Solar Storms Might Confuse Whale Navigation, and Make Them More Likely to Strand Themselves

California gray whales like these mothers and calves are 4.3 times more likely to strand themselves during a burst of cosmic radio static from a solar flare, further evidence that they navigate by Earth's magnetic field. Image Credit: Nicholas Metheny NOAA

The Gray Whale is the 10th largest creature alive today, and the 9 creatures larger than it are all whales, too. Gray Whales are known for their epic migration routes, sometimes covering more than 16,000 km (10,000 miles) on their two-way trips between their feeding grounds and their breeding grounds. Researchers don’t have a complete understanding of how whales navigate these great distances, but some evidence suggests that Earth’s magnetism has something to do with it.

Continue reading “Solar Storms Might Confuse Whale Navigation, and Make Them More Likely to Strand Themselves”

InSight has been Sensing Dust Devils Sweep Past its Landing Site

The InSight lander has been on the surface of Mars for about a year, and a half dozen papers were just published outlining some results from the mission. Though InSight’s primary mission is to gather evidence on the interior of Mars—InSight stands for Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport—the lander also keeps track of Martian Meteorology. A new paper reports that InSight has found gravity waves, swirling dust devils, and a steady background rumble of infrasound.

Continue reading “InSight has been Sensing Dust Devils Sweep Past its Landing Site”

After a Challenging First Year on Mars, InSight Shows Us that Mars is Seismically Active

In this artist's concept of NASA's InSight lander on Mars, layers of the planet's subsurface can be seen below and dust devils can be seen in the background. Image Credit: IPGP/Nicolas Sarter

The NASA and DLR InSight lander has been on Mars for over a year now. The mission has faced significant challenges getting its HP3 (Heat Flow and Physical Properties Package) into the subsurface, but the spacecraft’s other instruments are working as intended. Now, researchers have published six papers outlining some of the mission’s scientific results.

Continue reading “After a Challenging First Year on Mars, InSight Shows Us that Mars is Seismically Active”

Dust Devils Have Left Dark Streaks All Over This Martian Crater

HiPOD from February 16th 2020 showing dust devil trails in a Martian crater. Image Credit: NASA/JPL/UArizona

There may be no life on Mars, but there’s still a lot going on there. The Martian surface is home to different geological process, which overlap and even compete with each other to shape the planet. Orbiters with powerful cameras give us an excellent view of Mars’ changing surface.

Continue reading “Dust Devils Have Left Dark Streaks All Over This Martian Crater”

Nutrient-Poor and Energy-Starved. How Life Might Survive at the Extremes in the Solar System

Artist impression of a sunset over KELT-9b, where the planet’s atmosphere is hot enough to vaporize heavy metals such as iron and titanium. Credit and ©: Denis Bajram

Our growing understanding of extremophiles here on Earth has opened up new possibilities in astrobiology. Scientists are taking another look at resource-poor worlds that appeared like they could never support life. One team of researchers is studying a nutrient-poor region of Mexico to try to understand how organisms thrive in challenging environments.

Continue reading “Nutrient-Poor and Energy-Starved. How Life Might Survive at the Extremes in the Solar System”

Both Stars in This Binary System Have Accretion Disks Around Them

Artist’s impression of one of the two stars in the FU Orionis binary system, surrounded by an accreting disk of material. What has caused this star — and others like it — to dramatically brighten? [NASA/JPL-Caltech]
Artist’s impression of one of the two stars in the FU Orionis binary system, surrounded by an accreting disk of material. Credit: NASA/JPL-Caltech

Stars exhibit all sorts of behaviors as they evolve. Small red dwarfs smolder for billions or even trillions of years. Massive stars burn hot and bright but don’t last long. And then of course there are supernovae.

Some other stars go through a period of intense flaring when young, and those young flaring stars have caught the attention of astronomers. A team of researchers are using the Atacama Large Millimeter/sub-millimeter Array (ALMA) to try to understand the youthful flaring. Their new study might have found the cause, and might have helped answer a long-standing problem in astronomy.

Continue reading “Both Stars in This Binary System Have Accretion Disks Around Them”

ESA is Considering a Mission to Give Advanced Warnings of Solar Storms

A massive prominence erupts from the surface of the sun. Credit: NASA Goddard Space Flight Center

The Sun is not exactly placid, though it appears pretty peaceful in the quick glances we can steal with our naked eyes. In reality though, the Sun is a dynamic, chaotic body, spraying out solar wind and radiation and erupting in great sheets of plasma. Living in a technological society next to all that is a challenge.

Continue reading “ESA is Considering a Mission to Give Advanced Warnings of Solar Storms”

Beautiful Exposed Bedrock and Sand Dunes on Mars

An impact crater south of Aurorae Chaos on Mars. Large enough craters form central uplifts or peaks of exposed bedrock. Image Credit: NASA/JPL/UArizona

Impact craters can be quite complex. Depending on the size of the impactor, and on the size of the planet it strikes, craters form differently. Some form central peaks or uplifted structures, or even pits as seen in this image.

Continue reading “Beautiful Exposed Bedrock and Sand Dunes on Mars”

Mars Was Hit By a Lot of Protoplanets Early in its History, Taking Longer to Form than Previously Thought.

Scientists developed this illustration of how early Mars may have looked, showing signs of liquid water, large-scale volcanic activity and heavy bombardment from planetary projectiles. SwRI is modeling how these impacts may have affected early Mars to help answer questions about the planet’s evolutionary history. Image Credit: SwRI/Marchi

There are around 61,000 meteorites on Earth, or at least that’s how many have been found. Out of those, about 200 of them are very special: they came from Mars. And those 200 meteorites have been important clues to how Mars formed in the early Solar System.

Continue reading “Mars Was Hit By a Lot of Protoplanets Early in its History, Taking Longer to Form than Previously Thought.”

A Rare Fast Radio Burst has been Found that Actually Repeats Every 16 Days

Taken with the HAWK-I instrument on ESO’s Very Large Telescope in the Chilean Atacama Desert, this stunning image shows the Milky Way’s central region with an angular resolution of 0.2 arcseconds. This means the level of detail picked up by HAWK-I is roughly equivalent to seeing a football (soccer ball) in Zurich from Munich, where ESO’s headquarters are located. The image combines observations in three different wavelength bands. The team used the broadband filters J (centred at 1250 nanometres, in blue), H (centred at 1635 nanometres, in green), and Ks (centred at 2150 nanometres, in red), to cover the near infrared region of the electromagnetic spectrum. By observing in this range of wavelengths, HAWK-I can peer through the dust, allowing it to see certain stars in the central region of our galaxy that would otherwise be hidden.   

A team of scientists in Canada have found a Fast Radio Burst (FRB) that repeats every 16 days. This is in stark contrast to other FRBs, which are more sporadic. Some of those sporadic FRBs occur in clusters, and repeat irregularly, but FRBs with a regular, repeatable occurrence are rare.

Continue reading “A Rare Fast Radio Burst has been Found that Actually Repeats Every 16 Days”