Catch the Moon pairing with Mercury & Venus Tonight

Looking west at sunset from latitude 30 degrees north. The ecliptic and Mercury's orbit along with a 10 degree field of view outlined for reference. All graphics created by the author using Starry Night).

If you’ve never seen Mercury, this week is a great time to try.

Over the past few weeks, observers worldwide have been following the outstanding tight triple conjunction of Mercury, Venus and Jupiter low to the west at dusk.

Jupiter has exited the evening sky, headed for conjunction with the Sun on June 19th. I caught what was probably our last glimpse of Jupiter for the season clinging to the murky horizon through binoculars just last week. If you’re “Jonesin’ for Jove,” you can follow its progress this week through superior conjunction as it transits the Solar Heliospheric Observatory’s LASCO C3 camera.

This leaves the two innermost worlds of our fair solar system visible low to the west at dusk. And tonight, they’re joined by a very slender waxing crescent Moon, just over two days after New phase.

The Moon, Venus and Mercury as seen from 30 degrees north tonight at 9PM EDT.
The Moon, Venus and Mercury as seen from 30 degrees north tonight at 9PM EDT.

The evening of June 10th finds a 4% illuminated Moon passing just over 5 degrees (about 10 Full Moon diameters) south of Venus and Mercury. Venus will be the first to appear as the sky darkens, shining at magnitude -3.9 and Mercury will shine about 40 times fainter above it at magnitude +0.3.

Ashen light, also known as Earthshine will also be apparent on the darkened limb of the Moon. Another old-time term for this phenomenon is “the Old Moon in the New Moon’s Arms.” Ashen light is caused by sunlight being reflected off of the Earth and illuminating the nighttime Earthward facing portion of the Moon. Just how prominent this effect appears can vary depending on the total amount of cloud cover on the Earth’s Moonward facing side.

....and the orientation of the Moon, Mercury and Venus on the night of June 12th and ~9PM EDT.
….and the orientation of the Moon, Mercury and Venus on the night of June 12th and ~9PM EDT.

This week sets the stage for the best dusk apparition of Mercury for northern hemisphere viewers in 2013. Orbiting the Sun every 88 Earth days, we see Mercury either favorably placed east of the Sun in the dusk sky or west of the Sun in the dawn sky roughly six times a year. Mercury’s orbit is markedly elliptical, and thus not all apparitions are created the same. An elongation near perihelion, when Mercury is 46 million kilometers from the Sun, can mean its only 17.9 degrees away from the Sun as viewed from the Earth. An elongation near aphelion, 69.8 million kilometers distant, has a maximum angular separation of 27.8 degrees.

This week’s greatest elongation of 24.3 degrees occurs on June 12th. It’s not the most extreme value for 2013, but does have another factor going for it; the angle of the ecliptic. As we approach the solstice of June 21st, the plane of the solar system as traced out by the orbit of the Earth is at a favorable angle relative to the horizon. Thus, an observer from 35 degrees north latitude sees Mercury 18.4 degrees above the horizon at sunset, while an observer at a similar latitude in the southern hemisphere only sees it slightly lower at 16.9 degrees.

Venus and the Moon make great guides to locate Mercury over the next few nights. It’s said that Copernicus himself never saw Mercury with his own eyes, though this oft repeated tale is probably apocryphal.

We also get a shot at a skewed “emoticon conjunction” tonight, not quite a “smiley face” (: as occurred between Jupiter, Venus and the Moon in 2008, but more of a “? :” Stick around until February 13th, 2056 and you’ll see a much tighter version of the same thing! A time exposure of a pass of the International Space Station placed near Mercury and Venus could result in a planetary “meh” conjunction akin to a “/:” Hey, just throwing that obscure challenge out there. Sure, there’s no scientific value to such alignments, except as testimony that the universe may just have a skewed sense of humor…

Through the telescope, Venus currently shows a 10” diameter gibbous phase, while Mercury is only slightly smaller at 8” and is just under half illuminated. No detail can be discerned on either world, as a backyard telescope will give you the same blank view of both worlds that vexed astronomers for centuries. These worlds had to await the dawn of the space age to give up their secrets. NASA’s MESSENGER spacecraft entered a permanent orbit around Mercury in 2011, and continues to return some outstanding science.

Both planets are catching up to us from the far side of their orbits. Mercury will pass within 2 degrees of Venus on June 20th, making for a fine wide field view in binoculars.

And now for the wow factor of what you’re seeing tonight. The Moon just passed apogee on June 9th and is currently about 416,500 kilometers or just over one light second distant. Mercury meanwhile, is 0.86 astronomical units (A.U.), or almost 133 million kilometers, or about 7 light minutes away. Finally, Venus is currently farther away from the Earth than the Sun at 1.59 A.U.s, or about 13.7 light minutes distant.

All this makes for a great show in the dusk skies this week. And yes, lunar apogee just after New sets us up for the closest Full Moon of 2013 (aka the internet sensation known as the “Super Moon”) on June 23rd. More to come on that soon!

 

Recurrent Novae, Light Echoes, and the Mystery of T Pyxidis

A sequence of images showing the light echo (circled) enshrouding T Pyxidis months after the April 2011 outburst. (Credit: NASA/ESA/A. Crotts/J. Sokoloski, H. Uthas & S. Lawrence).

Some of the most violent events in our Universe were the topic of discussion this morning at the 222nd meeting of the American Astronomical Society in Indianapolis, Indiana as researchers revealed recent observations of light echoes seen as the result of stellar explosions.

A light echo occurs when we see dust and ejected material illuminated by a brilliant nova. A similar phenomenon results in what is termed as a reflection nebula. A star is said to go nova when a white dwarf star siphons off material from a companion star. This accumulated hydrogen builds up under terrific pressure, sparking a brief outburst of nuclear fusion.

A very special and rare case is a class of cataclysmic variables known as recurrent novae. Less than dozen of these types of stars are known of in our galaxy, and the most famous and bizarre case is that of T Pyxidis.

Located in the southern constellation of Pyxis, T Pyxidis generally hovers around +15th magnitude, a faint target even in a large backyard telescope. It has been prone, however, to great outbursts approaching naked eye brightness roughly every 20 years to magnitude +6.4. That’s a change in brightness almost 4,000-fold.

