Eruption of the Raikoke Volcano, Seen From Space

The Raikoke Volcano erupting on June 22nd, as imaged by NASA astronauts on the ISS. Image Credit: NASA

The Raikoke Volcano, dormant for a very long time, has awoken from its slumber. The volcanic island is in the Kuril Island chain, near the Kamchatka Peninsula in Russia. Unlike its more volcanically active neighbours, Raikoke has been dormant since 1924.

Thanks to astronauts on the International Space Station, we have gorgeous photos of the eruption.

Continue reading “Eruption of the Raikoke Volcano, Seen From Space”

SpaceIL Scraps its Plans to go Back to the Moon. Instead, it’s Got a New Secret “Significant Objective” for Beresheet 2

Mystery. Secrecy. A Need-To-Know Basis. These are the hallmarks of science. Wait a minute: no they’re not. So what’s with all the mysterious secret objective talk from SpaceIL about Beresheet2?

Continue reading “SpaceIL Scraps its Plans to go Back to the Moon. Instead, it’s Got a New Secret “Significant Objective” for Beresheet 2″

Lakes on Titan Might Have Exotic Crystals Encrusted Around Their Shores

This true-color image of Titan, taken by the Cassini spacecraft, shows the moon's thick, hazy atmosphere. Image: By NASA - http://photojournal.jpl.nasa.gov/catalog/PIA14602, Public Domain, https://commons.wikimedia.org/w/index.php?curid=44822294
This true-color image of Titan, taken by the Cassini spacecraft, shows the moon's thick, hazy atmosphere. Credit: NASA

Titan is a mysterious, strange place for human eyes. It’s a frigid world, with seas of liquid hydrocarbons, and a structure made up of layers of water, different kinds of ice, and a core of hydrous silicates. It may even have cryovolcanoes. Adding to the odd nature of Saturn’s largest moon is the presence of exotic crystals on the shores of its hydrocarbon lakes.

Continue reading “Lakes on Titan Might Have Exotic Crystals Encrusted Around Their Shores”

Hubble Finds Buckyballs in Space

For the first time, NASA's Spitzer Space Telescope has detected little spheres of carbon, called buckyballs, in a galaxy beyond our Milky Way galaxy. The space balls were detected in a dying star, called a planetary nebula, within the nearby galaxy, the Small Magellanic Cloud. What's more, huge quantities were found -- the equivalent in mass to 15 of our moons. An infrared photo of the Small Magellanic Cloud taken by Spitzer is shown here in this artist's illustration, with two callouts. The middle callout shows a magnified view of an example of a planetary nebula, and the right callout shows an even further magnified depiction of buckyballs, which consist of 60 carbon atoms arranged like soccer balls. In July 2010, astronomers reported using Spitzer to find the first confirmed proof of buckyballs. Since then, Spitzer has detected the molecules again in our own galaxy -- as well as in the Small Magellanic Cloud. Image Credit: NASA/JPL-Caltech

Scientists working with the Hubble Space Telescope have found a very complex molecule out there in space. Called Buckyballs, after renowned thinker Buckminster Fuller, they are a molecular arrangement of 60 carbon atoms (C60) in the rough shape of a soccer ball. Though it’s not the first time these exotic molecules have been spotted in space, it is the first time that Buckyball ions have been found.

Continue reading “Hubble Finds Buckyballs in Space”

Third Falcon Heavy Launch Blasts 24 Payloads Into Orbit Including a Solar Sail. Doesn’t Quite Stick the Landing

The Falcon Heavy STP-2 mission launched from Kennedy Space Center on Tuesday, June 25, 2019. Image Credit: Alex Brock Instagram: @alexhbrock, Website: www.alexhbrock.com

In what Elon Musk is calling their “most difficult” mission so far, SpaceX launched the Falcon Heavy rocket for the third time. The launch took place at 2:30 am ET Tuesday from a launch pad at Kennedy Space Center in Florida. The mission was called STP-2, and Universe Today sent a photographer to capture all the action.

Continue reading “Third Falcon Heavy Launch Blasts 24 Payloads Into Orbit Including a Solar Sail. Doesn’t Quite Stick the Landing”

Hubble is the Ultimate Multitasker: Discovering Asteroids While it’s Doing Other Observations

