Mars Has Features That Look Very Similar To Life Bearing Hot Springs On Earth

Rock formations near hot spring discharge channels at El Tatio, Chile, shown in this image, bear a striking resemblance to formations in the Gusev Crater on Mars. Image: Steven W. Ruff, Jack D. Farmer

A type of rock formation found on Mars may be some of the best evidence yet for life on that planet, according to a new study at Nature.com. The formations in question are in the Gusev Crater. When Spirit examined the spectra of the formations, scientists found that they closely match those of formations at El Tatio in Northern Chile.

The significance of that match? The El Tatio formations were produced by a combination of living and non-living processes.

The Gusev Crater geo-located on a map of Mars. Image: Wikimedia Labs
The Gusev Crater geo-located on a map of Mars. Image: Wikimedia Labs

The Gusev Crater is a large crater that formed 3 to 4 billion years ago. It’s an old crater lake bed, with sediments up to 3,000 feet thick. Gusev also has exposed rock formations which show evidence of layering. A system of water channels called Ma’adim Vallis flows into Gusev, which could account for the deep sediments.

When it comes to evidence for the existence of life on Mars, and on early Earth, researchers often focus on hydrothermal spring deposits. These deposits can capture and preserve the biosignatures of early life. You can’t find evidence of ancient life just anywhere because geologic processes erase it. This is why El Tatio has received so much attention.

It’s also why formations at Gusev have received attention. They appear to have a hydrothermal origin as well. Their relation to the rocks around them support their hydrothermal origin.

El Tatio in Chile is a hard-to-find combination of extremely high UV, low rainfall, high annual evaporation rate, and high elevation. This makes it an excellent analog for Mars.

The Mars-like conditions at El Tatio make it rather unique on Earth, and that uniqueness is reflected in the rock deposits and structures that it produces. The most unique ones may be the biomediated silica structures that resemble the structures in Gusev. This resemblance suggest that they have the same causes: hydrothermal vents and biofilms.

Silica structures at the Gusev Crater (left) closely resemble the silica structures at El Tatio (right.) Image: Steven W. Ruff, Jack D. Farmer
Silica structures at the Gusev Crater (left) closely resemble the silica structures at El Tatio (right.) Image: Steven W. Ruff, Jack D. Farmer

Biomediated Structures?

The rock structures at El Tatio are typically covered with very shallow water that supports bio-films and mats comprised of different diatoms and cyanobacteria. The size and shape of the structures varies, probably according to the variable depth, flow velocity, and flow direction of the water. The same variations are present at Gusev on Mars. This begs the question, “Could the structures at Gusev also have a biological cause?”

Microscopic images of structures at El Tatio. B, in the upper right, shows the biofilm community partly responsible for the formation of the structures. The surface biofilm community includes silica-encrusted microbial filaments and sheaths, and spindle-shaped diatoms (white arrows.) Image: Steven W. Ruff, Jack D. Farmer.
Microscopic images of structures at El Tatio. B, in the upper right, shows the biofilm community partly responsible for the formation of the structures. The surface biofilm community includes silica-encrusted microbial filaments and sheaths, and spindle-shaped diatoms (white arrows.) Image: Steven W. Ruff, Jack D. Farmer.

Luckily, we have a rover on Mars that can probe the Gusev formations more deeply. Spirit used its Miniature Thermal Emission Spectrometer (Mini-TES) to obtain spectra of the Gusev formations. These spectra confirmed the similarity to the terrestrial formations at El Tatio.

Spirit was helpful in other ways. The rover has one inoperable wheel, which drags across the Martian surface, disrupting and overturning rock structures. Spirit was intentionally driven across the Gusev formations, in order to overturn and expose fragments. Then, Spirit’s Microscopic Imager was trained on those fragments.

(A) shows the wheel marks left by Spirit. The darker ones on the right are from the inoperable wheel. (B) is a closeup of the box in (A). (C) shows some of the rover tracks and features in Gusev. (D) shows two whitish rocks, intentionally overturned by Spirit's busted wheel. Image: NASA/JPL/Spirit PanCam.
(A) shows the wheel marks left by Spirit. The darker ones on the right are from the inoperable wheel. (B) is a closeup of the box in (A). (C) shows some of the rover tracks and features in Gusev. (D) shows two whitish rocks, intentionally overturned by Spirit’s busted wheel. Image: NASA/JPL/Spirit PanCam.
MM scale close-up images of the Martian rocks, on the left, show many similarities with the El Tatio rocks, right. Images: Steven W. Ruff, Jack D. Farmer, NASA/JPL.
MM scale close-up images of the Martian rocks, on the left, show many similarities with the El Tatio rocks, right. Images: Steven W. Ruff, Jack D. Farmer, NASA/JPL.