But the mystery has only deepened surrounding this star. Eight outbursts were monitored by astronomers from 1890 to 1966, and then… nothing. For decades, T Pyxidis was silent. Speculation shifted from when T Pyxidis would pop to why this star was suddenly undergoing a lengthy phase of silence.

Could models for recurrent novae be in need of an overhaul?

T Pyxidis finally answered astronomers’ questions in 2011, undergoing its first outburst in 45 years. And this time, they had the Hubble Space Telescope on hand to witness the event.

Light curve of the 2011 eruption of T Pyxidis. (Credit: AAVSO).
Light curve of the 2011 eruption of T Pyxidis. (Credit: AAVSO).

In fact, Hubble had just been refurbished during the final visit of the space shuttle Atlantis to the orbiting observatory in 2009 on STS-125 with the installation of its Wide Field Camera 3, which was used to monitor the outburst of T Pyxidis.

The Hubble observation of the light echo provided some surprises for astronomers as well.

“We fully expected this to be a spherical shell,” Said Columbia University’s Arlin Crotts, referring to the ejecta in the vicinity of the star. “This observation shows it is a disk, and it is populated with fast-moving ejecta from previous outbursts.”

Indeed, this discovery raises some exciting possibilities, such as providing researchers with the ability to map the anatomy of previous outbursts from the star as the light echo evolves and illuminates the 3-D interior of the disk like a Chinese lantern. The disk is inclined about 30 degrees to our line of sight, and researchers suggest that the companion star may play a role in the molding of its structure from a sphere into a disk. The disk of material surrounding T Pyxidis is huge, about 1 light year across. This results in an apparent ring diameter of 6 arc seconds (about 1/8th the apparent size of Jupiter at opposition) as seen from our Earthly vantage point.

Paradoxically, light echoes can appear to move at superluminal speeds. This illusion is a result of the geometry of the path that the light takes to reach the observer, crossing similar distances but arriving at different times.

And speaking of distance, measurement of the light echoes has given astronomers another surprise. T Pyxidis is located about 15,500 light years distant, at the higher 10% end of the previous 6,500-16,000 light year estimated range. This means that T Pyxidis is an intrinsically bright object, and its outbursts are even more energetic than thought.

Light echoes have been studied surrounding other novae, but this has been the first time that scientists have been able to map them extensively in 3 dimensions.

An artist's conception of the disk of material surrounding T Pyxidis. (Credit: ESA/NASA & A. Feild STScl/AURA).
An artist’s conception of the disk of material surrounding T Pyxidis. (Credit: ESA/NASA & A. Feild STScl/AURA).

“We’ve all seen how light from fireworks shells during the grand finale will light up the smoke and soot from the shells earlier in the show,” said team member Stephen Lawrence of Hofstra University. “In an analogous way, we’re using light from T Pyx’s latest outburst and its propagation at the speed of light to dissect its fireworks displays from decades past.”

Researchers also told Universe Today of the role which amateur astronomers have played in monitoring these outbursts. Only so much “scope time” exists, very little of which can be allocated exclusively to the study of  light echoes. Amateurs and members of the American Association of Variable Star Observers (AAVSO) are often the first to alert the pros that an outburst is underway. A famous example of this occurred in 2010, when Florida-based backyard observer Barbara Harris was the first to spot an outburst from recurrent novae U Scorpii.

And although T Pyxidis may now be dormant for the next few decades, there are several other recurrent novae worth continued scrutiny:

Name Max brightness Right Ascension Declination Last Eruption Period(years)
U Scorpii +7.5 16H 22’ 31” -17° 52’ 43” 2010 10
T Pyxidis +6.4 9H 04’ 42” -32° 22’ 48” 2011 20
RS Ophiuchi +4.8 17H 50’ 13” -6° 42’ 28” 2006 10-20
T Coronae Borealis +2.5 15H 59’ 30” 25° 55’ 13” 1946 80?
WZ Sagittae +7.0 20H 07’ 37” +17° 42’ 15” 2001 30

 

Clearly, recurrent novae have a tale to tell us of the role they play in the cosmos. Congrats to Lawrence and team on the discovery… keep an eye out from future fireworks from this rare class of star!

Read the original NASA press release and more on T Pyxidis here.

 

Getting Ready for “ISS All-Nighters” in June

The International Space Station as seen from the crew of STS-119. (Credit: NASA).

Never seen the International Space Station before? Now is a good time to try, as we enter into a very special time of year.

Starting at 12:30 Universal Time/8:30 AM EDT on Monday, June 3rd, the ISS will enter a phase of permanent illumination throughout the length of its orbit. The station will remain in sunlight and will not experience an orbital sunset until five days later, when it briefly dips into the Earth’s shadow on June 8th at 11:50 UT/ 7:50 AM EDT.

This sets us up for a wealth of visible passes worldwide. This unique phenomenon occurs as a product of the station’s highly inclined orbit. Tilted at 51.6° with respect to the Earth’s equator, its orbit can be oriented roughly perpendicular to the Sun within a few weeks of either solstice.

But whereas the December solstice favors multiple summer sightings for the southern hemisphere, the season near the  June solstice (which occurs this year on June 21st) favors northern latitudes. In fact, observers in the UK, southern Canada and the northern United States will be able to see multiple ISS passes in one night over the next week. Note that the ISS is nearly in full illumination now, and will remain so well into mid-June.

So, why was the ISS put into such a highly inclined orbit?

This orientation enables international partners to have access to the station from launch complexes worldwide. Whereas the shuttle launched on construction flights from Cape Canaveral at 28.5° north latitude, the Progress and crewed Soyuz missions depart from the Baikonur Cosmodrome in Kazakhstan located at 46° north. This resulted in some dramatic launches from the US Florida Space Coast, as the shuttle chased the ISS up the US Eastern Seaboard and was often visible minutes later crossing over the UK.

Though born of practicality, this happy circumstance also means that the ISS is visible to a wide swath of humanity located from 60° north latitude to 60° south. Only locales such as Antarctica, Greenland, and Iceland miss out.

