China’s FAST Telescope, the World’s Largest Single Radio Dish Telescope, is Now Fully Operational

The Five-hundred-metre Aperture Spherical Telescope (FAST) has just finished construction in the southwestern province of Guizhou. Credit: FAST

After years of construction, China’s new radio telescope is in action. The telescope, called FAST (Five-hundred-meter Aperture Spherical Radio Telescope) has double the collecting power of the Arecibo Observatory in Puerto Rico, which has a 305 meter dish. Until now, Arecibo was the world’s largest radio dish of its type.

Continue reading “China’s FAST Telescope, the World’s Largest Single Radio Dish Telescope, is Now Fully Operational”

NASA Tests Autonomous Lunar Landing Technology

NASA is testing autonomous lunar launch systems in the Mojave Desert in California. Pictured is a tethered test of Draper relative terrain navigation system on a Masten Space Systems Zodiac rocket. Image Credit: NASA/Masten Space Systems

In anticipation of many Moon landings to come, NASA is testing an autonomous lunar landing system in the Mojave Desert in California. The system is called a “terrain relative navigation system.” It’s being tested on a launch and landing of a Zodiac rocket, built by Masten Space Systems. The test will happen on Wednesday, September 11th.

Continue reading “NASA Tests Autonomous Lunar Landing Technology”

Whoa. Lakes on Titan Might be the Craters from Massive Underground Explosions

This artist's concept of a lake at the north pole of Saturn's moon Titan illustrates raised rims and rampartlike features such as those seen by NASA's Cassini spacecraft around the moon's Winnipeg Lacus. Credit: NASA/JPL-Caltech

The Cassini spacecraft ended its mission to Saturn and its moons two years ago when it was sent plunging into Saturn to be destroyed. But after two years, scientists are still studying the data from the Cassini mission. A new paper based on Cassini data proposes a new explanation for how some lakes on Titan may have formed.

Continue reading “Whoa. Lakes on Titan Might be the Craters from Massive Underground Explosions”

This is Why Saturn’s Rotation is So Hard to Measure

Like all gas giants, Saturn does not have a "surface" per se, but it does have many layers with different compositions. Credit: NASA/JPL-Caltech/Space Science Institute.

For a rocky planet, finding the length of a day can be simple. Just pick a reference point and watch how long it takes to rotate out of view, then back into view. But for planets like Saturn, it’s not so simple. There are no surface features to track.

Continue reading “This is Why Saturn’s Rotation is So Hard to Measure”

Mercury has Magnetic Poles that Drift Like Earth’s

The different colors in this MESSENGER image of Mercury indicate the chemical, mineralogical, and physical differences between the rocks that make up the planet’s surface. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington.

Earth’s magnetic poles drift over time. This is something that every airplane pilot or navigator knows. They have to account for it when they plan their flights.

They drift so much, in fact, that the magnetic poles are in different locations than the geographic poles, or the axis of Earth’s rotation. Today, Earth’s magnetic north pole is 965 kilometres (600 mi) away from its geographic pole. Now a new study says the same pole drifting is occurring on Mercury too.

Continue reading “Mercury has Magnetic Poles that Drift Like Earth’s”

This Star Has Reached the End of its Life

This Picture of the Week from the NASA/ESA Hubble Space Telescope shows NGC 5307, a planetary nebula which lies about 10000 light years from Earth. It can be seen in the constellation Centaurus (The Centaur), which can be seen primarily in the southern hemisphere.  A planetary nebula is the final stage of a Sun-like star. As such, planetary nebulae allow us a glimpse into the future of our own Solar System. A star like our Sun will, at the end of its life, transform into a red giant. Stars are sustained by the nuclear fusion that occurs in their core, which creates energy. The nuclear fusion processes constantly try to rip the star apart. Only the gravity of the star prevents this from happening.  At the end of the red giant phase of a star, these forces become unbalanced. Without enough energy created by fusion, the core of the star collapses in on itself, while the surface layers are ejected outward. After that, all that remains of the star is what we see here: glowing outer layers surrounding a white dwarf star, the remnants of the red giant star’s core.  This isn’t the end of this star’s evolution though — those outer layers are still moving and cooling. In just a few thousand years they will have dissipated, and all that will be left to see is the dimly glowing white dwarf.

About 10,000 light years away, in the constellation Centaurus, is a planetary nebula called NGC 5307. A planetary nebula is the remnant of a star like our Sun, when it has reached what can be described as the end of its life. This Hubble image of NGC 5307 not only makes you wonder about the star’s past, it makes you ponder the future of our very own Sun.

