Shape-shifting Robots Like These Could Be Just What We Need to Explore Titan

A prototype of the transforming robot Shapeshifter is tested in the robotics yard at NASA's Jet Propulsion Laboratory. Image Credit: NASA/JPL-Caltech

When it comes to space exploration, it’s robots that do most of the work. That trend will continue as we send missions onto the surfaces of worlds further and further into the Solar System. But for robots to be effective in the challenging environments we need to explore—like Saturn’s moon Titan—we need more capable robots.

A new robot NASA is developing could be the next step in robotic exploration.

Continue reading “Shape-shifting Robots Like These Could Be Just What We Need to Explore Titan”

Astronauts Explore Caves on Earth, Learning the Skills They’ll Need for the Moon and Mars

ESA astronauts from five different space agencies are pictured here training in caves in Slovenia, as part of the ESA's CAVES program. Image Credit: ESA–A. Romeo

We’re accustomed to astronauts pulling off their missions without a hitch. They head up to the International Space Station for months at a time and do what they do, then come home. But upcoming missions to the surface of the Moon, and maybe Mars, present a whole new set of challenges.

One way astronauts are preparing for those challenges is by exploring the extreme environment inside caves.

Continue reading “Astronauts Explore Caves on Earth, Learning the Skills They’ll Need for the Moon and Mars”

This Summer’s Asteroid Near-Miss Helped Greenlight NASA’s NEOCam Mission to Search the Skies for Killer Spacerocks

NEO asteroid
An artist's conception of an NEO asteroid orbiting the Sun. Credit: NASA/JPL.

Last July, a once-in-a-lifetime event happened. Not the good kind; the football-field-sized-asteroid near-miss kind. And that near miss is the catalyst for a renewed effort from NASA to detect more dangerous space-rocks that might threaten Earth.

Last summer’s near-miss asteroid was named 2019 OK, and it passed within about 77,000 km (48,000 miles) of Earth. It managed to slip past all of our detection methods and came within 0.19 lunar distances to Earth. In astronomical terms, that is remarkably close.

We only had 24 hours notice that the asteroid was coming, thanks to a small telescope in Brazil that spotted it. That near miss has sparked a renewed conversation on planetary defense and on NASA’s role in it.

It also left people wondering how this could happen.

Continue reading “This Summer’s Asteroid Near-Miss Helped Greenlight NASA’s NEOCam Mission to Search the Skies for Killer Spacerocks”

Planet Mars, From Pole to Pole

Mars from pole to pole as imaged by the Mars Express orbiter. Image Credit: ESA/DLR/FU Berlin, CC BY-SA 3.0 IGO

A new image from the ESA’s Mars Express Orbiter shows exactly how different regions in Mars are from one another. From the cloudy northern polar region all the way to the Helles Planitia down in the south, Mars is a puzzle of different terrain types. At the heart of it all is what’s known as the Martian dichotomy.

Continue reading “Planet Mars, From Pole to Pole”

Elliptical Galaxy Messier 110 Has a Surprising Core of Hot Blue Stars

A new Hubble image of M 110 shows that these dwarf elliptical galaxies do contain some blue, hot young stars and that they may harbour areas of star formation after all. Image credit: ESA/Hubble & NASA, L. Ferrarese et al.

Messier 110 (NGC 205) is a satellite of the Andromeda Galaxy. It’s a dwarf elliptical galaxy, a common type of galaxy often found in galaxy clusters and groups, and it contains about 10 billion stars. Like all dwarf ellipticals, it doesn’t have the characteristic shape of galaxies like Andromeda or the Milky Way, with their vast, spiral arms. It has a smooth, featureless shape.

Dwarf ellipticals lack the blazing bright areas of active star formation that other galaxies display. In fact, astronomers think that they’re too old to have any young stars at all. But M110 appears to be different.