I’m often asked how I know a moving star is a satellite and not an airplane. Aircraft flash, generating their own light, while satellites shine by reflected sunlight. This means that there’s a window of about an hour after sunset or before local sunrise that objects in low Earth orbit are still illuminated high overhead. In the early morning hours, if often seems as if someone has just “flipped on a switch” and satellites suddenly become visible across the sky.

And yes, satellites can flash as well, but in most instances, this is due to tumbling or the observer catching a glint of sunlight off of a reflective panel or surface just right. The Iridium constellation of satellites is known for this effect, but the ISS and Hubble Space Telescope can also flare in this fashion as well.

At 108.5 x 72.8 metres in size, the ISS is the largest man made object ever constructed in Earth orbit. Its unmistakable to spot as it passes overhead, shining at a maximum illumination brighter than the planet Venus at magnitude -5.2 when 100% illuminated.

Note the time the ISS is passing over your location and the direction its coming from and just start watching, no equipment required. It’s really as simple as that. Many prediction platforms exist for ISS passes. I’ve used Heavens-Above for over a decade now to spot ISS passes worldwide. Probably the simplest tracker out there is provided by Spaceweather. Just enter in your postal code and it kicks out an easy to decipher prediction. NASA also has a “Sighting Opportunities” webpage where you can choose your country and city to find out when the ISS will be passing over your location.

More advanced satellite trackers many want to check out CALSky which can also provide a list of transits of the ISS in front of the Sun or Moon from your location. I’ve managed to catch one each from my backyard utilizing it. I also like to use a free satellite tracking program known as Orbitron, which can be run on a laptop in the field away from an Internet connection.

Screenshot of the ISS orbital pass during full illumination next week. (Credit: Orbitron).
Screenshot of the ISS orbital pass during full illumination next week. (Credit: Orbitron).

Photographing a pass of the ISS is easy. Just do a wide field exposure with a DSLR camera on a tripod for 10-30 seconds and you’ll get a picture of the ISS streaking across the starry background. Be sure to use manual mode and either set the focus to infinity or focus on something bright such as Venus just prior to the pass. I generally take a series of test exposures prior to get the combination of ISO/f-stop settings correct for the current sky conditions.

A 20 second exposure of the ISS during a July 4th fireworks show in 2011. (Photo by Author).
A 20 second exposure of the ISS during a July 4th fireworks show in 2011. (Photo by Author).

I can just make out structure on the ISS with binoculars as it passes overhead. This appearance can vary greatly depending on its orientation. Sometimes, it looks like a close binary star. Other times it can appear box-shaped. Occasionally, it looks like a tiny luminous Star Wars TIE-fighter!

The ISS as imaged by Mike Weasner. Credit: The Cassiopeia Observatory).
The ISS as imaged by Mike Weasner. Credit: The Cassiopeia Observatory).

The station managers typically orient the huge solar arrays to provide a small amount of artificial shadow during phases of full illumination. The ISS extends ~45” across at closest approach, similar in apparent diameter to Saturn including its ring system.

You can even image the ISS through a telescope, with a little skill and luck. Many sophisticated mounts will track the ISS as it crosses the sky, or you can use our own low-tech method;

Be sure to check out an ISS pass coming to a sky near you!

An Amazing Deep-Field View of Centaurus A

The Centaurus A Extreme Deep Field. (Image Courtesy of Astrophotography byRolf Oslen. Used with Permision).

Sometimes, you just have to say “Wow!”

The view you’re looking at above is of Centaurus A (NGC 5128), a galaxy about 10-16 million light years distant in the southern hemisphere sky. It’s a favorite of astrophotographers and professional observatories alike.

But what makes this image so special is that it was taken by an amateur astrophotographer.

To construct this amazing image, New Zealand-based astrophotographer Rolf Wahl Olsen exposed the field of view for 120 hours over 43 nights spanning February to May of this year.

Rolf recently shared his motivation to construct this image;

“Over the past few months I have been on a mission to achieve a long time dream of mine: taking a deep sky image with more than 100 hours of exposure.”

Rolf also noted that the stars in the frame are visible down to magnitude +25.45, which “appears to go deeper than the recent ESO release” and believes that it may well be “the deepest view ever obtained of Centaurus A,” As well as “the deepest image ever taken with amateur equipment.”

Not only is the beauty and splendor of the galaxy revealed in this stunning mosaic, but you can see the variations in the populations of stars in the massive regions undergoing an outburst of star formation.

One can also see the numerous globular clusters flocking around the galaxy, as well as the optical counterparts to the radio lobes and the faint trace of the relativistic jets. The extended halo of the outer shell of stars is also visible, along with numerous foreground stars visible in the star rich region of Centaurus.

Finally, we see the dusty lane bisecting the core of this massive galaxy as seen from our Earthly vantage point.

To our knowledge, many of these features have never been captured visually by backyard observers before, much less imaged. Congrats to Rolf Wahl Olsen on a spectacular capture and sharing his view of the universe with us!

Read more on the Centaurus A deep field on Google+.

-Check out the comparison images of the Centaurus A deep field showing the relativistic jet (!) background galaxies and clusters.

-Explore more of Rolf’s outstanding work at his website.

How to Spot Near-Earth Asteroid 1998 QE2 This Week

1998 QE2 on closest approach to Earth this Friday on May 31st. (Credit: NASA/JPL-Caltech).

A large asteroid visits our fair corner of the solar system this week, and with a little planning you may just be able to spot it.

Near Earth Asteroid (NEA) 285263 (1998 QE2) will pass 5.8 million kilometres from the Earth on Friday, May 31st at 20:59 Universal Time (UT) or 4:59PM EDT. Discovered in 1998 during the LIncoln Near-Earth Asteroid Research (LINEAR) sky survey looking for such objects, 1998 QE2 will shine at magnitude +10 to +12 on closest approach. Estimates of its size vary from 1.3 to 2.9 kilometres, with observations by the Spitzer Space Telescope in 2010 placing the ballpark figure towards the high end of the scale at 2.7 kilometres in diameter.

