBOS 1035 E
PHOBOS 1425 W
DEIMOS 1715 W
PHOBOS 1815 E
PHOBOS 2205 W

APR 11
PHOBOS 0150 E
PHOBOS 0545 W
DEIMOS 0825 E
PHOBOS 0930 E
PHOBOS 1320 W
PHOBOS 1710 E
PHOBOS 2100 W
DEIMOS 2330 W

APR 12
PHOBOS 0050 E
PHOBOS 0440 W
PHOBOS 0830 E
PHOBOS 1220 W
DEIMOS 1440 E
PHOBOS 1605 E
PHOBOS 2000 W
PHOBOS 2345 EAPR 13
PHOBOS 0340 W
DEIMOS 0550 W
PHOBOS 0725 E
PHOBOS 1115 W
PHOBOS 1505 E
PHOBOS 1855 W
DEIMOS 2055 E
PHOBOS 2245 E

APR 14
PHOBOS 0235 W
PHOBOS 0620 E
PHOBOS 1015 W
DEIMOS 1205 W
PHOBOS 1400 E
PHOBOS 1755 W
PHOBOS 2140 E

APR 15
PHOBOS 0130 W
DEIMOS 0310 E
PHOBOS 0520 E
PHOBOS 0910 W
PHOBOS 1300 E
PHOBOS 1650 W
DEIMOS 1820 W
PHOBOS 2040 E

APR 16
PHOBOS 0030 W
PHOBOS 0415 E
PHOBOS 0810 W
DEIMOS 0925 E
PHOBOS 1155 E
PHOBOS 1545 W
PHOBOS 1935 E
PHOBOS 2325 W

APR 17
DEIMOS 0035 W
PHOBOS 0315 E
PHOBOS 0705 W
PHOBOS 1055 E
PHOBOS 1445 W
DEIMOS 1540 E
PHOBOS 1830 E
PHOBOS 2225 W

APR 18
PHOBOS 0210 E
PHOBOS 0605 W
DEIMOS 0650 W
PHOBOS 0950 E
PHOBOS 1340 W
PHOBOS 1730 E
PHOBOS 2120 W
DEIMOS 2200 E

 

A History of Curious Artifacts Sent Into Space

A penny for Mars... Credit: NASA/JPL-Caltech.

Since the dawn of the Space Age in 1957, thousands of artifacts and memorabilia have been flown into space. Some have been hoisted on brief suborbital flights, while others have been flung out of the solar system, never to return. And of course, it’s become a fashionable — and highly commercialized — trend as of late to briefly loft products, stuffed animals, etc via balloon towards the tenuous boundary of space. Fly a souvenir or artifact into orbit, and it goes from mundane to priceless. But a few may also serve as a final testament to the our ephemeral existence as a species long after our passing.

Here’s a look at some of the most memorable objects sent into space:

The Florida State Quarter dispatched with New Horizons. Image Credit: NASA/Bill Rodgers, JHU/APL.
The Florida State Quarter dispatched with New Horizons. Image Credit: NASA/Bill Rodgers, JHU/APL.

New Horizons Memorabilia

Launched on January 19th, 2006, New Horizons is headed towards a historic encounter with Pluto and its moons next year. From there, New Horizons will survey any Kuiper Belt objects of opportunity along its path and then head out of the solar system, becoming the fifth spacecraft to do so. In addition to a suite of scientific instruments, New Horizons also carries the ashes of Pluto discoverer Clyde Tombaugh, a Florida & Maryland state quarter, a piece of Scaled Composites SpaceShipOne, and an American flag. These will doubtless confuse any extraterrestrial salvagers!

The Humanoids Where Here: the plaque affixed the the Pioneer 10 & 11 spacecraft. Credit: NASA/JPL.
The Humanoids Where Here: the plaque affixed the the Pioneer 10 & 11 spacecraft. Credit: NASA/JPL.

The Pioneer Plaques

The first spacecraft sent on escape trajectories out of our solar system, the Pioneer 10 and 11 spacecraft each carry a plaque which serves as a sort of postcard “greeting” to any future interceptors. The plaque depicts a diagram of the solar system, a map of our location in the galaxy using the positions of known pulsars, and a nude man & woman, which actually generated lots of controversy.  Scientist James Van Allen tells of deliberately placing a fingerprint on the Pioneer 10 plaque in his biography The First Eight Billion Miles.

