They Just Began Casting the Giant Magellan Telescope’s 5th Mirror. What a Monster Job.

The fifth mirror for the GMT's 7 segment primary mirror is being cast at the Richard F. Caris Mirror Laboratory at the University of Arizona. In this image, a worker at the lab places the last piece of glass for mirror 5. Image: Giant Magellan Telescope Organization

The fifth mirror for the Giant Magellan Telescope (GMT) is now being cast, according to an announcement from the Giant Magellan Telescope Organization (GMTO), the body behind the project. The GMT is a ground-breaking segmented telescope consisting of 7 gigantic mirrors, and is being built at the Las Campanas Observatory, in Atacama, Chile.

The mirrors for the GMT are being cast at the Richard F. Caris Mirror Laboratory, at the University of Arizona. This lab is the world centre when it comes to building large mirrors for telescopes. But in a lab known for ground-breaking, precision manufacturing, the GMT’s mirrors are pushing the engineering to its limits.

This illustration shows what the Giant Magellan Telescope will look like when it comes online. The fifth of its seven mirror segments is being cast now. Each of the segments is a 20 ton piece of glass. Image: Giant Magellan
This illustration shows what the Giant Magellan Telescope will look like when it comes online. The fifth of its seven mirror segments is being cast now. Each of the segments is a 20 ton piece of glass. Image: Giant Magellan Telescope – GMTO Corporation

Seven separate mirrors, each the same size (8.4 meters,) will make up the GMT’s primary mirror. One mirror will be in the centre, and six will be arranged in a circle around it. Each one of these mirrors is a 20 ton glass behemoth, and each one is cast separately. Once the seven are manufactured (and one extra, just in case) they will be assembled at the observatory site.

The result will be an optical, light-gathering surface almost 24.5 meters (80 ft.) in diameter. That is an enormous telescope, and it’s taking extremely precise engineering and manufacturing to build these mirrors.

The glass for the mirrors is custom-manufactured, low-expansion glass from Japan. This glass comes as blocks, and each mirror requires exactly 17,481 kg of these glass blocks. A custom built furnace and mold heats the glass to 1165°C (2129°F) for several hours. The glass liquefies and flows into the mold. During this time, the mold is rotated at up to 5 rpm. Then the rotation is slowed, and for several months the glass cools in the mold.

After lengthy cooling, the glass can be polished. The tolerances for the mirrors, and the final shape they must take, requires very careful, extremely accurate polishing. The first mirror was cast in 2005, and in 2011 it was still being polished.

The mirrors for the GMT are not flat; they’re described as “potato chips.” They’re aspherical and parabaloidal. They have to be surface polished to an accuracy of 25 nanometers, which is a fraction of the wavelength of light.

Precision manufacturing is at the heart of the Giant Magellan Telescope. The surface of each mirror must be polished to within a fraction of the wavelength of light. Image: Giant Magellan Telescope Organization
Precision manufacturing is at the heart of the Giant Magellan Telescope. The surface of each mirror must be polished to within a fraction of the wavelength of light. Image: Giant Magellan Telescope Organization

“Casting the mirrors for the Giant Magellan Telescope is a huge undertaking, and we are very proud of the UA’s leading role creating this new resource for scientific discovery. The GMT partnership and Caris Mirror Lab are outstanding examples of how we can tackle complex challenges with innovative solutions,” said UA President Robert C. Robbins. “The University of Arizona has such an amazing tradition of excellence in space exploration, and I have been constantly impressed by the things our faculty, staff, and students in astronomy and space sciences can accomplish.”

Mirror construction for the GMT is a multi-stage process. The first mirror was completed several years ago and is in storage. Three others are in various stages of grinding and polishing. The glass for mirror 6 is in storage awaiting casting, and the glass for mirror 7 is on order from Japan.

Once completed, the GMT will be situated in Atacama, at the Las Campanas Observatory, where high-elevation and clear skies make for excellent seeing conditions. First light is planned for the mid 2020’s.

When the mirrors for the GMT are completed, they are transported in a special container with shock absorbers and insulation. In this image, the first completed mirror is moved from the Caris Mirror Lab to storage several miles away. Image: GMTO Corp.
When the mirrors for the GMT are completed, they are transported in a special container with shock absorbers and insulation. In this image, the first completed mirror is moved from the Caris Mirror Lab to storage several miles away. Image: GMTO Corp.

The GMT will be largest telescope in existence, at least until the Thirty Meter Telescope and the European Extremely Large Telescope supersede it.

“Creating the largest telescope in history is a monumental endeavor, and the GMT will be among the largest privately-funded scientific initiatives to date,” said Taft Armandroff, Professor of Astronomy and Director of the McDonald Observatory at The University of Texas at Austin, and Vice-Chair of the GMTO Corporation Board of Directors. “With this next milestone, and with the leadership, technical, financial and scientific prowess of the members of the GMTO partnership, we continue on the path to the completion of this great observatory.”

The power of the GMT will allow it to directly image extra-solar planets. That alone is enough to get anyone excited. But the GMT will also study things like the formation of stars, planets, and disks; the assembly and evolution of galaxies; fundamental physics; and first light and re-ionization.

The Giant Magellan Telescope is one of the world’s Super Telescopes that we covered in this series of articles. The Super Telescopes include the:

  • Giant Magellan Telescope
  • James Webb Space Telescope
  • Thirty Meter Telescope
  • European Extremely Large Telescope
  • Large Synoptic Survey Telescope
  • Wide Field Infrared Survey Telescope

You can also watch our videos on the Super Telescopes: Part 1: Ground Telescopes, and Part 2: Space Telescopes.

What Made this Mysterious Pit on Mars? Impact Crater or Natural Collapse?

The HiRISE camera on NASA's Mars Reconnaissance Orbiter captured this unusual crater or pit on the surface of Mars. Frozen carbon dioxide gives the region its unique "Swiss cheese" like appearance. Image:NASA/JPL/University of Arizona
The HiRISE camera on NASA's Mars Reconnaissance Orbiter captured this unusual crater or pit on the surface of Mars. Frozen carbon dioxide gives the region its unique "Swiss cheese" like appearance. Image:NASA/JPL/University of Arizona
The HiRISE camera on NASA's Mars Reconnaissance Orbiter captured this unusual crater or pit on the surface of Mars. Frozen carbon dioxide gives the region its unique "Swiss cheese" like appearance. Image:NASA/JPL/University of Arizona
The HiRISE camera on NASA’s Mars Reconnaissance Orbiter captured this unusual crater or pit on the surface of Mars. Frozen carbon dioxide gives the region its unique “Swiss cheese” like appearance. Image:NASA/JPL/University of Arizona

During late summer in the Southern hemisphere on Mars, the angle of the sunlight as it strikes the surface brings out some subtle details on the planet’s surface.