1998 QE2 would fit nicely with room to spare in Oregon’s 8 kilometre-wide Crater Lake.

Though this passage is over 15 times as distant as the Earth’s Moon, the relative size of this space rock makes it of interest. This is the closest approach of 1998 QE2 for this century, and there are plans to study it with both the Arecibo and Goldstone radio telescopes to get a better description of its size and rotation as it sails by. Expect to see radar maps of 1998 QE2 by this weekend.

“Asteroid 1998 QE2 will be an outstanding radar imaging target… we expect to obtain a series of high-resolution images that could reveal a wealth of surface features,” said astronomer and principal JPL investigator Lance Benner.

A recent animation of 1998 QE2 from earlier this month. (Credit: Nick Howes & Ernesto Guido).
A recent animation of 1998 QE2 from earlier this month.
(Credit: Nick Howes & Ernesto Guido).

An Amor-class asteroid, 1998 QE2 has an orbit of 3.77 years that takes it from the asteroid belt between Mars and Jupiter to just exterior of the Earth’s orbit. 1998 QE2 currently comes back around to our vicinity roughly every 15 years, completing about 4 orbits as it does so. Its perihelion exterior to our own makes it no threat to the Earth. This week’s passage is the closest for 1998 QE2 until a slightly closer pass on 0.038 Astronomical Units on May 27th, 2221. Note that on both years, the Earth is just over a month from aphelion (its farthest point from the Sun) which falls in early July.

Of course, the “QE2” designation has resulted in the inevitable comparisons to the size of the asteroid in relation to the Queen Elizabeth II cruise liner. Asteroid designations are derived from the sequence in which they were discovered in a given year. 1998 QE2 was the 55th asteroid discovered in the period running from August 1st to 16th 1998.

Perhaps we could start measuring asteroids in new and creative units, such as “Death Stars” or “Battlestars?”

But the good news is, you can search for 1998 QE2 starting tonight. The asteroid is currently at +12th magnitude in the constellation Centaurus and will be cruising through Hydra on its way north into Libra Friday on May 31st. You’ll need a telescope to track the asteroid as it will never top +10th magnitude, which is the general threshold for binocular viewing under dark skies. Its relative southern declination at closest approach means that 1998 QE2 will be best observed from northern latitudes of +35° southward. The farther south you are, the higher it will be placed in the sky after dusk.

A wide field view of the passage of 1998 QE2 this week, from May 27th through June 2nd. (Created by the author in Starry Night).
A wide field view of the passage of 1998 QE2 this week, from May 27th through June 2nd. (Created by the author in Starry Night).

Still, if you can spot the constellation Libra, it’s worth a try. Many observers in the southern U.S. fail to realize that southern hemisphere sites like Omega Centauri in the constellation Centaurus are visible in the evening low to the south at this time of year. Libra sits on the meridian at local midnight due south for northern hemisphere observers, making it a good time to try for the tiny asteroid.

Visually, 1998 QE2 will look like a tiny, star-like point in the eye-piece of a telescope. Use low power and sketch or photograph the field of view and compare the positions of objects about 10 minutes apart. Has anything moved? We caught sight of asteroid 4179 Toutatis last year using this method.

A closeup look at the passage of 1998 QE2, covering a 48 hour span centered on closest approach on May 31st. (Created by the author in Starry Night).
A closeup look at the passage of 1998 QE2, covering a 48 hour span centered on closest approach on May 31st. (Created by the author in Starry Night).

1998 QE2 will also pass near some interesting objects that will serve as good “guideposts” to track its progress.

We find the asteroid about 5° north of the bright +2.5 magnitude star Iota Centauri on the night of May 28th. It then crosses the border into the constellation Hydra about 6° south of the +3 magnitude star Gamma Hydrae (Star Trek fans will recall that this star lies in the Neutral Zone) on May 29th. Keep a careful eye on 1998 QE2 as it passes within 30’ (about the diameter of a Full Moon) of the +8th magnitude galaxy Messier 83 centered on May 28th at 19:00 UT/3:00 PM EDT. This will provide a fine opportunity to construct a stop-motion animated .gif of the asteroid passing by the galaxy.

Another good opportunity to pinpoint the asteroid comes on the night on Thursday, May 30th as it passes within 30’ of the +3.3 magnitude star Pi  Hydrae.

From there, it’s on to closest approach day. 1998 QE2 crosses into the constellation Libra early on Friday May 31st. The Moon will be at Last Quarter phase and won’t rise until well past local midnight, aiding in your quest.

At its closest approach, 1998 QE2 have an apparent motion of about 1 angular degree every 3 hours, or about 2/3rds the diameter of a Full Moon every hour. This isn’t quite fast enough to see in real time like asteroid 2012 DA14 was earlier this year, but you should notice its motion after about 10 minutes at medium power. Passing at ~465 Earth diameters distant, 1998 QE2 will show a maximum parallax displacement of just a little over 7 arc minutes at closest approach.

For telescopes equipped with setting circles, knowing the asteroid’s precise position is crucial. This allows you to aim at a fixed position just ahead of its path and “ambush” it as it drifts by. For the most precise positions in right ascension and declination, be sure to check out JPL’s ephemeris generator for 1998 QE2.

After its closest passage, 1998 QE2 will pass between the +3.3 & +2.7 magnitude stars Brachium (Sigma Librae) and Zubenelgenubi (Alpha Librae) around 4:00 UT on June 1st. Dedicated observers can continue to follow its northeastward trek into early June.

Slooh will also be carrying the passage of 1998 QE2 on Friday, May 31st starting at 5:00 PM EDT/21:00 UT.

Of course, the hypothetical impact of a space rock the size of 1998 QE2 would spell a very bad day for the Earth. The Chicxulub impact basin off of the Yucatán Peninsula was formed by a 10 kilometre impactor about 4 times larger than 1998 QE2 about 65 million years ago. We can be thankful that 1998 QE2 isn’t headed our way as we watch it drift silently by this week. Hey, unlike the dinosaurs, WE have a space program…   perhaps, to paraphrase science fiction author Larry Niven, we can hear the asteroid whisper as we track its progress across the night sky, asking humanity “How’s that space program coming along?”

NASA Looks at 3-D Food Printer for Star Trek-like Replicator

The RepRap self-replicating printer 'Mendel". (Credit: CharlesC under a Creative Commons Attribution-Share Alike 3.0 Unported license).