Earth's Greatest Hits: the Golden Record attached to the Voyager 1 and 2 spacecraft. Credit: NASA/JPL.
Earth’s Greatest Hits: the Golden Record attached to the Voyager 1 and 2 spacecraft. Credit: NASA/JPL.

The Voyager 1 and 2 Golden Records

Conceived and designed in part by Carl Sagan, these records contain images and sounds of the Earth that’ll most likely outlive humanity. The records carry greetings in 55 languages, music ranging from Mozart to Chuck Berry, 116 images and more, along with instructions and a stylus for playback.  The record is also enclosed in an aluminum cover electroplated with Uranium-238, which an alien civilization could use to date its manufacture via half-life decay.

A closeup of the "Mars Penny." Credit: NASA/JPL-Caltech.
A closeup of the “Mars Penny.” Credit: NASA/JPL-Caltech.

The Mars Curiosity Penny

Strange but true: The Mars rover Curiosity carries a 1909 U.S. Penny for a backup camera calibration target.  The penny itself is embedded just below the primary color calibration targets used by Curiosity’s MArs Hand Lens Imager (MAHLI). Rare enough on Earth, the 1909 Lincoln “Mars penny” will be priceless to future collectors!

Jupiter-bound figurines from left: Jupiter, Juno, & Galileo. Credit: NASA.
Jupiter-bound figurines from left: Jupiter, Juno, & Galileo. Credit: NASA.

Juno’s LEGO Figurines

Mini-figurines of Galileo and the Roman deities Jupiter and Juno were launched in 2011 aboard NASA’s Juno spacecraft en route to Jupiter . LEGO has flown products aboard the U.S. Space Shuttles and to the International Space Station previously, but Juno’s cargo represents the “most distant LEGO launch” ever. The figurines will burn up in Jupiter’s atmosphere along with the spacecraft at the end of the mission in October 2017.

An Apollo 15 postal cover flown to the Moon. Credit: NASA.
An Apollo 15 postal cover flown to the Moon. Credit: NASA.

Apollo 15 Postal Covers Fiasco

Apollo 15 astronauts got in some hot water over a publicity scheme. The idea that stamp collector and dealer Hermann Sieger approached the astronauts with was simple: 400 commemorative postage stamp covers would be postmarked at point of departure from the Kennedy Space Center and again at the return point of arrival aboard the USS Okinawa after their circuitous journey via the Moon. NASA was less than happy with the whole affair, and Command Module Pilot Al Worden recounts the aftermath in his book, Falling to Earth.

A Marsbound DVD... Courtesy of Lockheed Martin/LSP.
A Marsbound DVD… Courtesy of Lockheed Martin/LSP.

Haiku for MAVEN

Last year’s MAVEN mission to Mars also carried haiku submitted by space fans.  Over 12,530 valid entries were submitted and over 1,100 haiku received the necessary minimum of two votes to be included on a DVD disk affixed to the spacecraft. MAVEN reaches orbit around Mars in October 2014.

The copy of the Soviet pennant aboard Luna 2on display at the Kansas Cosmoshpere. Credit: Patrick Pelletier under a Wikimedia Creative Commons Attribution-Share Alike 3.0 Unported license.
The copy of the Soviet pennant aboard Luna 2 on display at the Kansas Cosmoshpere. Credit: Patrick Pelletier under a Wikimedia Creative Commons Attribution-Share Alike 3.0 Unported license.

Luna 2: A Russian Pennant on Moon

On September 12th, 1959, the Soviet Union’s Luna 2 spacecraft became the first man-made object to impact the Moon. Luna 2 carried two spherical “pennants” composed of pentagon-shaped elements engraved with the USSR Coat of Arms and Cyrillic letters translating into “CCCP/USSR September 1959.” An identical pennant is now on display in the Kansas Cosmosphere.

EchoStar XVI in its clean room. Credit: Space Systems Loral.
EchoStar XVI in its clean room. Credit: Space Systems Loral.

A GeoSat Time Capsule Aboard EchoStar XVI

A disk entitled Last Pictures similar to the Voyager records was placed on a satellite headed to geosynchronous orbit in 2012. Launched aboard EchoStar XVI, Last Pictures is an ultra-archival disk containing 100 snapshots of modern life along with interviews with several 21st century artists and scientists.  Geosynchronous satellites aren’t subject to atmospheric drag,  and may be the last testament to the existence of humanity on Earth millions of years hence.