In this image, the HiRISE camera on board NASA’s Mars Reconnaissance Orbiter (MRO) captured an area of frozen carbon dioxide on the surface. Some of the carbon dioxide ice has melted, giving it a swiss-cheese appearance. But there is also an unusual hole or crater on the right side of the image, with some of the carbon dioxide ice clearly visible in the bottom of the pit.

NASA scientists are uncertain what exactly caused the unusual pit. It could be an impact crater, or it could be a collapsed pit caused by melting or sublimation of sub-surface carbon dioxide ice.

MRO has been in orbit around Mars for over 10 years, and has completed over 50,000 orbits. The MRO has two cameras. The CTX camera is lower resolution, and has imaged over 99% of the Martian surface. HiRISE is the high-resolution camera that is used to closely examine areas and objects of interest, like the unusual surface pit in this image.

More Reading:

At the Largest Scales, Our Milky Way Galaxy is in the Middle of Nowhere

The Millenium Simulation created this image of the large-scale structure of the Universe, showing filaments and voids within the cosmic structure. According to a new study from the University of Wisconsin, our Milky Way is situated in a huge void in the cosmic structure. The Millennium Simulation is a project of the Max Planck Supercomputing Center in Germany. Image: Millennium Simulation Project
Image of the large-scale structure of the Universe, showing filaments and voids within the cosmic structure. Who knows how many other civilizations might be out there? Credit: Millennium Simulation Project

Ever since Galileo pointed his telescope at Jupiter and saw moons in orbit around that planet, we began to realize we don’t occupy a central, important place in the Universe. In 2013, a study showed that we may be further out in the boondocks than we imagined. Now, a new study confirms it: we live in a void in the filamental structure of the Universe, a void that is bigger than we thought.

In 2013, a study by University of Wisconsin–Madison astronomer Amy Barger and her student Ryan Keenan showed that our Milky Way galaxy is situated in a large void in the cosmic structure. The void contains far fewer galaxies, stars, and planets than we thought. Now, a new study from University of Wisconsin student Ben Hoscheit confirms it, and at the same time eases some of the tension between different measurements of the Hubble Constant.

The void has a name; it’s called the KBC void for Keenan, Barger and the University of Hawaii’s Lennox Cowie. With a radius of about 1 billion light years, the KBC void is seven times larger than the average void, and it is the largest void we know of.

The large-scale structure of the Universe consists of filaments and clusters of normal matter separated by voids, where there is very little matter. It’s been described as “Swiss cheese-like.” The filaments themselves are made up of galaxy clusters and super-clusters, which are themselves made up of stars, gas, dust and planets. Finding out that we live in a void is interesting on its own, but its the implications it has for Hubble’s Constant that are even more interesting.

Hubble’s Constant is the rate at which objects move away from each other due to the expansion of the Universe. Dr. Brian Cox explains it in this short video.

The problem with Hubble’s Constant, is that you get a different result depending on how you measure it. Obviously, this is a problem. “No matter what technique you use, you should get the same value for the expansion rate of the universe today,” explains Ben Hoscheit, the Wisconsin student who presented his analysis of the KBC void on June 6th at a meeting of the American Astronomical Society. “Fortunately, living in a void helps resolve this tension.”

There are a couple ways of measuring the expansion rate of the Universe, known as Hubble’s Constant. One way is to use what are known as “standard candles.” Supernovae are used as standard candles because their luminosity is so well-understood. By measuring their luminosity, we can determine how far away the galaxy they reside in is.

Another way is by measuring the CMB, the Cosmic Microwave Background. The CMB is the left over energy imprint from the Big Bang, and studying it tells us the state of expansion in the Universe.

This is a map of the observable Universe from the Sloan Digital Sky Survey. Orange areas show higher density of galaxy clusters and filaments. Image: Sloan Digital Sky Survey.
This is a map of the observable Universe from the Sloan Digital Sky Survey. Orange areas show higher density of galaxy clusters and filaments. Image: Sloan Digital Sky Survey.

The two methods can be compared. The standard candle approach measures more local distances, while the CMB approach measures large-scale distances. So how does living in a void help resolve the two?

Measurements from inside a void will be affected by the much larger amount of matter outside the void. The gravitational pull of all that matter will affect the measurements taken with the standard candle method. But that same matter, and its gravitational pull, will have no effect on the CMB method of measurement.

“One always wants to find consistency, or else there is a problem somewhere that needs to be resolved.” – Amy Barger, University of Hawaii, Dept. of Physics and Astronomy

Hoscheit’s new analysis, according to Barger, the author of the 2013 study, shows that Keenan’s first estimations of the KBC void, which is shaped like a sphere with a shell of increasing thickness made up of galaxies, stars and other matter, are not ruled out by other observational constraints.

“It is often really hard to find consistent solutions between many different observations,” says Barger, an observational cosmologist who also holds an affiliate graduate appointment at the University of Hawaii’s Department of Physics and Astronomy. “What Ben has shown is that the density profile that Keenan measured is consistent with cosmological observables. One always wants to find consistency, or else there is a problem somewhere that needs to be resolved.”

Mars Had Way More Water on its Surface Than We Thought

The image on the left is what Mars looks like today. On the right is what Mars would look like according to a new study. Image Credit: Wei Luo, Northern Illinois University.

Mars has an extensive network of ancient valleys that were likely carved out by water over geologic time periods. Now a new study suggests that Mars had much more water than previously thought, and the key behind calculating that amount of water is in the valleys themselves.

The issue of exactly how much liquid water Mars had on its surface has been a hotly debated topic. There’s ample evidence that there was liquid water there. Orbiters and rovers have provided most of that evidence. Sedimentary rock, hydrated minerals that only form in the presence of water, and the obvious valleys, lake basins, and deltas all show that Mars was once a world with large quantities liquid water.

This false-color composite image was taken by the Mars rover Opportunity. It shows rocks termed "blueberries" which are geologic concretions that form in the presence of water. It also shows sedimentary rock which forms in the presence of water. Image credit: NASA/JPL/Cornell
This false-color composite image was taken by the Mars rover Opportunity. It shows rocks termed “blueberries” which are geologic concretions that form in the presence of water. It also shows sedimentary rock which forms in the presence of water. Image credit: NASA/JPL/Cornell

But to find out how much water there was in Mars’ past, we have to go beyond what we can see with our orbiters and rovers and construct models. That’s exactly what Northern Illinois University geography professor Wei Luo and his colleagues Xuezhi Cang & Alan D. Howard did. To do this, they relied on what previous studies have found, what we know about erosion and water cycles here on Earth, and on an innovative new algorithm that calculated the volume of Mars’ valleys, and how much water would be required to excavate them.

