A Planetary Nebula Like This Will Only be Visible for About 10,000 Years Before it Fades Away

The ESO's VLT captured this image of planetary nebula ESO 577-24 as part of its Cosmic Gems Programme. Image Credit: ESO
The ESO's VLT captured this image of planetary nebula ESO 577-24 as part of its Cosmic Gems Programme. Image Credit: ESO

For some stars, their last act is a final exhalation of gases, which we call a planetary nebula. While a living being’s last breath is closely followed by death, a star can continue to shine. And that shining illuminates the final exhalation of gases like a cosmic, diaphanous veil.

Astronomers have captured one such planetary nebula in this stunning image. This brightly-lit, stellar exhalation will last only 10,000 years, a brief moment in astronomical terms. As the last breath expands and travels away from the star that exhaled it, it will become diffuse and will no longer be visible. All that will be left is the tiny and intensely hot remnant of the star that spawned it.

Continue reading “A Planetary Nebula Like This Will Only be Visible for About 10,000 Years Before it Fades Away”

One of Our Best Views of the Supermassive Black Hole at the Heart of the Milky Way

Top left: simulation of Sgr A* at 86 GHz without interstellar scattering. Top right: simulation with interstellar scattering. Bottom right: observed image of Sgr A*. Bottom left: observed image of Sgr A* after removing the effects of interstellar scattering. Credit: S. Issaoun, M. Mo?cibrodzka, Radboud University/ M. D. Johnson, CfA
Top left: simulation of Sgr A* at 86 GHz without interstellar scattering. Top right: simulation with interstellar scattering. Bottom right: observed image of Sgr A*. Bottom left: observed image of Sgr A* after removing the effects of interstellar scattering. Credit: S. Issaoun, M. Mo?cibrodzka, Radboud University/ M. D. Johnson, CfA

An almost unimaginably enormous black hole is situated at the heart of the Milky Way. It’s called a Supermassive Black Hole (SMBH), and astronomers think that almost all massive galaxies have one at their center. But of course, nobody’s ever seen one (sort of, more on that later): It’s all based on evidence other than direct observation.

The Milky Way’s SMBH is called Sagittarius A* (Sgr. A*) and it’s about 4 million times more massive than the Sun. Scientists know it’s there because we can observe the effect it has on matter that gets too close to it. Now, we have one of our best views yet of Sgr. A*, thanks to a team of scientists using a technique called interferometry.

Continue reading “One of Our Best Views of the Supermassive Black Hole at the Heart of the Milky Way”

A Disc of Icy Material, not Planet 9, Might Explain the Strange Movements in the Outer Solar System

Could a disk of icy material be responsible for the strange orbits of distand objects in our Solar System? Image Credit: ESO/M. Kornmesser
Could a disk of icy material be responsible for the strange orbits of distand objects in our Solar System? Image Credit: ESO/M. Kornmesser

Is there or isn’t there a Planet 9? Is there a planet way out on the outskirts of our Solar System, with sufficient mass to explain the movements of distant objects? Or is a disc of icy material responsible? There’s no direct evidence yet of an actual Planet 9, but something with sufficient mass is affecting the orbits of distant Solar System objects.

A new study suggests that a disc of icy material causes the strange movements of outer Solar System objects, and that we don’t need to invent another planet to explain those movements. The study comes from
Professor Jihad Touma, from the American University of Beirut, and
Antranik Sefilian, a PhD student in Cambridge’s Department of Applied Mathematics and Theoretical Physics. Their results are published in the Astronomical Journal.

Continue reading “A Disc of Icy Material, not Planet 9, Might Explain the Strange Movements in the Outer Solar System”

Saturn’s Rings are Only 10 to 100 Million Years Old

Saturn's rings in all their glory. Image from the Cassini orbiter as Saturn eclipsed the Sun. Image Credit: By NASA / JPL-Caltech / Space Science Institute
Saturn's rings in all their glory. Image from the Cassini orbiter as Saturn eclipsed the Sun. Image Credit: By NASA / JPL-Caltech / Space Science Institute

Can you imagine the Solar System without Saturn’s rings? Can you envision Earth at the time the dinosaurs roamed the planet? According to a new paper, the two may have coincided.

Data from the Cassini mission shows that Saturn’s rings may be only 10 to 100 million years old. They may not have been there during the reign of the dinosaurs, and may in fact be a fairly modern development in our Solar System.

Continue reading “Saturn’s Rings are Only 10 to 100 Million Years Old”

Cassini Saw Rain Falling at Titan’s North Pole

An image from the Nasa-Esa-Asi Cassini spacecraft provides evidence of rainfall on the north pole of Titan
An image from the Nasa-Esa-Asi Cassini spacecraft provides evidence of rainfall on the north pole of Titan. Image Credit: NASA/ESA/ASI/Cassini.