An artist's conception of NASA's Lunar Prospector mission leaving Earth orbit. Credit: NASA.
An artist’s conception of NASA’s Lunar Prospector mission leaving Earth orbit. Credit: NASA.

Lunar Prospector Carries An Astro-Geologist’s Ashes to the Moon

Though he never made the selection to become an astronaut, scientist Eugene Shoemaker did make a posthumous trip to the Moon.  The Lunar Prospector spacecraft departed Earth with Shoemaker’s ashes on January 7th, 1998 in a capsule wrapped in brass foil. Lunar Prospector impacted the south pole of the Moon on July 31st, 1999.

The SpaceX Dragon capsule on approach to the ISS during the COTS 2 mission. Credit: NASA.
The SpaceX Dragon capsule on approach to the ISS during the COTS 2 mission. Credit: NASA.

SpaceX Takes Star Trek Actor to Space

The ashes actor James Doohan (AKA Scotty) were launched aboard a 2012 SpaceX flight to the International Space Station. The COTS Demo Flight, or COTS 2, was the first commercial spacecraft to berth at the ISS. SpaceX had flown a small amount of Doohan’s ashes on the 2008 unsuccessful test launch of the Falcon 1 rocket.

The "Top Secret Payload" of  Credit: Chris Thompson/SpaceX.
The “Top Secret Payload” of the Dragon capsule revealed. Credit: Chris Thompson/SpaceX.

Cheese Wheel Makes a Suborbital Journey

All eyes were also on SpaceX during their December 8th 2010 maiden flight of the Dragon space capsule. And the hinted mystery cargo? None other than a wheel of cheese, a nod by SpaceX CEO Elon Musk to a classic Monty Python sketch.

The Apollo 12 “Moon Museum”

Did it really go into space? One of the legends surrounding the Apollo program is the existence of what’s been dubbed the “Moon Museum.”  This was a postage stamp-sized “gallery” of art which included a sketch by Andy Warhol and other 1960s artists that was supposedly attached to descent stage of Apollo 12 and left on the Moon.  It will be up to future lunar visitors to confirm or deny its existence!

…And lastly, I give you the “Space Hubcap”

Was the first man-made object propelled into space actually a 1 ton armor plate? On August 27th, 1957 — just two months prior to Sputnik 1 — the Pascal-B underground nuclear test was conducted in southern Nevada.  During the explosion, a steel plate cap was blasted off of a test shaft. The plate could be seen in the initial high-speed video frames, and it was estimated to have reached a speed six times the sufficient escape velocity to depart Earth. To this day, no one knows if this strange artifact of early Space Age folklore still roams the void of space, or simply vaporized due to atmospheric compression at “launch”.

 

 

Watch Today’s Progress Launch and Docking Live

The Soyuz-U rocket sits ready for launch at the baikonur Cosmodrome earlier today. Credit: The Russian Space Agency.

Live streaming video by Ustream
The first launch of February 2014 worldwide is about to light up the night skies over the Baikonur Cosmodrome in Kazakhstan, with the launch of a Soyuz-U rocket carrying the uncrewed Progress M-22M spacecraft to the ISS. You can watch the launch live here, as well as the “fast-track” docking just 5 hours and 58 minutes later.

Progress will be carrying 2.8 tons of fuel, oxygen, supplies and experiments to the International Space Station. This will be the 54th Progress flight to the International Space Station since the first Progress launch to the station in 2000.

The launch is set to occur at 16:23:33 Universal Time or 11:23:33 AM EST. NASA TV will go live with the launch at 11:00 AM EST/16:00 UT, and TV Tsenki will also broadcast video from the pad just prior, though the broadcast frequently its sans audio.

Progress is also on a four orbit “fast-track” launch headed to the International Space Station. Tune in to NASA TV at 5:00 PM EST/22:00 UT later today, and you’ll be able to catch the docking of the Progress spacecraft to the Pirs module of the ISS as well. Docking is set to occur at 5:25 PM EST/22:25 UT over the North Atlantic Ocean.

Fun fact: Neil Armstrong still holds the record for the fastest journey from liftoff to docking at 5 hours and 33 minutes during Gemini 8 way back in 1966.