The International Space Station may soon have its very own Star Trek food replicator.

Earlier this week, NASA awarded a $125,000 six month grant to the Systems & Materials Research Cooperation to design a 3D printer capable of printing a pizza from 30-year shelf stable foodstuffs.

Founded by Anjan Contractor, SMRC built a basic food printer from a chocolate printer to win NASA’s Small Business Innovation Research Program in a trial video. The design is based on an open-source RepRap 3D printer.

Contractor and SMRC will begin construction on the pizza-printing prototype in two weeks. Pizza has been one item missing from astronauts menu for years. The 3D printer would “build-up” a pizza serving by first layering out the dough onto a heated plate then adding tomato sauce and toppings.

But this isn’t your mother’s pizza, as the proteins would be provided by cartridge injectors filled with organic base powders derived from algae, insects and grass.

Yummy stuff, to be sure!

Of course, one can see an immediate application of 3D food printing technology for long duration space missions. Contractor and SMRC envisions 3D food printing as the wave of the future, with the capacity to solve world hunger for a burgeoning human population.

Could a 3D food printer be coming to a kitchen near you?

Curiously, printing confectioneries and pet food pellets would be the simplest application of said technology. Printing a soufflé and crowned rack of lamb will be tougher. 3D printing technology has made great strides as of late, and RepRap has made a printer which is capable of printing itself. Those who fear the rise of Von Neumann’s self-replicating robots should take note…

Should we welcome or fear our self-replicating, pizza-bearing overlords?

The International Space Station is due for the delivery of its first 3D printer in 2014. This will give astros the capability to fabricate simple parts and tools onsite without requiring machining. Of course, the first question on our minds is: How will a 3D printer function in zero-g? Will one have tomato paste an insect parts flying about? Recent flights aboard a Boeing 727 by Made in Space Inc have been testing 3D printers in micro-gravity environments.

Made in Space demonstrates 3D Printing technology headed to the ISS next year. (Credit: Made in Space Inc./NASA).
Made in Space demonstrates 3D Printing technology headed to the ISS next year. (Credit: Made in Space Inc./NASA).

Further afield, 3D replicators may arrive on the Moon or Mars ahead of humans, building a prefab colony with raw materials available for colonists to follow.

Artist's conception of a lunar base constructed with 3D printing technology. (Credit: NASA Lunar Science Institute).
Artist’s conception of a lunar base constructed with 3D printing technology. (Credit: NASA Lunar Science Institute).

Will 3D food replicators pioneered by SMRC be a permanent fixture on crewed long duration space missions? Plans such as Dennis Tito’s Mars 2018 flyby and the one way Mars One proposal will definitely have to address the dietary dilemmas of hungry astronauts. Biosphere 2 demonstrated that animal husbandry will be impractical  on long term missions. Future Martian colonists will definitely eat much farther down the food chain to survive. SpaceX head Elon Musk has recently said in a Twitter response to PETA that he won’t be the “Kale Eating Overlord of Mars,” and perhaps “micro-ranching” of insects will be the only viable alternative to filet mignon on the Red Planet. Hey, it beats Soylent Green… and the good news is, you can still brew beer from algae!

Diagram of a proposed 3D food printer based on ReRap. (Credit: SMRC).
Diagram of a proposed 3D food printer based on ReRap. (Credit: SMRC).

Would YOU take a one way journey to Mars? Would you eat a bug to do it? It’ll be interesting to watch these 3D printers in action as they take to space and print America’s favorite delivery fast food. But it’s yet to be seen if home replicators will put Dominos Pizza out of business anytime soon. Perhaps they’ll only be viable if they can print a pizza in less than “30 minutes!”

The Birth of a Saros – This Weekend’s Hidden Eclipse

(Photo by Author)

As the first eclipse season of 2013 comes to an end this weekend, an extremely subtle lunar eclipse occurs on the night of Friday, May 24th going into the morning of Saturday, May 25th. And we do mean subtle, as in invisible to the naked eye… this eclipse only lasts 34 minutes in duration and less than 2% of the disk of the Moon enters the bright outer penumbra of the Earth’s shadow!

So, why talk about such a non-event at all?

Great things come from such humble beginnings. And while this weekend’s eclipse is one mostly for the almanacs and astronomical tables rather than a true observational event, it also marks the start of a new lunar saros cycle.

This weekend’s eclipse is one of five for 2013, a year which contains two solars and three lunars. This eclipse marks the end of the first “eclipse season” of the year, a time when the intersection of the Moon’s orbit (known as nodes) and the ecliptic nearly coincide with the position of the Sun (for a solar eclipse at New Moon) and the Earth’s shadow (for a lunar eclipse at Full Moon).

The current season began with a very slight partial eclipse on April 25th, followed by an annular eclipse on May 10th. It will last only 33 minutes and 45 seconds in duration starting at 03:53:11 UTC on May 25th. The Moon will be high over the Americas at the time, but again, shading on the southern limb of the Moon will be too slight to be seen.

Curiously, SLOOH will be providing live coverage of the eclipse, although again, it will be too slight to see.

Starry Night
The Full Moon just nicks the Earth’s penumbra in the early morning hours of May 25th. (Created by the author in Starry Night).

What is a saros? A saros is a period of 18 years 11 days and 8 hours after which an eclipse cycle lines up, producing a similar eclipse to the one that preceded it 18 years before. Note that due to its 8 hour offset, the Earth will have rotated 120° and the visibility region will have shifted westward.

In said period, three lunar cycles very nearly line up;

The Anomalistic month (the period the Moon takes to go from one perigee to another) = 27.555 days.

The Draconic month (the period the Moon takes to return to the same node) = 27.212 days.

The Synodic month (the most familiar one, the period between similar phases) = 29.531 days.