Unfortunately, Spirit lacks the instrumentation to look deeply into the internal microscale features of the Martian rocks. If Spirit could do that, we would be much more certain that the Martian rocks were partly biogenic in origin. All of the surrounding factors suggest that they do, but that’s not enough to come to that conclusion.

This study presents more compelling evidence that there was indeed life on Mars at some point. But it’s not conclusive.

Carl Sagan’s Crazy Idea: Life Inside A Comet?

Comet 2012 S1 ISON in outburst, seen on November 15, 2013. Credit and copyright: Damian Peach.

Establishing a sustained human presence somewhere other than Earth is a vital part of humanity’s future, no matter what. We know that Earth won’t last forever. We don’t know exactly which one of the many threats that Earth faces will ultimately extinguish life here, but life will be extinguished completely at some future point.

Colonizing moons or planets is one way to do it. But that’s really hard. We may make it to Mars before too long, but we don’t know how successful we’ll be at establishing a presence there. There are an awful lot of ‘ifs’ when it comes to Mars.

The only other option is space habitats. That makes sense; there’s much more space out there than there is surface area on planets and moons. And space habitats have been on the minds of thinkers, writers, and scientists for a long time.

Gerard K. O’Neill is probably the most well-known thinker when it comes to space habitats. In 1977 he published the seminal book on space habitats, called “The High Frontier: Human Colonies in Space.” O’Neill in his time popularized what is now called the “O’Neill Cylinder.”

The O’Neill Cylinder

Interior view of an O'Neill Cylinder. There are alternating strips of livable surface and "windows" to let light in. Image: Rick Guidice, NASA Ames Research Center
Interior view of an O’Neill Cylinder. There are alternating strips of livable surface and “windows” to let light in. Image: Rick Guidice, NASA Ames Research Center

The O’Neill Cylinder lay the groundwork for space habitat design. It consisted of two counter-rotating cylinders, one nested inside the other. The counter-rotation provided stability and gravity. The atmosphere would be controlled, and the habitat would be powered by solar, and perhaps fusion.

An illustration of two O'Neill Cylinder's. Image: Rick Guidice NASA Ames Research Center
An illustration of two O’Neill Cylinder’s. Image: Rick Guidice NASA Ames Research Center

The McKendree Cylinder

Other designs from other people followed O’Neill’s. Notable among them is the McKendree Cylinder. The McKendree would be gargantuan compared to the O’Neill Cylinder. Thanks to carbon nanotubes, it would have more surface area than the United States. It was designed by NASA Engineer Tom McKendree and introduced in the year 2,000 at the NASA “Turning Goals into Reality Conference.”

There’ve been other ideas for massive, high-tech space habitats, including the Bernal Sphere and the Stanford Torus. All of these designs are typical of engineers and technologists. Lots of high-tech, lots of steel, lots of machinery. But the engineers and scientists behind those designs weren’t the only ones thinking about humans in space.

Carl Sagan was too. And he had a very different idea of what space habitats could be.

So Crazy It Just Might Work

But the craziest idea for space habitats has got to be Carl Sagan’s, from his 1985 book “Comet.”In “Comet” Sagan suggested that humans could seek refuge in, and even colonize, actual comets travelling through our Solar System. Using all the advanced technologies thought about in Sagan’s time—but which don’t exist yet—comets could be transformed into humanity’s salvation. His idea is a world apart from the high-tech, highly-engineered, gleaming habitat designs that most people think of when they think of space habitats.

I’m a fan of Sagan’s. Like many in my generation, I was influenced by his TV series Cosmos. I loved it and it’s stuck with me. His book “The Demon-Haunted World” taught us what scientific skepticism can be, and how useful it is.

"Comet" was published only months before Halley's Comet arrived in our inner Solar System in 1986. Image: Jon Lomberg, Random House New York.
“Comet” was published only months before Halley’s Comet arrived in our inner Solar System in 1986. Image: Jon Lomberg, Random House New York.