Update: ISS Astros indeed report during the live broadcast of the launch of Progress M-22M on NASA TV today of catching sight of the first stage of the Soyuz-U at liftoff… we’ll post any pics if and when they surface.

Progress M-20M undocked from the same Pirs compartment earlier this week on Monday in order to make way for the arrival of Progress M-22M. Progress M-20M is still in orbit, and is slated for a fiery destructive reentry on February 11th over the South Pacific. The long span between undocking and reentry for Progress M-20M allows for experiments on the spacecraft’s attitude control system to be carried out by ground controllers.

...and LIFTOFF of the Soyuz-U rocket from the Baikonur Cosmodrome with Progress M-22M! Credit: NASA TV.
…and LIFTOFF of the Soyuz-U rocket from the Baikonur Cosmodrome with Progress M-22M! Credit: NASA TV.

This also marks the start of a busy 2014 season at the International Space Station. On March 1st, SpaceX continues its contract to resupply the station with the launch of a Falcon 9 rocket with its fifth Dragon capsule making its third operational delivery to the station on CRS-3. Then later in March on the 12th, Expedition 38 crewmembers Oleg Kotov, Sergey Ryazansky, and NASA astronaut Michael Hopkins will return to Earth aboard Soyuz TMA-10M. The next crewed launch headed to the International Space Station are Expedition 39 cosmonauts Alexander Skvortsov, Oleg Artemyev, and NASA astronaut Steve Swanson launching from Baikonur on March 26th on Soyuz TMA-12M.

Progress M-22M is ultimately slated to undock from the Pirs module of the International Space Station on April 7th for a destructive reentry over the South Pacific.  Three additional SpaceX launches utilizing Dragon capsules and two more launches of Orbital Science’s Cygnus cargo spacecraft will be conducted in 2014, as well as visits by the European Space Agency’s ATV-5 Georges Lemaitre in June and JAXA’s HTV-5 in July.

And another launch from the Baikonur Cosmodrome is coming right up on Valentine’s Day, February 14th, with the liftoff of an International Launch Services Proton rocket carrying the Turksat 4A satellite. The launch will be carried live via the ILS website and is slated for 21:09 UT/4:09 PM EST.

And though these are all standard resupply missions to the International Space Station, spaceflight is anything but routine. Avid trackers of live launches will remember the Progress M-12M spacecraft that was lost shortly after launch back in August 2011. To date, Progress M-12M was the only supply craft that failed to reach the International Space Station. Progress M-12M impacted in the Choisk Region of Russia’s Altai Republic in the Far East. The RD-0110 engine began to experience a flight anomaly just over five minutes after launch, causing the flight computer to execute a termination of thrust. Progress M-12M was the first loss of a Progress spacecraft since the start of the program in 1978. Ironically, Progress M-12M carried among its cargo manifest 10 paintings made by the son of Russian artist Alesandr Shilov said to be for “the psychological support of the crew…” There’s also a small cottage industry in Siberia east of Russian launch sites in salvaging rocket parts and boosters for scrap metal as they plummet from the sky.

Tonight's passage of Progress M-20M and the International Space Station over the US SE and the Caribbean region. Created by the author using Orbitron.
Tonight’s passage of Progress M-20M and the International Space Station over the US SE and the Caribbean region. Created by the author using Orbitron.

It’s also possible to spot these spacecraft from your backyard as they arrive and depart from the International Space Station. We caught sight of Progress M-20M just last night, passing very near the waxing crescent Moon. Progress was about magnitude +1 when directly overhead, and was about 9 minutes ahead of the International Space Station. We’ve seen the Dragon, HTV, ATV spacecraft, as well as the U.S. Space Shuttle shortly after undocking from the International Space Station when it was in service. In fact, there’s a series of good passes of the ISS at dusk over the next few evenings for the southeastern United States, including a pass at ~6:58 PM EST tonight. Progress M-20M should be about 20 minutes ahead of the station at this point, assuming, of course, it hasn’t maneuvered in its orbit as a part of ongoing thruster control experiments.

We’ll be checking those final orbital corrections just prior to the pass tonight, as well as tracking the launch and docking of Progress M-22M. Follow us on Twitter (@Astroguyz) for further updates.

Be sure to catch all the action at Baikonur and in low Earth orbit today, both online and overhead!