Note that:

239 Anomalistic months = 239×27.555= 6585.645 days.

242 Draconic months = 242×27.212=6585.304 days.

223 Synodic months = 223×29.531=6585.413 days.

There’s that mis-alignment of a third of a day again (8 hours) for every 18 years and 11 days. This also causes the node of each eclipse in the cycle to drift eastward by 0.5° along the ecliptic. Thus, each eclipse isn’t exactly the same. A lunar saros series starts with a very brief penumbral like this weekend’s, becomes deeper and deeper every 18+ year period until partial and total eclipses begin centuries down the road. Thereafter, the cycle reverses, until a final faint penumbral marks the end of the lunar saros.

diagram
The progression of selected eclipses of the same saros cycle. (Credit: Matthew Zimmerman. Wikimedia Commons graphic in the Public Domain).

After this weekend’s eclipse, the next start of a lunar saros won’t occur until November 8th 2060 with the start of saros 156. The last new saros series (number 149) began on June 13th, 1984.

There are numbered saros series for both lunar and solar eclipses. There are currently 41 saroses (the plural of saros) active with the inclusion of this weekend’s start of lunar saros 150.

Saros 150, of which this eclipse is the 1st of 71, will last for just over 1,262 years. It will begin to produce partial eclipses on August 20th, 2157 and produce its 1st total on its 32nd lunar eclipse on April 29th, 2572.

It amazes me that ancient cultures such as the Chaldeans new of saros cycles and could predict eclipses. Being geographically isolated, lunar eclipse cycles would have been easier to decipher than solar ones, as you only have to be on the Moonward facing hemisphere of the Earth to witness the eclipse. They may well have stumbled upon the saros while attempting to calculate a slightly longer 19 year period known as a Metonic cycle to align ancient luni-solar calendars.

And yes, that 8 hour offset also means that after a triple saros period, lunar and solar eclipses of the same saros series do return to roughly the same longitude every 54 years & 34 days. This is known as an exeligmos, and if you get this on a triple-word score in Scrabble, you can safely retire from the game.

NASA
The theoretical visibility circumstances for this week’s penumbral eclipse. (Credit: F. Espenak/NASA/GSFC).

And while this eclipse is more of academic than observational interest, you can always enjoy the light of a brilliant Full Moon. The May Full Moon is referred to as the Flower, Milk, and Corn Planting Moon by the Algonquian Indians of North America, alluding the latent season of Spring.

Also, keep an eye out for several conjunctions and occultations this week by the Moon with bright stars and planets.

The first up is the bright star Spica (Alpha Virginis) which gets occulted by the waxing gibbous Moon around ~11:00 UT on Wednesday, May 22nd for viewers across northern Australia, southern Asia and the South Pacific. Spica is one of four stars brighter than magnitude +1.5 that the Moon can occult, the others being Antares, Aldebaran and Regulus. This is the 6th occultation in a cycle of 13 of Spica by the Moon spanning 2013.

The planet Saturn will lie about 4° north of the waxing gibbous Moon on the following evening of May 23rd.

Also, watch for an occultation of the +2.6th magnitude star Beta Scorpii on the evening of May 24th around the time of the lunar eclipse. This will be a difficult one, as the Moon will be near 100% illumination. Conjunction of the Moon and Beta Scorpii in right ascension occurs at 3:04 UT on May 25th, about 2.5 hours after Full. The occultation will span the southeastern US, Caribbean, northern South America and western Africa.

Created by Author
Visibility path of the occultation of Beta Scorpii by the Moon. (Credit: Occult 4.1.0.2).

2013 isn’t a grand year for eclipses. We’ve got two more in the late season of the year, another slightly deeper penumbral on October 18th and a hybrid solar eclipse on November 3rd. And when, may you ask, will we FINALLY have another total lunar eclipse? Stick around ‘til U.S. Tax Day next year (April 15th 2014) for a total lunar eclipse spanning the Americas!

 

Seeing the Red of ‘La Superba,’ a Magnificent Springtime Carbon Star

Finder chart for La Superba. (Photo by Author).

The Universe can be a very gray place. But this week, we’ll look at a fine example of a class of objects that defies this trend.

Many first time stargazers are surprised when the Trifid or the Orion Nebula fails to exhibit the bright splashy colors seen in Hubble photos. The fault lies not with the Universe, but in our very own eyes.

This is because the light sensitive fovea of our eye has two different types of photoreceptor cells; rods and cones. These act like slow and fast speed film (for those of us old enough to remember actual film!) Under low light conditions, objects have a very black-and-white appearance. It’s only with an increase in brightness that the color receptors in the cone cells of our eye begin to kick in.

One class of stars can induce this effect. They’re known as carbon stars.

A fine example of just such an object rides high in the late spring sky for northern hemisphere observers. This is the variable star Y Canum Venaticorum, also abbreviated as Y CVn or “La Superba” (The magnificent). This name was given to the star by Father Angelo Secchi in the mid-19th century. It is one of the reddest stars in the sky.

Astronomers gauge the “redness” of a star by measuring its magnitude contrast through a blue and visible (green peaking) filters. This is what is known as its B-V index, and the higher the value, the redder the star.

La Superba has a B-V value of +2.5. For contrast, the familiar orange-red stars Antares and Betelgeuse have a B-V value of +1.83 & +1.85, respectively.

Some other classic carbon stars and their B-V values are;

TX Piscium: +2.5

Herschel’s Garnet Star: +2.35

V Hydrae: +4.5

R Leporis (Hind’s Crimson Star): +2.7

Many of these are also variable stars, and they can appear redder visually near their minimum brightness. In the case of La Superba, it ranges from magnitude +4.8 to +6.3 over a span of 160 days, with a longer super-imposed cycle of about 6 years. We’re just coming off of a peak cycle in late May 2013, and La Superba is easy to spot with binoculars about a third of the way between the brilliant double star Cor Caroli (visited by the Enterprise in the Star Trek: The Next Generation Episode “Allegiance”) and Delta Ursa Majoris.

I’ve shown off carbon stars such as La Superba and Hind’s Crimson Star at public star parties to great effect. They can be an excellent star party “secret weapon” when every other ‘scope down the line is aimed at the Orion nebula.

For a faint constellation, Canes Venatici has lots to offer. One of the best globular clusters in the sky M3 can be found within its borders, as can a handful of decent galaxies. La Superba lies in a rather empty region of the constellation high above the galactic plane. In fact, an area about 15° degrees north of location in the adjoining constellation Ursa Major was picked for the famous Hubble Deep Field image for this very reason.