Continue reading “This Star Has Reached the End of its Life”

Thanks to Trump, We’ve Got a Better Idea of the Capabilities of US Surveillance Satellites

Trump tweeted this image from an American recon satellite whose imaging capabilities were being kept secret. It shows the aftermath of a failed rocket launch attempt at Iran's Imam Khomeini Space Center. Image Credit: NSA? (maybe)

The US President has done it again.

Just when you think things can’t get any more—”unusual”— in the White House, the President has Tweeted an American spy satellite image as part of a juvenile jab at Iranian leadership. After some sleuthing, astronomers were able to figure out which satellite it came from: a (formerly) top-secret satellite called USA 224, an optical reconnaissance satellite.

Continue reading “Thanks to Trump, We’ve Got a Better Idea of the Capabilities of US Surveillance Satellites”

Mars 2020 Rover Gets its Helicopter Sidekick

An engineer works on attaching NASA's Mars Helicopter to the belly of the Mars 2020 rover - which has been flipped over for that purpose - on Aug. 27, 2019, at the Jet Propulsion Laboratory in Pasadena, California. Credit: NASA/JPL-Caltech.

Work on the Mars 2020 Rover is heating up as the July/August 2020 launch date approaches. Mission engineers just attached the Mars Helicopter to the belly of the rover, where it will make the journey to Mars. Both the solar-powered helicopter and the Mars Helicopter Delivery System are now attached to the rover.

NASA’s Mars Helicopter will be the first aircraft to fly on another planet. The small rotor-craft only weighs 1.8 kg (4 lbs.) and is made of lightweight materials like carbon fiber and aluminum. It’s largely a technology demonstration mission, and is important to NASA. The overall mission for the Mars 2020 rover won’t depend on the helicopter, but NASA hopes to learn a lot about how to proceed with aircraft on future missions by putting the Mars helicopter through its paces on Mars.

Continue reading “Mars 2020 Rover Gets its Helicopter Sidekick”

Even Though it Hasn’t Launched Yet, JUICE Took its First Images of Jupiter and its Moons

This is the first glimpse of JUICE's eventual destination captured by the spacecraft's NavCam during ground testing. Image Credit: Airbus Defense and Space.

Is there a more complicated and sophisticated technological engineering project than a spacecraft? Maybe a particle accelerator or a fusion power project. But other than those two, the answer is probably no.

Spacecraft like the ESA’s JUICE don’t just pop out of the lab ready to go. Each spacecraft like JUICE is a singular design, and they require years—or even a decade or more—of work before they ever see a launch pad. With a scheduled launch date of 2022, JUICE is in the middle of all that work. Now its cameras are capturing images of Jupiter and its icy moons as part of its navigation calibration and fine-tuning.

“It felt particularly meaningful to conduct our tests already on our destination!”

Gregory Jonniaux, Vision-Based Navigation expert at Airbus Defence and Space.
Continue reading “Even Though it Hasn’t Launched Yet, JUICE Took its First Images of Jupiter and its Moons”

Asteroid Ryugu is a “Fragile Rubble Pile”

The MASCam team behind the MASCOT rover's camera identified two types of rock on Ryugu: Type 1 are dark, irregularly-shaped boulders with crumpled, cauliflower-like surfaces. Type 2 are brighter, with sharp edges, and smooth, fractured surfaces. Image Credit: MASCOT/DLR/JAXA

When Japan’s Hayabusa 2 spacecraft arrived at asteroid Ryugu in June 2018, it carried four small rovers with it. Hayabusa 2 is primarily a sample-return mission, but JAXA (Japan Aerospace Exploration Agency) sent rovers along to explore the asteroid’s surface and learn as much as they could from their visit. There’s also no guarantee that the sample return will be successful.

They chose Ryugu because the asteroid is classified as a primitive carbonaceous asteroid. This type of asteroid is a desirable target because it represents the primordial matter that formed the bodies in our Solar System. It’s also pretty close to Earth.

The sample from Ryugu, which will make it to Earth in December 2020, is the big science prize from this mission. Analyzing it in Earth-based laboratories will tell us a lot more than spacecraft instruments can. But the rovers that landed on Ryugu’s surface have already revealed a lot about Ryugu.

Continue reading “Asteroid Ryugu is a “Fragile Rubble Pile””