“Our most conservative estimates of the global volume of the Martian valley networks and the cumulative amount of water needed to carve those valleys are at least 10 times greater than most previous estimates,” Luo said.

Their new estimate of Martian water volume is 4,000 times the volume of the valley cavities on Mars. This means that Mars would have had an active water cycle much like Earth does. Water would have moved from the lakes and oceans through the atmosphere and over the surface via evaporation and precipitation.

“That means water must have recycled through the valley systems on Mars many times, and a large open body of water or ocean is needed to facilitate such active cycling,” Luo said. “I would imagine early Mars as being similar to what we have on Earth–with an ocean, lakes, running rivers and rainfall.”

The Eberswalde delta near Holden Crater on Mars is considered the 'smoking gun' for evidence of liquid water on Mars. By NASA/JPL/Malin Space Science Systems
The Eberswalde delta near Holden Crater on Mars is considered the ‘smoking gun’ for evidence of liquid water on Mars. By NASA/JPL/Malin Space Science Systems

However, as the authors acknowledge, the results of this study are difficult to reconcile with our understanding of the Martian climate. Mars’ paleoclimate was likely never warm enough to support the kind of active hydrologic cycle required for their study to be accurate. “Mars is much farther way from the sun than Earth, and when the sun was younger, it was not as bright as it is today,” Luo said. “So there’s still a lot to work out in trying to reconcile the evidence for more water.”

As the authors write in their paper, “Without an ocean-sized open body of water, it would be hard to imagine the high rate of water cycling suggested by our new estimates.” So where does that leave us?

Some of the largest features on Mars, like the huge Valles Marineris, might have formed as a tectonic crack, which was then further enlarged by erosion. For other valleys, a lot of other causes have been proposed for their formation, including glaciation, and erosion by CO2, lava, and even wind.

This topographic map of the Valles Marineris region on Mars shows clearly visible outflow channels. This is image is from NASA's Mars Global Surveyor. By NASA / JPL-Caltech / Arizona State University
This topographic map of the Valles Marineris region on Mars shows clearly visible outflow channels. This is image is from NASA’s Mars Global Surveyor. By NASA / JPL-Caltech / Arizona State University

It’s clear that at some point in the past, Mars had liquid water. How much water exactly is a hotly-debated topic, and this study won’t end that debate. But this study used much higher-resolution techniques, perfected in terrestrial uses, to arrive at its estimates. This study was also conducted globally on Mars, rather than by sampling individual locations. It will affect the debate in some way.

As they say in their paper, “There is no ground truth to assess the real accuracy of our estimation.” There’s really no way for scientists to reach a conclusion yet about the size of Martian oceans in the past, and on how active the hydrological cycle might have been on that planet.

For now, we can let the debate continue.

Third Gravitational Wave Event Detected

In February 2016, LIGO detected gravity waves for the first time. As this artist's illustration depicts, the gravitational waves were created by merging black holes. The third detection just announced was also created when two black holes merged. Credit: LIGO/A. Simonnet.
Artist's impression of merging binary black holes. Credit: LIGO/A. Simonnet.

A third gravitational wave has been detected by the Laser Interferometer Gravitational-wave Observatory (LIGO). An international team announced the detection today, while the event itself was detected on January 4th, 2017. Gravitational waves are ripples in space-time predicted by Albert Einstein over a century ago.

LIGO consists of two facilities: one in Hanford, Washington and one in Livingston, Louisiana. When LIGO announced its first gravitational wave back in February 2016 (detected in September 2015), it opened up a new window into astronomy. With this gravitational wave, the third one detected, that new window is getting larger. So far, all three waves detected have been created by the merging of black holes.

The team, including engineers and scientists from Northwestern University in Illinois, published their results in the journal Physical Review Letters.

When the first gravitational wave was finally detected, over a hundred years after Einstein predicted it, it helped confirm Einstein’s description of space-time as an integrated continuum. It’s often said that it’s not a good idea to bet against Einstein, and this third detection just strengthens Einstein’s theory.

Like the previous two detections, this one was created by the merging of two black holes. These two were different sizes from each other; one was about 31.2 solar masses, and the other was about 19.4 solar masses. The combined 50 solar mass event caused the third wave, which is named GW170104. The black holes were about 3 billion light years away.

“…an intriguing black hole population…” – Vicky Kalogera, Senior Astrophysicist, LIGO Scientific Collaboration

LIGO is showing us that their is a population of binary black holes out there. “Our handful of detections so far is revealing an intriguing black hole population we did not know existed until now,” said Northwestern’s Vicky Kalogera, a senior astrophysicist with the LIGO Scientific Collaboration (LSC), which conducts research related to the twin LIGO detectors, located in the U.S.

“Now we have three pairs of black holes, each pair ending their death spiral dance over millions or billions of years in some of the most powerful explosions in the universe. In astronomy, we say with three objects of the same type you have a class. We have a population, and we can do analysis.”

The Laser Interferometer Gravitational-Wave Observatory (LIGO)facility in Livingston, Louisiana. The other facility is located in Hanford, Washington. Image: LIGO
The Laser Interferometer Gravitational-Wave Observatory (LIGO)facility in Livingston, Louisiana. The other facility is located in Hanford, Washington. Image: LIGO

When we say that gravitational waves have opened up a new window on astronomy, that window opens onto black holes themselves. Beyond confirming Einstein’s predictions, and establishing a population of binary black holes, LIGO can characterize and measure those black holes. We can learn the holes’ masses and their spin characteristics.

“Once again, the black holes are heavy,“ said Shane Larson, of Northwestern University and Adler Planetarium in Chicago. “The first black holes LIGO detected were twice as heavy as we ever would have expected. Now we’ve all been churning our cranks trying to figure out all the interesting myriad ways we can imagine the universe making big and heavy black holes. And Northwestern is strong in this research area, so we are excited.”

This third finding strengthens the case for the existence of a new class of black holes: binary black holes that are locked in relationship with each other. It also shows that these objects can be larger than thought before LIGO detected them.