Continue reading “Elliptical Galaxy Messier 110 Has a Surprising Core of Hot Blue Stars”

Rosetta Saw Collapsing Cliffs and Other Changes on 67P During its Mission

An example of a boulder having moved across the surface of Comet 67P/Churyumov-Gerasimenko’s surface, captured in Rosetta’s OSIRIS imagery. The image was taken with the narrow-angle camera and shows the boulder in the lower third of the image. Image Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA (CC BY-SA 4.0);

It seems that comet 67P/Churyumov–Gerasimenko is not the stoic, unchanging Solar System traveller that it might seem to be. Scientists working through the vast warehouse of images from the Rosetta spacecraft have discovered there’s lots going on on 67P. Among the activity are collapsing cliffs and bouncing boulders.

Continue reading “Rosetta Saw Collapsing Cliffs and Other Changes on 67P During its Mission”

Enceladus Causes Snowfall On Other Moons of Saturn

Stunningly beautiful Enceladus has a subsurface ocean. Image Credit: NASA/JPL/Space Science Institute

Radar evidence shows that geysers on Enceladus are ejecting water that turns to snow. The snow not only falls back on Enceladus’ surface, but also makes its way to its neighboring moons, Mimas and Tethys, making them more reflective. Researchers are calling this a ‘snow cannon.’

Continue reading “Enceladus Causes Snowfall On Other Moons of Saturn”

A Distant Asteroid Collision Gave Earthly Biodiversity An Ancient Boost

An artist's illustration of the Ordovician Meteor Event. Image Credit: DON DAVIS, SOUTHWEST RESEARCH INSTITUTE

About 466 million years ago, there was an asteroid collision in the asteroid belt between Mars and Jupiter. The collision caused the breakup of a major asteroid, creating a shower of dust throughout the inner Solar System. That event is called the Ordovician Meteor Event, and its dust caused an ice age here on Earth.

That ice age contributed to an enormous boost in biodiversity on ancient Earth.

Continue reading “A Distant Asteroid Collision Gave Earthly Biodiversity An Ancient Boost”

Yes, This is Actually the Shadow of Io Passing Across the Surface of Jupiter.

Io casts a crisp circular shadow on the the cloud tops in Jupiter's atmosphere in this JunoCam image processed by Kevin Gill. Image Credit: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill https://creativecommons.org/licenses/by/2.0/

The JunoCam onboard NASA’s Juno spacecraft continues to provide we Earthbound humans with a steady stream of stunning images of Jupiter. We can’t get enough of the gas giant’s hypnotic, other-worldly beauty. This image of Io passing over Jupiter is the latest one to awaken our sense of wonder.

This image was processed by Kevin Gill, a NASA software engineer who has produced other stunning images of Jupiter.

Continue reading “Yes, This is Actually the Shadow of Io Passing Across the Surface of Jupiter.”

Io’s Largest Volcano, Loki, Erupts Every 500 Days. Any Day Now, It’ll Erupt Again.

This picture from Voyager 1 shows the volcano Loki on Jupiter’s moon Io. When this picture was taken, the main eruptive activity came from the lower left of the dark linear feature (perhaps a rift) in the center. Below is the "lava lake," a U-shaped dark area about 200 kilometers across. Credit: NASA/JPL

Jupiter’s moon Io is in stark contrast to the other three Galilean moons. While Callisto, Ganymede, and Europa all appear to have subsurface oceans, Io is a volcanic world, covered with more than 400 active volcanoes. In fact, Io is the most volcanically active body in the Solar System.

Io’s largest volcano is named Loki, after a God in Norse mythology. It’s the most active and most powerful volcano in the Solar System. Since 1979, we’ve known that it’s active and that it’s both continuous and variable. And since 2002, thanks to a research paper in the Geophysical Research Letters, we’ve known that it erupts regularly.

Continue reading “Io’s Largest Volcano, Loki, Erupts Every 500 Days. Any Day Now, It’ll Erupt Again.”