Burnham’s Celestial Handbook describes La Superba as “one of the reddest of all the naked eye stars, (with) a truly odd and vivid tint in large telescopes.” Astronomer Agnes Clerke described its appearance in 1905 as an “extraordinary vivacity of prismatic rays, separated into dazzling zones of red, yellow, and green by broad spaces of profound obscurity.”  (Note: the “spaces” referred to gaps in its spectra).

Through the telescope at low power, we see La Superba as an orange-red ember with shades of white. It’s an easy catch with binoculars, and one of the very few carbon stars that is visible to the naked eye under dark skies. We’d judge that only TX Piscium rivals it in brightness, and only V Hydrae and Hinds appear ruddier. I always like to ask first time observers of colored stars what they see… human eye-brain perception can vary greatly!

The coordinates of La Superba are:

Right Ascension: 12 Hours 45’ 08”

Declination: +45 26’ 25”

La Superba is about 600-800 light years distant. Physically, it is a massive star at three times the mass of our Sun. It’s also a monster in terms of diameter, at four astronomical units in size.  If you placed it within our solar system, it would swallow up the orbits of the interior planets out to Mars!

La Superba is thus much less dense than our own Sun, and at a surface temperature of about 2,800K, relatively cool. It is also the brightest “J-type” carbon star in the sky, a rare sub-type characterized by the presence of the isotope carbon-13 in its atmosphere.  A carbon star is a sun near the end of its life, accumulating carbon compounds in its outer atmosphere as it fuses heavier elements in one last “hurrah” before shedding its outer layers and forming a white dwarf embedded inside a planetary nebula. Carbon stars are much brighter in the infrared, and we see the very tail end of this absorption in the visible red end of the spectrum. In fact, La Superba is a full 9 magnitudes (nearly 4,000 times) brighter in the near-infrared than in the ultraviolet!

All amazing facts to ponder as we view a star near the end of its career, seeding the cosmos with the very element that makes life possible. Next time you’re out observing, be sure to go “into the red” and check out the fine carbon star!

 

A Wacky Distorted View of the Recent Solar Eclipse

A three image sequence of the rising annular eclipse. Credit: Geoff Sims. (@beyond_beneath)

Just when we’d thought that we’ve seen every possible type of eclipse image, we’re happily surprised by the Universe.

If you’re like me, you watch the original Star Wars film and wonder what kind of eclipses could be seen from the surface of Tatooine.  Maybe you even wonder what things would look like if an extra sun and moon were to be thrown into the mix. How often, if ever, would such a bizarre alignment sync up?

Astrophotographer Geoff Sims provided us with just such a bizarre view this past weekend.

Geoff was one of a handful of intrepid photographers that braved the wilds of the Australian Outback to deliver us some stunning views of last week’s rising annular eclipse. We wrote of how to observe this celestial wonder late last month on Universe Today, and documented the efforts of photographers, both Earthbound and otherwise, the day of the eclipse this past Friday.

For this amazing image, Geoff positioned himself along the track of annularity in the Great Sandy Desert in Western Australia. Even the name of the site, the Plutonic Gold Mine outside of Newman, Australia couldn’t be beat!

The series is a composite of three exposures which were taken about three minutes apart. Mr. Simms relates how he accomplished this unforgettable image on his Facebook page:

“The lower image shows a flattened and distorted Sun perched right on the horizon, just seconds before the annular eclipse began. The middle image shows the annular phase, while the upper image shows the Sun some minutes after annularity.”

Mr. Sims used a Canon Mark III DSLR camera with a 500mm lens shooting at 1/1,000th of a second exposures at a focal ratio of f/8 and an ISO setting of 100.

Amazingly, other photographers positioned very near the eclipse graze line caught sight of what are known as Bailey’s Beads as well. More commonly seen during a total solar eclipse, these are caused by sunlight streaming through ridges and valleys on the limb of the Moon. This can also cause the brilliant diamond ring effect seen during a total solar eclipse. In the case of an annular eclipse, this manifests as a ragged broken edge where the disk of the Sun meets the Moon:

Bailey's Beads captured very briefly during last week's annular eclipse. (Credit: Geoff Sims).
Bailey’s Beads captured very briefly during last week’s annular eclipse. (Credit: Geoff Sims).

An annular eclipse occurs when the Moon eclipses the Sun near apogee, or its most distant point in its orbit and is hence visually too small to cover the Sun as seen from the Earth. A similar eclipse occurred over the Pacific and the western U.S. last year on May 20th, leading to a series of “horned sunset” photos taken across Texas and New Mexico.

But what is the most astonishing aspect of the eclipse sequence is the extreme distortion occurring across the very bottom image sitting on the horizon. When you’re looking low to the horizon, you’re viewing objects through a thicker cross-section of the atmosphere. This is what is termed as a higher air mass, and most astro-imagers avoid it entirely, preferring to catch objects with as little distortion as possible as they transit across the local meridian. This distortion can be extreme enough to result in atmospheric refraction of rising and setting objects like the Sun, Moon or planets, causing them to appear moments before or after they actually rose or set over the local horizon. In the case of the bottom image, the lower limb of the solar annulus (the technical name for what folks call the “ring of fire” seen during an annular eclipse) is actually distorted enough to appear along the rim of the local horizon!

To our knowledge, such an extremely distorted eclipse has never been documented before. One also wonders if a “green flash” could be captured by a properly positioned observer on a mountaintop or out to sea during a sunset or sunrise annular or total solar eclipse.

Newsflash: the green flash was indeed captured during last week’s annular eclipse… check out this amazing animation:

Ring of Fire – May 10 2013 Annular Solar Eclipse, Pilbara, Western Australia from Colin Legg on Vimeo.

Awesome!

2013 will offer one more chance to try to repeat this feat. On November 3rd, a hybrid solar eclipse will race across the Atlantic Ocean and central Africa. This is an eclipse that is literally an annular across a portion of its track and a total across another. The eclipse will begin at sunrise just south of Bermuda and end at sunset in eastern Africa. The maximum period of totality is 1 minute and 40 seconds off of the coast of Liberia, and the southern regions of Ethiopia offer the best shot at a sunset eclipse. Tantalizingly, the Florida Space Coast will get a rising partial eclipse only a few percent in magnitude.