The Cassini mission to Saturn ended in September 2017, but the data it gathered during its 13 year mission is still yielding scientific results. On the heels of a newly-released global image of Saturn’s moon Titan comes another discovery: Rainfall at Titan’s north pole.

Climate models developed by scientists during Cassini’s mission concluded that rain should fall in the north during Titan’s summer. But scientists hadn’t seen any clouds. Now, a team of scientists have published a paper centered on Cassini images that show light reflecting off a wet surface. They make the case that the reflecting light, called a Bright Ephemeral Flare (BEF) is sunlight reflecting from newly-fallen rain.

Continue reading “Cassini Saw Rain Falling at Titan’s North Pole”

CERN is Planning to Build a Much Larger Particle Collider. Much, Much, Larger.

CERN's Future Circular Collider. Image Credit: CERN
CERN's Future Circular Collider. Image Credit: CERN

CERN, the European Organization for Nuclear Research, wants to build a particle collider that will dwarf the Large Hadron Collider (LHC). The LHC has made important discoveries, and planned upgrades to its power ensures it will keep working on physics problems into the future. But eventually, it won’t be enough to unlock the secrets of physics. Eventually, we’ll need something larger and more powerful.

Enter the Future Circular Collider (FCC.) The FCC will exceed the LHC in power by an order of magnitude. On January 15th, the FCC collaboration released its Conceptual Design Report (CDR) that lays out the options for CERN’s Future Circular Collider.

Continue reading “CERN is Planning to Build a Much Larger Particle Collider. Much, Much, Larger.”

Astronomers Aren’t Pleased About a Russian Plan to Put Billboards in Space

A screen capture from StartRocket's promotional video for their Orbital Display. Image Credit: StartRocket.
A screen capture from StartRocket's promotional video for their Orbital Display. Image Credit: StartRocket.

It was bound to happen.

While the rest of us look up at the night sky, and wonder at what we’re seeing, ponder how it all fits together, and strain ourselves trying to understand how our origins are intertwined with all that we see, others don’t. They look up at the magnitude of the night sky and think none of these things.

Instead they think, “Hmmm…that’s a big, empty billboard. How can I make money from it?”

Continue reading “Astronomers Aren’t Pleased About a Russian Plan to Put Billboards in Space”

The Prototype for the Starship has been Assembled, Hop Tests Could be Happening Soon

The prototype Starship. Image: SpaceX
The prototype Starship. Image: SpaceX

In an announcement sure to make you quiver with delight, Elon Musk says that SpaceX could begin short-hop test flights of its Starship prototype as early as next Spring. The Starship, which looks like something from a 1950’s sci-fi novel cover (awesome!) is intended to carry people to the Moon and Mars. When the spacecraft design was originally announced in 2016, it was called the Mars Colonial Transporter, and it sent shockwaves through the community.

Now, it’s almost test-flight time.

Continue reading “The Prototype for the Starship has been Assembled, Hop Tests Could be Happening Soon”

Titan’s Thick Clouds Obscure our View, but Cassini Took these Images in Infrared, Showing the Moon’s Surface Features

A global mosaic of the surface of Titan, thanks to the infrared eyes of the Cassini spacecraft. Image Credit: NASA/JPL-Caltech/University of Nantes/University of Arizona
A global mosaic of the surface of Titan, thanks to the infrared eyes of the Cassini spacecraft. Image Credit: NASA/JPL-Caltech/University of Nantes/University of Arizona

Saturn’s moon Titan is a very strange place. It’s surrounded by a dense, opaque atmosphere, the only moon in the solar system with an atmosphere to speak of. It has lakes of liquid methane on its surface, maybe some cryovolcanoes, and some scientists speculate that it could support a form of life. Very weird life.

But we still don’t know a lot about it, because we haven’t really seen much of the surface. Until now.

Continue reading “Titan’s Thick Clouds Obscure our View, but Cassini Took these Images in Infrared, Showing the Moon’s Surface Features”

A New Technique to Figure Out How Old Stars Are

Embry-Riddle researchers used data captured by the Gaia satellite (shown here in an artist’s impression) to determine the ages of stars. Credit: European Space Agency – D. Ducros, 2013
Embry-Riddle researchers used data captured by the Gaia satellite (shown here in an artist’s impression) to determine the ages of stars. Credit: European Space Agency – D. Ducros, 2013

Our understanding of the universe, and of the Milky Way, is built on an edifice of individual pieces of knowledge, all related to each other. But each of those pieces is only so accurate. The more accurate we can make one of the pieces of knowledge, the more accurate our understanding of the whole thing is.

The age of stars is one such piece. For years, astronomers have used a method of determining the age of stars that has a 10% to 20% margin of error. Now, a team of scientists from Embry-Riddle Aeronautical University has developed a new technique to determine the age of stars with a margin of error of only 3% to 5%.

Continue reading “A New Technique to Figure Out How Old Stars Are”