Sagan’s is the most surprising—and perhaps bleakest—view of space habitats. Life inside comets sounds shocking, and maybe even foolish, but as Sagan explains, there is some reasoning behind the idea.

Remember that when Sagan wrote about this, thermonuclear war between the superpowers was a “thing,” and thinkers like Sagan felt a sense of imminent danger. That sense of foreboding may have contributed to his “comets-as-space-habitas” idea. Plus, he was just an innovative thinker.

Carl Sagan in 1980.
Carl Sagan in 1980.

Sagan’s thinking behind using comets as space habitats starts out something like this: if there are about a hundred thousand comets crossing Earth’s orbit, and another hundred trillion in the Oort Cloud, their combined surface area is roughly equal to about a hundred million Earths. And with advanced technology, Sagan proposed that these comets could be captured and colonized and sent on orbits and trajectories desirable to humans.

Comet Lovejoy and its spectacular "lively" ion tail photographed on January 8th by Nick Howes at Tzec Muan Network at Siding Spring Australia. Could Lovejoy and its brethren one day provide a home for humanity?
Comet Lovejoy and its spectacular “lively” ion tail photographed on January 8th by Nick Howes at Tzec Muan Network at Siding Spring Australia. Could Lovejoy and its brethren one day provide a home for humanity?

Comets are rich in minerals, water ice, and biological compounds. Or so it was thought at the time. That means raw material for manufacturing, water to drink and to supply oxygen, biological compounds for bio-engineering, and even the raw material for rocket fuel. Add a fusion reactor for power, and
comets could end up being the convenience stores of the Solar System.

Physicist Freeman Dyson, an innovative thinker himself, had something to add to Sagan’s comet idea. In “Comet,” Sagan tells of Dyson’s ideas around genetic engineering, and that one day we should be able to engineer forms of life that could thrive on comets, and meet some of our needs. Dyson talks about a giant, genetically engineered tree that could grow on a comet, planted in snow rich in organic chemicals. The tree would supply us with fresh oxygen.

The OSIRIS narrow-angle camera aboard the Rosetta spacecraft captured this image of comet 67P/Churyumov-Gerasimenko on September 30, 2016. Does it look habitable, or potentially habitable, to you? Credits: ESA/Rosetta/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
The OSIRIS narrow-angle camera aboard the Rosetta spacecraft captured this image of comet 67P/Churyumov-Gerasimenko on September 30, 2016. Does it look habitable, or potentially habitable, to you? Credits: ESA/Rosetta/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

This sounds extremely far-fetched: humans living inside comets travelling through space, with giant genetically engineered trees and fusion power plants. I try to remind myself that many things we take for granted now were once thought to be laughable. But even though parts of the comet-as-space-habitat idea sound fanciful—like the giant tree—there may be the seed of a practical idea here, with humans hitching rides on comets, molding them to our purposes, and extracting resources like minerals and fuel from them.

High cliffs on the surface of Comet Churyumov–Gerasimenko as imaged by the Rosetta spacecraft. Image Credit & Licence (CC BY-SA 3.0 IGO): ESA, Rosetta spacecraft, NAVCAM; Additional Processing: Stuart Atkinson
High cliffs on the surface of Comet Churyumov–Gerasimenko as imaged by the Rosetta spacecraft. Image Credit & Licence (CC BY-SA 3.0 IGO): ESA, Rosetta spacecraft, NAVCAM; Additional Processing: Stuart Atkinson

Sagan was an agile creative thinker. He’s clearly riffing when he outlines his ideas for life on comets. He’s like the John Coltrane of space science.

It seems doubtful that we would go to the trouble to turn comets into actual habitats. It’s probably more science fiction that science. But the future is unwritten, and given enough time, almost anything might be possible.

Princeton Team Directly Observes Planets Around Nearby Stars

The Subaru Telescope atop Mauna Kea. CHARIS works in conjunction with Subaru. Image: Dr. Hideaki Fujiwara - Subaru Telescope, NAOJ.
The Subaru Telescope atop Mauna Kea. CHARIS works in conjunction with Subaru. Image: Dr. Hideaki Fujiwara - Subaru Telescope, NAOJ.

The revelation that there are thousands of planets out there, orbiting other stars, is mostly due to the success of the Kepler mission. But now that we know these exoplanets are there, we want to know all about them. We want to know their mass, their temperature, how old they are, and pretty much everything else about them.