“It is remarkable that humans can put together a story and test it, for such strange and extreme events that took place billions of years ago and billions of light-years distant from us.” – David Shoemaker, MIT

“We have further confirmation of the existence of black holes that are heavier than 20 solar masses, objects we didn’t know existed before LIGO detected them,” said David Shoemaker of MIT, spokesperson for the LIGO Scientific Collaboration . “It is remarkable that humans can put together a story and test it, for such strange and extreme events that took place billions of years ago and billions of light-years distant from us.”

An artist's impression of two merging black holes. Image: NASA/CXC/A. Hobart
An artist’s impression of two merging black holes. Image: NASA/CXC/A. Hobart

“With the third confirmed detection of gravitational waves from the collision of two black holes, LIGO is establishing itself as a powerful observatory for revealing the dark side of the universe,” said David Reitze of Caltech, executive director of the LIGO Laboratory and a Northwestern alumnus. “While LIGO is uniquely suited to observing these types of events, we hope to see other types of astrophysical events soon, such as the violent collision of two neutron stars.”

A tell-tale chirping sound confirms the detection of a gravitational wave, and you can hear it described and explained here, on a Northwestern University podcast.

Sources:

What Exactly Should We See When a Star Splashes into a Black Hole Event Horizon?

This artist's impression shows a star crossing the event horizon of a supermassive black hole located in the center of a galaxy. The black hole is so large and massive that tidal effects on the star are negligible, and the star is swallowed whole. Image: Mark A. Garlick/CfA
This artist's impression shows a star crossing the event horizon of a supermassive black hole located in the center of a galaxy. The black hole is so large and massive that tidal effects on the star are negligible, and the star is swallowed whole. Image: Mark A. Garlick/CfA

At the center of our Milky Way galaxy dwells a behemoth. An object so massive that nothing can escape its gravitational pull, not even light. In fact, we think most galaxies have one of them. They are, of course, supermassive black holes.

Supermassive black holes are stars that have collapsed into a singularity. Einstein’s General Theory of Relativity predicted their existence. And these black holes are surrounded by what’s known as an event horizon, which is kind of like the point of no return for anything getting too close to the black hole. But nobody has actually proven the existence of the event horizon yet.

Some theorists think that something else might lie at the center of galaxies, a supermassive object event stranger than a supermassive black hole. Theorists think these objects have somehow avoided a black hole’s fate, and have not collapsed into a singularity. They would have no event horizon, and would have a solid surface instead.

“Our whole point here is to turn this idea of an event horizon into an experimental science, and find out if event horizons really do exist or not,” – Pawan Kumar Professor of Astrophysics, University of Texas at Austin.

A team of researchers at the University of Texas at Austin and Harvard University have tackled the problem. Wenbin Lu, Pawan Kumar, and Ramesh Narayan wanted to shed some light onto the event horizon problem. They wondered about the solid surface object, and what would happen when an object like a star collided with it. They published their results in the Monthly Notices of the Royal Astronomical Society.

Artist's conception of the event horizon of a black hole. Credit: Victor de Schwanberg/Science Photo Library
Artist’s conception of the event horizon of a black hole. Credit: Victor de Schwanberg/Science Photo Library

“Our whole point here is to turn this idea of an event horizon into an experimental science, and find out if event horizons really do exist or not,” said Pawan Kumar, Professor of Astrophysics at The University of Texas at Austin, in a press release.

Since a black hole is a star collapsed into a singularity, it has no surface area, and instead has an event horizon. But if the other theory turns out to be true, and the object has a solid surface instead of an event horizon, then any object colliding with it would be destroyed. If a star was to collide with this hard surface and be destroyed, the team surmised, then the gas from the star would enshroud the object and shine brightly for months, or even years.

This is the first in a sequence of two artist's impressions that shows a huge, massive sphere in the center of a galaxy, rather than a supermassive black hole. Here a star moves towards and then smashes into the hard surface of the sphere, flinging out debris. The impact heats up the site of the collision. Image: Mark A. Garlick/CfA
This is the first in a sequence of two artist’s impressions that shows a huge, massive sphere in the center of a galaxy, rather than a supermassive black hole. Here a star moves towards and then smashes into the hard surface of the sphere, flinging out debris. The impact heats up the site of the collision. Image:
Mark A. Garlick/CfA
In this second artist's impression a huge sphere in the center of a galaxy is shown after a star has collided with it. Enormous amounts of heat and a dramatic increase in the brightness of the sphere are generated by this event. The lack of observation of such flares from the center of galaxies means that this hypothetical scenario is almost completely ruled out. Image: Mark A. Garlick/CfA
In this second artist’s impression a huge sphere in the center of a galaxy is shown after a star has collided with it. Enormous amounts of heat and a dramatic increase in the brightness of the sphere are generated by this event. The lack of observation of such flares from the center of galaxies means that this hypothetical scenario is almost completely ruled out. Image: Mark A. Garlick/CfA

If that were the case, then the team knew what to look for. They also worked out how often this would happen.

“We estimated the rate of stars falling onto supermassive black holes,” Lu said in the same press release. “Nearly every galaxy has one. We only considered the most massive ones, which weigh about 100 million solar masses or more. There are about a million of them within a few billion light-years of Earth.”

Now they needed a way to search the sky for these objects, and they found it in the archives of the Pan-STARRS telescope. Pan-STARRS is a 1.8 meter telescope in Hawaii. That telescope recently completed a survey of half of the northern hemisphere of the sky. In that survey, Pan-STAARS spent 3.5 years looking for transient objects in the sky, objects that brighten and then fade. They searched the Pan-STARR archives for transient objects that had the signature they predicted from stars colliding with these supermassive, hard-surfaced objects.

The trio predicted that in the 3.5 year time-frame captured by the Pan-STAARS survey, 10 of these collisions would occur and should be represented in the data.

“It turns out it should have detected more than 10 of them, if the hard-surface theory is true.” – Wenbin Lu, Dept. of Astronomy, University of Texas at Austin.

“Given the rate of stars falling onto black holes and the number density of black holes in the nearby universe, we calculated how many such transients Pan-STARRS should have detected over a period of operation of 3.5 years. It turns out it should have detected more than 10 of them, if the hard-surface theory is true,” Lu said.

The team found none of the flare-ups they expected to see if the hard-surface theory is true.

“Our work implies that some, and perhaps all, black holes have event horizons…” – Ramesh Narayan, Harvard-Smithsonian Center for Astrophysics.

What might seem like a failure, isn’t one of course. Not for Einstein, anyway. This represents yet another successful test of Einstein’s Theory of General Relativity, showing that the event horizon predicted in his theory does seem to exist.