Some asteroids from within our Solar System have photobombed deep images of the Universe taken by the NASA/ESA Hubble Space Telescope. These asteroids reside, on average, only about 260 million kilometres from Earth — right around the corner in astronomical terms. Yet they've horned their way into this picture of thousands of galaxies scattered across space and time at inconceivably farther distances. This Hubble photo of a random patch of sky is part of the Frontier Fields survey. The colourful image contains thousands of galaxies, including massive yellowish ellipticals and majestic blue spirals. Much smaller, fragmentary blue galaxies are sprinkled throughout the field. The reddest objects are most likely the farthest galaxies, whose light has been stretched into the red part of the spectrum by the expansion of space. Intruding across the picture are asteroid trails that appear as curved or S-shaped streaks. Rather than leaving one long trail, the asteroids appear in multiple Hubble exposures that have been combined into one image. Of the 20 total asteroid sightings for this field, seven are unique objects. Of these seven asteroids, only two were earlier identified. The others were too faint to be seen previously. The trails look curved due to an observational effect called parallax. As Hubble orbits around Earth, an asteroid will appear to move along an arc with respect to the vastly more distant background stars and galaxies. The motion of Earth around the Sun, and the motion of the asteroids along their orbits, are other contributing factors to the apparent skewing of asteroid paths. All the asteroids were found manually, the majority by "blinking" consecutive exposures to capture apparent asteroid motion. Astronomers found a unique asteroid for every 10 to 20 hours of exposure time. The Frontier Fields program is a collaboration among several space telescopes and ground-based observatories to study six massive galaxy clusters and their effects. Using a diff

It looks like a poster of the famous Hubble Deep Field, marked with white streaks by a child, or put away carelessly and scratched in the process. But it’s not. The white streaks aren’t accidents; they’re the paths of asteroids.

Continue reading “Hubble is the Ultimate Multitasker: Discovering Asteroids While it’s Doing Other Observations”

NASA Model Shows Greenland’s Ice Sheet Will Disappear Over the Next 1000 Years, Raising Sea Levels by 7 Meters

The Greenland ice sheet could be gone in a thousand years. Don't buy waterfront property. Image Credit: NASA

Great news! Humankind’s greatest-ever engineering project is nearing completion. Soon we will have warmed the Earth enough to get rid of all those pesky ice sheets and other frozen areas. The finish line is in sight.

If we all work together for the next thousand years, we’ll finally reach our goal!

Continue reading “NASA Model Shows Greenland’s Ice Sheet Will Disappear Over the Next 1000 Years, Raising Sea Levels by 7 Meters”

Deep Space Atomic Clocks Will Help Spacecraft Answer, with Incredible Precision, if They’re There Yet

The Deep Space Atomic Clock, a new technology from NASA's JPL, may change the way spacecraft navigate in space. Launching in late June aboard the Orbital Test Bed satellite, on the SpaceX's Falcon Heavy rocket, descendants of the technology demonstration could be a key component of a self-driving spacecraft and a GPS-like navigation system at other worlds.Credit: General Atomics Electromagnetic Systems

How do spacecraft know where they are? There’s no GPS out there. Right now, it involves sending a signal to the spacecraft which the spacecraft then sends right back to Earth. The elapsed time reveals the distance.

But on June 24th, that method could be replaced by something much more autonomous.

Continue reading “Deep Space Atomic Clocks Will Help Spacecraft Answer, with Incredible Precision, if They’re There Yet”

Stunning Image Shows How Saturn’s Tiny Moon Sculpts the Planet’s Rings

This image of the tiny moon Daphnis, only about 8km in diameter, is an enhanced-color mosaic. Daphnis is creating three waves in the outer edge of the Keeler gap. Image Credit: NASA/JPL-Caltech/Space Science Institute

The Cassini mission to Saturn ended a year and a half ago, but scientific results are still coming from all of the data it collected. When Cassini moved in closer to Saturn in its final months, it took a very detailed look at the gas giant’s rings, travelling between them and the planet itself. That detailed inspection raised quite a few questions about all the interactions shaping those rings.

A new paper published in Science presents some of the results from Cassini’s close-up look at the rings.

Continue reading “Stunning Image Shows How Saturn’s Tiny Moon Sculpts the Planet’s Rings”

Competition Will Let You Name an Exoplanet

Within the framework of its 100th anniversary commemorations, the International Astronomical Union (IAU) is organising the IAU100 NameExoWorlds global competition that allows any country in the world to give a popular name to a selected exoplanet and its host star. Image Credit: IAU/L. Calçada
Within the framework of its 100th anniversary commemorations, the International Astronomical Union (IAU) is organising the IAU100 NameExoWorlds global competition that allows any country in the world to give a popular name to a selected exoplanet and its host star. Image Credit: IAU/L. Calçada

When it comes to naming all those exoplanets that astronomers keep finding, it’s up to the International Astronomical Union (IAU) to do the job. In an effort to reach out to the global community, they’re running a new contest. In honour of their 100 year anniversary, the IAU has organized the 100IAU NameExoWorlds event.

Continue reading “Competition Will Let You Name an Exoplanet”