Now, a new instrument called the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) has captured the light from one of those exoplanets. This has the researchers excited about what they can see.

“We couldn’t have been more pleased by the results.” – N. Jeremy Kasdin

CHARIS allows astronomers to isolate light reflecting from planets. That’s difficult to do, since they are so much dimmer than the stars they orbit. CHARIS is able to isolate the reflective light from planets larger than Jupiter. Then astronomers can analyze that light to learn about the planet’s age, atmospheric composition, and its size.

“By analyzing the spectrum of a planet, we can really understand a lot about the planet. You can see specific features that can allow you to understand the mass, the temperature, the age of the planet.” – team member Tyler Groff

This image from the CHARIS instrument shows planets located around a star in the planetary system HR8799. Image: N. Jeremy Kasdin and team
This image from the CHARIS instrument shows planets located around a star in the planetary system HR8799. Image: N. Jeremy Kasdin and team.

CHARIS was designed and built by a team led by N. Jeremy Kasdin, a professor of mechanical and aerospace engineering at Princeton University. It took them five years to build CHARIS.

The spectrograph sits inside a 500 lb case that measures 30x30x12. Inside that case, it’s kept at -223.15 Celsius (50 Kelvin, -369 F.) The CHARIS instrument has nine mirrors, five filters, two prism assemblies and a microlens array. The microlens array is a special optical device with an array of tiny lenses etched into its surface.

During a CHARIS field test, researchers captured images of celestial objects, including vapor clouds moving across a section of the planet Neptune.  (Images courtesy of N. Jeremy Kasdin and the research team)
During a CHARIS field test, researchers captured images of celestial objects, including vapor clouds moving across a section of the planet Neptune. (Images courtesy of N. Jeremy Kasdin and the research team)

CHARIS works in conjunction with the Subaru Telescope in Hawaii. It’s part of a long-time collaboration between Princeton, the University of Tokyo and the National Astronomical Observatory of Japan, which operates the Subaru Telescope at Mauna Kea, Hawaii. And these first results are generating a lot of interest.

According to Tyler Groff, a team member from Princeton who now works for NASA, the preliminary result from CHARIS have generated a lot of interest from the astronomy community. The CHARIS team is now reviewing research proposals.

“There is a lot of excitement,” Groff said. “Charis is going to open for science in February to everyone.”

CHARIS is designed to capture the light from distant exoplanets, so its field of view is tiny. It’s only 2 arc-seconds, which is a tiny patch of sky. For reference, the full Moon is about 1,800 arc-seconds. But it can take images across a wide band of light wavelengths. The fact that it captures such a wide band of light is what allows such detailed analysis of anything it’s pointed at.

“We tested CHARIS on Neptune, but the entire planet doesn’t even fit on our detector.” -Tyler Groff

CHARIS is located behind a coronagraph. The coronagraph channels light from the Subaru Telescope and divides the light coming directly from a star from the light that is reflecting off planets orbiting that star. The team says it’s like picking out the light reflecting from a speck of tinsel floating in front of a spotlight that’s hundreds of miles away.

Mars One Merges With Mobile Payment Company In Odd Restructuring

An artist's illustration of a Mars settlement. Image: Bryan Versteeg/MarsOne
An artist's illustration of an early Mars settlement. Credit: Bryan Versteeg/MarsOne

“Pssst. Hey you! Want to go to Mars? No, you won’t be able to come back, you’ll die there. No, we don’t have a ship. No, we don’t have any plans for life support, or for growing food to eat while you there. But we do have our own mobile payment app!”

So goes the sales pitch from Mars One, the oddball of the space exploration world.

In a move that can charitably be described as “puzzling”, Mars One is merging with Swiss mobile payment company InFin Innovative Finance AG. InFin is a small player in a mobile payment field dominated by huge entities like Google, Apple, and Samsung. So, other than ensuring that Mars One astronauts will be able to complete their online shopping without hassle, what is behind this merger?

Money.

In case you don’t know, Mars One is the Netherlands-based company proposing to send astronauts to Mars and set up a human colony there. There would be no returning to Earth, and the “lucky” people chosen by Mars One to be the first to go, would die there. Mars One has been roundly criticized by the aerospace community at large for its lack of detail and its lack of technical capability.