As for the team, they haven’t abandoned the idea yet. In fact, according to Pawan Kumar, Professor of Astrophysics, University of Texas at Austin, “Our motive is not so much to establish that there is a hard surface, but to push the boundary of knowledge and find concrete evidence that really, there is an event horizon around black holes.”

“General Relativity has passed another critical test.” – Ramesh Narayan, Harvard-Smithsonian Center for Astrophysics.

“Our work implies that some, and perhaps all, black holes have event horizons and that material really does disappear from the observable universe when pulled into these exotic objects, as we’ve expected for decades,” Narayan said. “General Relativity has passed another critical test.”

The team plans to continue to look for the flare-ups associated with the hard-surface theory. Their look into the Pan-STARRS data was just their first crack at it.

An artist's illustration of the Large Synoptic Survey Telescope with a simulated night sky. The team hopes to use the LSST to further refine their search for hard-surface supermassive objects. Image: Todd Mason, Mason Productions Inc. / LSST Corporation
An artist’s illustration of the Large Synoptic Survey Telescope with a simulated night sky. The team hopes to use the LSST to further refine their search for hard-surface supermassive objects. Image: Todd Mason, Mason Productions Inc. / LSST Corporation

They’re hoping to improve their test with the upcoming Large Synoptic Survey Telescope (LSST) being built in Chile. The LSST is a wide field telescope that will capture images of the night sky every 20 seconds over a ten-year span. Every few nights, the LSST will give us an image of the entire available night sky. This will make the study of transient objects much easier and effective.

More reading: Rise of the Super Telescopes: The Large Synoptic Survey Telescope

Sources:

Construction Begins on the Next Super Telescope

This artist’s rendering shows the Extremely Large Telescope in operation on Cerro Armazones in northern Chile. The telescope is shown using lasers to create artificial stars high in the atmosphere. Image: ESO/E-ELT
This artist’s rendering shows the Extremely Large Telescope in operation on Cerro Armazones in northern Chile. The telescope is shown using lasers to create artificial stars high in the atmosphere. Image: ESO/E-ELT

The construction of the world’s largest telescope has begun. At a ceremony at the European Southern Observatory’s (ESO) Paranal Observatory in Chile, officials gathered to celebrate the first stone of the European Extremely Large Telescope’s (E-ELT) long-awaited construction. Sophisticated telescope projects like the E-ELT take many years, so we can expect another similar ceremony sometime in 2021, when the E-ELT will see first light.

The E-ELT is the ESO’s flagship observatory. It’s primary mirror will be a 39.3 meter (129 ft.) monstrosity that will observe in the visible, near-infrared, and mid-infrared spectra. The construction of the site began in 2014, but this ceremony marks the beginning of the construction of the main telescope and its dome. The ceremony also marks the connection of the telescope to the electricity grid.

The Chilean President, Michelle Bachelet Jeria, attended the ceremony. She was welcomed by the Director General of ESO Tim de Zeeuw, by ELT Programme Manager Roberto Tamai, and by other officials from the ESO. Staff from the La Silla Paranal Observatory, and numerous engineers and technicians—as well as numerous representatives from Chilean government and industry—also attended the ceremony.

“With the symbolic start of this construction work, we are building more than a telescope here.” – President of the Republic of Chile, Michelle Bachelet Jeria

In her speech, the President spoke in favor of the E-ELT, and in support of science and cooperation. “With the symbolic start of this construction work, we are building more than a telescope here: it is one of the greatest expressions of scientific and technological capabilities and of the extraordinary potential of international cooperation.”

At the ceremony, a time capsule from ESO was sealed into place. The capsule is a hexagon shaped, one-fifth scale model of the E-ELT containing a poster made of photographs of current ESO staff, and a copy of the book detailing the E-ELT’s science goals.

The first stone ceremony is definitely an important milestone for this Super Telescope, but it’s just one of the milestones reached by the E-ELT in the past two weeks.

The secondary mirror for the E-ELT has already been cast. At 4.2 meters in diameter, it is the largest secondary mirror ever used on an an optical telescope. Image: ESO/Schott.
The secondary mirror for the E-ELT has already been cast. At 4.2 meters in diameter, it is the largest secondary mirror ever used on an an optical telescope. Image: ESO/Schott.

The secondary mirror for the E-ELT has already been cast, and the ESO has announced that the contracts for the primary mirror have now been signed. The primary mirror segment blanks, all 798 of them, will be made by the Germany company SCHOTT. Once produced, they will be polished by the French company Safran Reosc. Safran Reosc will also mount and test the mirror segments.

“This has been an extraordinary two weeks!” – Tim de Zeeuw, European Southern Observatory’s Director General

Tim de Zeeuw, ESO’s Director General, is clearly excited about the progress being made on the E-ELT. At the contract signing, de Zeeuw said, “This has been an extraordinary two weeks! We saw the casting of the ELT’s secondary mirror and then, last Friday, we were privileged to have the President of Chile, Michelle Bachelet, attend the first stone ceremony of the ELT. And now two world-leading European companies are starting work on the telescope’s enormous main mirror, perhaps the biggest challenge of all.”

This artist's rendering shows the huge segmented primary mirror of the ESO Extremely Large Telescope (ELT). Contracts for the manufacture of the mirror segments were signed on 30 May 2017. Image: ESO/L. Calcada
This artist’s rendering shows the huge segmented primary mirror of the ESO Extremely Large Telescope (ELT). Contracts for the manufacture of the mirror segments were signed on 30 May 2017. Image: ESO/L. Calcada

It’s taken an enormous amount of work to get to the construction stage of the world’s largest telescope. Scientist’s, engineers, and technicians have been working for years to get this far. But without the contribution of Chile, none of it would happen. Chile is the world’s astronomy capital, and they continue working with the ESO and other nations to drive scientific discovery forward.

The E-ELT has three broad-based science objectives. It will:

  • Probe Earth-like exoplanets for signs of life
  • Study the nature of dark energy and dark matter
  • Observe the Universe’s early stages to understand our origins and the origin of galaxies and solar systems

Along the way, it will no doubt raise new questions that we can’t even imagine yet.