Kudos to Mr. Sims for providing us with an unforgettable view of this rare cosmic spectacle. Australia won’t see another total solar eclipse until July 22nd, 2028, and another purely annular eclipse won’t occur until April 29th, 2014 across a very small section of the Antarctic.

And next week, we’ll have a very shallow penumbral eclipse on May 25th, and event is so subtle that few if any will notice it. Still, it is from such humble beginnings that great things are made, as we witness the birth of a new lunar saros… stay tuned!

 

An Awesome Annular Eclipse! Images and Videos from Earth and Space

@Beyond_Beneath Geoff Sims Plutonic Gold Mine, Australia

A spectacular annular eclipse of the Sun was witnessed across Australia and the southern Pacific region early today. Morning dawned mostly clear across the Australian continent, and those who journeyed out to meet the antumbra of the Moon as the Sun rose across the Great Sandy Desert and the Cape York Peninsula were not disappointed. The rest of us watched worldwide on as Slooh and a scattering of other ad-hoc broadcasts delivered the celestial event to us via the web.

This was a challenging one. Although partial phases of the eclipse was visible across the entirety of Australia, Hawaii, and as far north as the Philippines and as far south as New Zealand, the track of annularity passed over some very remote locales. Stable Internet connections were scarce, and many photos and videos are still trickling in as die-hard eclipse chasers return “from the Bush.”

One lucky witness to the eclipse was Druce Horton (Xylopia on flickr) who caught the eclipse from Kuranda, Australia just north of Cairns. “It was completely clouded over here in Kuranda and I didn’t even bother going to a place where I could get a clear view.” Druce told Universe Today. “I then noticed the sky lightening a little and I rushed out with the camera and desperately tried to set an appropriate exposure and frame it while avoiding getting an eyeful of sunlight and/or a tree branch in the way.”

As seen by Druce Horton near Kurunda, Australia.
A rising crescent eclipse as seen by Druce Horton near Kurunda, Australia. (Credit and Copyright: Druce Horton. Used with Permission).

As pointed out the us by Michael Zeiler (@EclipseMaps) earlier this week, the town of Newman and surrounding regions in Western Australia were a great place to witness the rising annular eclipse. Geoffrey Sims ventured out and did just that:

eclipse...
The rising annular eclipse. (Credit: Geoff Sims).

Note how the atmospheric haze is distorting the solar annulus into a flattened ring… pure magic! Mr. Sims got some truly stunning pictures of the eclipse, and was one of the first to manage to get them out onto the Internet, though he stated on Twitter that it “will likely take weeks to sort through the images!”

All get reasons to keep a close eye on Mr. Sims’ Facebook page

Mr. Joerg Schoppmeyer also ventured about 70 kilometres south of Newman to catch the rising “Ring of Fire”:

Annularity just moments after internal contact of the antumbra. Credit:
Annularity just moments after internal contact of the antumbra. Credit: Joerg Schoppmeyer).

We also mentioned earlier this week how you can use the “strainer effect” to create a flock of crescent Suns during a partial solar eclipse.

Amanda Bauer (@astropixie) of Sydney, Australia did just this to create her name in “eclipse pacmans”:

eclipse
An Astropixie Eclipse… (Credit: Amanda Bauer).

And speaking of which, eclipse crescents can turn up in the most bizarre of places, such as a lens flare caught by a webcam based at the Canberra Deep Space Network:

Credit: NASA
A lens flare eclipse. (Credit: CDSCC/NASA).

Trevor Sellman (@tsellman) based in northern Melbourne preferred to catch sight of the partial phase of the eclipse “the old fashioned way,” via a simple pinhole projection onto a white sheet of paper:

Pinhole
A pinhole eclipse. (Credit: Trevor Sellman).

In addition to Slooh, the Mead West Vaco Observatory in conjunction with the Columbus State University’s Coca-Cola Space Science Center provided an excellent webcast of the full phases of the eclipse, and in multiple wavelengths to boot:

CCSS
The solar annulus as seen near mid-eclipse in hydrogen alpha. (Credit: the CCSSC).

And they also provided a view in Calcium-K:

Screen cap in Cal-K
A screen capture of the final stage of the eclipse as seen in Cal-K. (Credit: the CCSSC).

But Earth bound-observers weren’t the only ones on hand to witness this eclipse. Roskosmos also released a video animation of the antumba of the Moon crossing the Earth as seen from the Elektro-L satellite:

“These images interest Russian space enthusiasts because we asked  Roskosmos to optimize (the) work of satellite for best pictures of eclipse,” Vitaliy Egorov told Universe Today.

There’s no word as of yet if the NASA/JAXA spacecraft Hinode or if ESA’s Proba-2 caught the eclipse, although they were positioned to take advantage of the opportunity.

There were also some active sunspot regions on the Earthward face of the Sun, as captured by Monty Leventhal in this outstanding white-light filtered image:

Eclipse

Another fine video animation of the eclipse turned up courtesy of Steve Swayne of Maleny in Queensland, Australia;

And finally, Vanessa Hill caught the partial stage of the eclipse while observing from the CSIRO Astrophysics & Space Sciences viewing event:

eclipse
A partially eclipsed Sun. (Credit: @nessyhill).

Partial stages of the eclipse were also captured by Carey Johnson (@TheTelescopeGuy) from Hawaii and can be viewed on his flickr page.

If this eclipse left you jonesin’ for more, there’s a hybrid solar eclipse across the Atlantic and central Africa on November 3rd 2013. Maximum totality for this eclipse is 1 minute and 40 seconds. Unfortunately, after two solar eclipses in 6 months, another total solar eclipse doesn’t grace the Australian continent until July 22nd, 2028!

But such are the ways of the cosmos and celestial mechanics… hey, be glad we occupy a position in space and time where solar eclipses can occur.

Thanks to all who sent in photos… if you’ve got a picture of today’s eclipse, an anecdote, or just a tale of triumph and/or eclipse chasing tribulations drop us a line & share those pics up to the Universe Today flickr group. See you next syzygy, and may all your eclipse paths be clear!