Further Reading:

Juno is Ready to Tell Us What it Found at Jupiter

The tightly clustered storms that crowd Jupiter's polar regions are another of the gas giant's mysteries. In this image, cyclones the size of Earth bump up against each other at the south pole. Image: NASA/JPL-Caltech/SwRI/MSSS/Betsy Asher Hall/Gervasio Robles
The tightly clustered storms that crowd Jupiter's polar regions are another of the gas giant's mysteries. In this image, cyclones the size of Earth bump up against each other at the south pole. Image: NASA/JPL-Caltech/SwRI/MSSS/Betsy Asher Hall/Gervasio Robles

Even a casual observer can see how complex Jupiter might be. Its Great Red Spot is one of the most iconic objects in our Solar System. The Great Red Spot, which is a continuous storm 2 or 3 times as large as Earth, along with Jupiter’s easily-seen storm cloud belts, are visual clues that Jupiter is a complex place.

We’ve been observing the Great Red Spot for almost 200 years, so we’ve known for a long time that something special is happening at Jupiter. Now that the Juno probe is there, we’re finding that Jupiter might be a more surprising place than we thought.

“There is so much going on here that we didn’t expect that we have had to take a step back and begin to rethink of this as a whole new Jupiter.” – Scott Bolton, Juno’s Principal Investigator at the Southwest Research Institute.

So far, the stunning images delivered to us by the JunoCam have stolen the show. But Juno is a science mission, and the fantastic images we’re feasting on might stir the imagination, but it’s the science that’s at the heart of the mission.

Just one of the many beautiful images of Jupiter we're accustomed to seeing. NASA has invited interested citizens to process JunoCam images and has made them available for anyone to use. NASA / SwRI / MSSS / Gerald Eichstädt / Seán Doran © public domain
Just one of the many beautiful images of Jupiter we’re accustomed to seeing. NASA has invited interested citizens to process JunoCam images and has made them available for anyone to use. NASA / SwRI / MSSS / Gerald Eichstädt / Seán Doran © public domain

The Juno probe arrived at Jupiter in July 2016, and completed its first data-pass on August 27th, 2016. That pass took it to within 4,200 km of Jupiter’s cloud tops. Results from that first pass are being published in the journal Science and in Geophysical Research Letters.

Taken together, the results confirm what we might have guessed by just looking at Jupiter from afar: it is a stormy, complex, turbulent world.

“It was a long trip to get to Jupiter, but these first results already demonstrate it was well worth the journey.” – Diane Brown, Juno Program Executive.

“We are excited to share these early discoveries, which help us better understand what makes Jupiter so fascinating,” said Diane Brown, Juno program executive at NASA Headquarters in Washington. “It was a long trip to get to Jupiter, but these first results already demonstrate it was well worth the journey.”

Jupiter’s Magnetic Field

We’ve known for a long time that Jupiter has the most powerful magnetic field in the Solar System. In fact, the magnetic field is what shaped the design of the Juno probe, and the profile of the mission itself. Juno’s Magnetometer Investigation (MAG) has measured the gas giant’s magnetosphere up close, and these measurements tell us that the magnetic field is even stronger than anticipated, and its shape is more irregular as well. At 7.66 Gauss, the field is about 10 times more powerful than Earth.

The irregularities in the magnetic field are an indication that the field is generated closer to the surface than thought. Earth generates its magnetic field from it its rotating core, but because Jupiter’s is “lumpy”, or stronger in some regions than in others, the gas giant’s magnetic field might be generated above its metallic hydrogen layer.

Results from Juno's first data-pass suggest that Jupiter's powerful magnetic field is generated closer to the surface than previously thought. It may be generated above the core of metallic hydrogen. Image: By Kelvinsong - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=31764016
Results from Juno’s first data-pass suggest that Jupiter’s powerful magnetic field is generated closer to the surface than previously thought. It may be generated above the core of metallic hydrogen. Image: By Kelvinsong – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=31764016

“Juno is giving us a view of the magnetic field close to Jupiter that we’ve never had before,” – Jack Connerney, Juno Deputy Principal Investigator

“Juno is giving us a view of the magnetic field close to Jupiter that we’ve never had before,” said Jack Connerney, Juno deputy principal investigator and the lead for the mission’s magnetic field investigation at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Already we see that the magnetic field looks lumpy: it is stronger in some places and weaker in others. This uneven distribution suggests that the field might be generated by dynamo action closer to the surface, above the layer of metallic hydrogen. Every flyby we execute gets us closer to determining where and how Jupiter’s dynamo works.”

Jupiter’s Atmosphere

Juno’s Microwave Radiometer (MWR) is designed to probe Jupiter’s thick atmosphere. It can detect the thermal microwave radiation in the atmosphere, both at the surface, and much deeper. Data from the MWR shows us that the storm belts are mysteries themselves.

This artist's illustration shows Juno's Microwave Radiometer observing deep into Jupiter's atmosphere. The image shows real data from the 6 MWR channels, arranged by wavelength. Credit: NASA/SwRI/JPL
This artist’s illustration shows Juno’s Microwave Radiometer observing deep into Jupiter’s atmosphere. The image shows real data from the 6 MWR channels, arranged by wavelength. Credit: NASA/SwRI/JPL

The belts near Jupiter’s equator extend deep into the atmosphere, while other belts seem to evolve and transform into other structures. The MWR can probe a few hundred kilometers into the atmosphere, where it has found variable and increasing amounts of ammonia to that depth.

Polar Regions and Auroras

Jupiter is home to intense aurora activity at both poles. One of Juno’s mission goals is to study those auroras and the powerful polar magnetic fields that create them. Initial observations from Juno suggest that they are formed differently than Earthly auroras.

Juno is in a unique position to study the magnetosphere and the auroras. Its elongated polar orbit allows it to span the entire magnetosphere all the way from the bow shock to the planet itself.

The tilt of Juno's orbit relative to Jupiter changes over the course of the mission, sending the spacecraft increasingly deeper into the planet's intense radiation belts. This also gives Juno the ability to study the structure of the magnetosphere. Credit: NASA/JPL-Caltech
The tilt of Juno’s orbit relative to Jupiter changes over the course of the mission, sending the spacecraft increasingly deeper into the planet’s intense radiation belts. This also gives Juno the ability to study the structure of the magnetosphere. Credit: NASA/JPL-Caltech

According to the paper detailing the initial data on Jupiter’s magnetosphere an auroras, many of the observations have “terrestrial analogs.” But other aspects are very Jovian, and have no counterpart on Earth.

“…a radically different conceptual model of Jupiter’s interaction with its space environment.” – from J. E. P. Connerney et. al., 2017

As the authors say in their summary, “We observed plasmas upwelling from the ionosphere, providing a mechanism whereby Jupiter helps populate its magnetosphere. The weakness of the magnetic field-aligned electric currents associated with the main aurora and the broadly distributed nature of electron beaming in the polar caps suggest a radically different conceptual model of Jupiter’s interaction with its space environment.”

Polar Storms

JunoCam has also found some puzzling features in Jupiter’s atmosphere. The poles themselves are populated by densely clustered, swirling storms the size of Earth. Since they’ve only been observed briefly, there are a host of unanswered questions about them.

“We’re puzzled as to how they could be formed, how stable the configuration is, and why Jupiter’s north pole doesn’t look like the south pole.” – Scott Bolton, Juno’s Principal Investigator at the Southwest Research Institute

“We’re puzzled as to how they could be formed, how stable the configuration is, and why Jupiter’s north pole doesn’t look like the south pole,” said Bolton. “We’re questioning whether this is a dynamic system, and are we seeing just one stage, and over the next year, we’re going to watch it disappear, or is this a stable configuration and these storms are circulating around one another?”

The tightly clustered storms that crowd Jupiter's polar regions are another of the gas giant's mysteries. In this image, cyclones the size of Earth bump up against each other at the south pole. Image:  NASA/JPL-Caltech/SwRI/MSSS/Betsy Asher Hall/Gervasio Robles
The tightly clustered storms that crowd Jupiter’s polar regions are another of the gas giant’s mysteries. In this image, cyclones the size of Earth bump up against each other at the south pole. Image: NASA/JPL-Caltech/SwRI/MSSS/Betsy Asher Hall/Gervasio Robles

The Great Red Spot: Juno’s Next Target

Juno’s purposeful orbit takes it extremely close to the cloud tops, where it can perform powerful science. But the orbit also takes it a long way from Jupiter. Every 53 days it takes another plunge at Jupiter, where it gathers its next set of observations.

“Every 53 days, we go screaming by Jupiter, get doused by a fire hose of Jovian science, and there is always something new.” – Scott Bolton, Juno’s Principal Investigator at the Southwest Research Institute.

“Every 53 days, we go screaming by Jupiter, get doused by a fire hose of Jovian science, and there is always something new,” said Bolton. “On our next flyby on July 11, we will fly directly over one of the most iconic features in the entire solar system — one that every school kid knows — Jupiter’s Great Red Spot. If anybody is going to get to the bottom of what is going on below those mammoth swirling crimson cloud tops, it’s Juno and her cloud-piercing science instruments.”

The JunoCam's next target: Jupiter's iconic Great Red Spot. Image:  NASA/JPL-Caltech/SwRI/MSSS/Roman Tkachenko
Juno’s next target: Jupiter’s iconic Great Red Spot. Image: NASA/JPL-Caltech/SwRI/MSSS/Roman Tkachenko

During each pass, Juno collects about 6 megabytes of data, which it sends back to Earth via the Deep Space Network. After that, the data is analyzed and published.

Juno has many more fly-bys of Jupiter before it’s sent to its end in the atmosphere of Jupiter. We can expect many more surprises, and hopefully some answers, between now and then.

Scientists Propose a New Kind of Planet: A Smashed Up Torus of Hot Vaporized Rock

Artist's impression of a Mars-sized object crashing into the Earth, starting the process that eventually created our Moon. Credit: Joe Tucciarone
Artist's impression of a Mars-sized object crashing into the Earth, starting the process that eventually created our Moon. Credit: Joe Tucciarone

There’s a new type of planet in town, though you won’t find it in well-aged solar systems like our own. It’s more of a stage of formation that planets like Earth can go through. And its existence helps explain the relationship between Earth and our Moon.

The new type of planet is a huge, spinning, donut-shaped mass of hot, vaporized rock, formed as planet-sized objects smash into each other. The pair of scientists behind the study explaining this new planet type have named it a ‘synestia.’ Simon Lock, a graduate student at Harvard University, and Sarah Stewart, a professor in the Department of Earth and Planetary Sciences at the University of California, Davis, say that Earth was at one time a synestia.

Rocky planets like Earth are accreted from smaller bodies over time. Objects with high energy and high angular momentum could form a synestia, a transient stage in planetary formation where vaporized rock orbits the rest of the body. In this image, each of the three stages has the same mass. Image: Simon Lock, Harvard University
Rocky planets like Earth are accreted from smaller bodies over time. Objects with high energy and high angular momentum could form a synestia, a transient stage in planetary formation where vaporized rock orbits the rest of the body. In this image, each of the three stages has the same mass. Image: Simon Lock, Harvard University

The current theory of planetary formation goes like this: When a star forms, the left-over material is in motion around the star. This left-over material is called a protoplanetary disk. The material coagulates into larger bodies as the smaller ones collide and join together.

As the bodies get larger and larger, the force of their collisions becomes greater and greater, and when two large bodies collided, their rocky material melts. Then, the newly created body cools, and becomes spherical. It’s understood that this is how Earth and the other rocky planets in our Solar System formed.

Lock and Stewart looked at this process and asked what would happen if the resulting body was spinning quickly.

When a body is spinning, the law of conservation of angular momentum comes into play. That law says that a spinning body will spin until an external torque slows it down. The often-used example from figure skating helps explain this.

If you’ve ever watched figure skaters, and who hasn’t, their actions are very instructive. When a single skater is spinning rapidly, she stretches out her arms to slow the rate of spin. When she folds her arms back into her body, she speeds up again. Her angular momentum is conserved.

This short video shows figure skaters and physics in action.

If you don’t like figure skating, this one uses the Earth to explain angular momentum.

Now take the example from a pair of figure skaters. When they’re both turning, and the two of them join together by holding each other’s hands and arms, their angular momentum is added together and conserved.

Replace two figure skaters with two planets, and this is what the two scientists behind the study wanted to model. What would happen if two large bodies with high energy and high angular momentum collided with each other?

If the two bodies had high enough temperatures and high enough angular momentum, a new type of planetary structure would form: the synestia. “We looked at the statistics of giant impacts, and we found that they can form a completely new structure,” Stewart said.

“We looked at the statistics of giant impacts, and we found that they can form a completely new structure.” – Professor Sarah Stewart, Department of Earth and Planetary Sciences at the University of California, Davis.

As explained in a press release from the UC Davis, for a synestia to form, some of the vaporized material from the collision must go into orbit. When a sphere is solid, every point on it is rotating at the same rate, if not the same speed. But when some of the material is vaporized, its volume expands. If it expands enough, and if its moving fast enough, it leaves orbit and forms a huge disc-shaped synestia.

Other theories have proposed that two large enough bodies could form an orbiting molten mass after colliding. But if the two bodies had high enough energy and temperature to vaporize some of the rock, the resulting synestia would occupy a much larger space.

“The main issue with looking for synestias around other stars is that they don’t last a long time. These are transient, evolving objects that are made during planet formation.” – Professor Sarah Stewart, UC Davis.

These synestias likely wouldn’t last very long. They would cool quickly and condense back into rocky bodies. For a body the size of Earth, the synestia might only last one hundred years.

The synestia structure sheds some light on how moons are formed. The Earth and the Moon are very similar in terms of composition, so it’s likely they formed as a result of a collision. It’s possible that the Earth and Moon formed from the same synestia.

These synestias have been modelled, but they haven’t been observed. However, the James Webb Space Telescope will have the power to peer into protoplanetary disks and watch planets forming. Will it observe a synestia?

“These are transient, evolving objects that are made during planet formation.” – Professor Sarah Stewart, UC Davis

In an email exchange with Universe Today, Dr. Sarah Stewart of UC Davis, one of the scientists behind the study, told us that “The main issue with looking for synestias around other stars is that they don’t last a long time. These are transient, evolving objects that are made during planet formation.”

“So the best bet for finding a rocky synestia is young systems where the body is close to the star. For gas giant planets, they may form a synestia for a period of their formation. We are getting close to being able to image circumplanetary disks in other star systems.”

Once we have the ability to observe planets forming in their circumstellar disks, we may find that synestias are more common than rare. In fact, planets may go through the synestia stage multiple times. Dr. Stewart told us that “Based on the statistics presented in our paper, we expect that most (more than half) of rocky planets that form in a manner similar to Earth became synestias one or more times during the giant impact stage of accretion.”

Dinosaur Killing Asteroid Hit in Exactly the Wrong Place

When an asteroid struck the Yucatan region about 66 million years ago, it triggered the extinction of the dinosaurs. ESA's Hera mission is visiting the smallest spacerock ever as part of our effort to not get creamed by an asteroid. Credit: NASA/Don Davis
When an asteroid struck the Yucatan region about 66 million years ago, it triggered the extinction of the dinosaurs. ESA's Hera mission is visiting the smallest spacerock ever as part of our effort to not get creamed by an asteroid. Credit: NASA/Don Davis

The asteroid that struck Earth about 66 million years ago and led to the mass extinction of dinosaurs may have hit one of the worst places possible as far as life on Earth was concerned. When it struck, the resulting cataclysm choked the atmosphere with sulphur, which blocked out the Sun. Without the Sun, the food chain collapsed, and it was bye-bye dinosaurs, and bye-bye most of the other life on Earth, too.

But, as it turns out, if it had struck a few moments earlier or later, it would not have hit the Yucatan, and things may have turned out differently. Why? Because of the concentration of the mineral gypsum in that area.

The place where the asteroid hit Earth is called the Chicxulub Crater, and scientists have been studying that area to try to learn more about the impact event that altered the course of life on Earth. An upcoming BBC documentary called “The Day The Dinosaurs Died,” focuses on what happened when the asteroid struck. Drill-core samples from the Yucatan area help explain the events that followed the impact.

The drilling rig off the coast of the Yucatan. The rig was there in the Spring of 2016 obtaining samples from the seafloor. Image: BBC/Barcroft Productions.
The drilling rig off the coast of the Yucatan. The rig was there in the Spring of 2016 obtaining samples from the seafloor. Image: BBC/Barcroft Productions.

The core samples, which are from as deep as 1300 m beneath the Gulf of Mexico, are from a feature called the peak ring.

When the asteroid struck Earth, it excavated a crater 100 km across and 30 km deep. This crater collapsed into a wider but shallower crater 200 km across and a few km deep. Then the center of the crater rebounded, and collapsed again, leaving the peak ring feature. The Chicxulub crater is now partly under water, and that’s where a drilling rig was set up to take samples.

The peak ring is at the center of the crater, offshore of the Yucatan Peninsula. Image: NASA/BBC
The peak ring is at the center of the crater, offshore of the Yucatan Peninsula. Image: NASA/BBC

The core samples revealed rock that has been heavily fractured and altered by immense pressures. The same impact that altered those rocks would have generated an enormous amount of heat, and that heat created an enormous cloud of sulphur from the vaporized gypsum. That cloud persisted, which led to a global winter. Temperatures dropped, plant growth came to a standstill, and the course of events on Earth were altered forever.

“Had the asteroid struck a few moments earlier or later, rather than hitting shallow coastal waters it might have hit deep ocean,” documentary co-presenter Ben Garrod told the BBC.

“This is where we get to the great irony of the story – because in the end it wasn’t the size of the asteroid, the scale of blast, or even its global reach that made dinosaurs extinct – it was where the impact happened,” said Ben Garrod, who presents “The Day The Dinosaurs Died” with Alice Roberts.

“An impact in the nearby Atlantic or Pacific oceans would have meant much less vaporised rock – including the deadly gypsum. The cloud would have been less dense and sunlight could still have reached the planet’s surface, meaning what happened next might have been avoided,” said Garrod.

In the documentary, host Alice Roberts will also visit a quarry in New Jersey, where fossil evidence shows a massive die-off in a very short period of time. In fact, these creatures could have died on the very day that the asteroid struck.

The core samples from the drilling rig show rocks that were subjected to immense heat and pressure at the time of the impact. Image: Barcroft Productions/BBC
The core samples from the drilling rig show rocks that were subjected to immense heat and pressure at the time of the impact. Image: Barcroft Productions/BBC

“All these fossils occur in a layer no more than 10cm thick,” palaeontologist Ken Lacovara tells Alice. “They died suddenly and were buried quickly. It tells us this is a moment in geological time. That’s days, weeks, maybe months. But this is not thousands of years; it’s not hundreds of thousands of years. This is essentially an instantaneous event.”

There’s lots of evidence showing that an asteroid struck Earth about 66 million years ago, causing widespread extinction. NASA satellite images clearly show crater features, now obscured by 66 million years of geological activity, but still visible.

There’s also what’s called the K-T Boundary, or Cretaceous-Tertiary Boundary. It’s a geological signature dating to 66 million years ago, which marks the end of the Cretaceous Period. In that boundary is a layer of iridium at very high concentrations, much higher than is normally present in the Earth’s crust. Since iridium is much more abundant in asteroids, the conclusion is that it was probably deposited by an asteroid.

But this is the first evidence that shows how critical the actual location of the event may have been. If it had not struck where it had, dinosaurs may never have gone extinct, you and I would not be here, and things on Earth could look much different.

It might sound like the stuff of science fiction, but who knows? Maybe a race of intelligent lizards might already have mastered interstellar travel.