This latest move is unlikely to quell any of the criticism.

Artist's concept of a Martian astronaut standing outside the Mars One habitat. Credit: Bryan Versteeg/Mars One
Artist’s concept of a Martian astronaut standing outside the Mars One habitat. Credit: Bryan Versteeg/Mars One

Mars One has had no problem attracting a huge number of applicants to become astronauts and colonists. Over 200,000 people applied, and that number has been whittled down to 100. They’ve been able to attract applicants, and a lot of attention, but one thing they haven’t been able to attract is money.

Mars One say they need $6 billion to establish their colony on Mars, but they’ve only raised about $1 million so far, mostly from donations, astronaut application fees, and from t-shirt sales and other merchandise. Yes, t-shirts.

“Mars One is very pleased to have been acquired by InFin. This step provides the opportunity to raise capital through the listing on the Frankfurt Stock Exchange.” – Bas Lansdorp

Clearly, Mars One needs cash, and this merger gives Mars One access to capital. You see, InFin is traded on the Frankfurt Stock Exchange, and once the two entities have merged, Mars One will be publicly traded. It’s difficult to see how any institutional investors would ever go anywhere near Mars One stock, but it may be an investment for novelty-seekers, space enthusiasts, or true believers. Who knows?

In a press release, Mars One CEO and co-founder Bas Lansdorp said “This listing also supports our aim to attract international support to establish a permanent human settlement on Mars: our global followers will have the opportunity to be part of this adventure and to literally own a piece of this historic venture.”

A cynic might say that Mars One was just created by Lansdorp as a way to generate some cash from the interest surrounding human travel to Mars. This latest move just adds to the cynicism, since there’s no apparent synergy between a space travel company and a mobile payment company.

If the fact that they sell t-shirts to raise money for their Mars colony doesn’t make you question how capable and serious Mars One is, then this latest move surely will.

Or, maybe we’re being too hard on Mars One. It’s not like NASA or the ESA has ever inspired a line of clothing, or an opera.

Maybe Mars One is an innovator, and is thinking outside the box. Just because space exploration has always been done one way, doesn’t mean it can’t be done in another. Maybe in the final analysis, Mars One will be a successful endeavour, and will show others how unorthodox approaches can work. Only the future knows, and we’re still waiting for the future to tell us.

In the meantime, want to buy a t-shirt?

Somebody Get This Supermassive Black Hole A Towel

Artist's conception of how the "nearly naked" supermassive black hole originated. On the left panel, the black hole begins its encounter with another, larger black hole. In the middle panel, the stars are stripped away. On the right, the black hole emerges from the encounter with only the remnants of its galaxy intact. Credit: Bill Saxton, NRAO/AUI/NSF.

Most galaxies have a super-massive black hole at their centre. As galaxies collide and merge, the black holes merge too, creating the super-massives we see in the universe today. But one team of astronomers went looking for super-massives that aren’t at the heart of galaxies. They looked at over 1200 galaxies, using the National Science Foundation’s (NSF) Very Long Baseline Array (VLBA), and almost all of them had a black hole right where it should be, in the middle of the galaxy itself.

But they did find one hole, in a cluster of galaxies more than two billion light years away from Earth, that was not at the centre of a galaxy. They were surprised too see that this black hole had been stripped naked of surrounding stars. Once they identified this black hole, now called B3 1715+425, they used the Hubble and the Spitzer to follow up. And what they found tells an unusual story.

“We’ve not seen anything like this before.” – James Condon

The super-massive black hole in question, which we’ll call B3 for short, was a curiosity. It was far brighter than anything near it, and it was also more distant than most of the holes they were studying. But a black hole this bright is typically situated at the heart of a large galaxy. B3 had only a remnant of a galaxy surrounding it. It was naked.

James Condon, of the National Radio Astronomy Observatory (NRAO) described what happened.

“We were looking for orbiting pairs of supermassive black holes, with one offset from the center of a galaxy, as telltale evidence of a previous galaxy merger,” said Condon. “Instead, we found this black hole fleeing from the larger galaxy and leaving a trail of debris behind it,” he added.

“We concluded that our fleeing black hole was incapable of attracting that many stars on the way out to make it look like it does now.” – James Condon

Condon and his team concluded that B3 was once a super-massive black hole at the heart of a large galaxy. B3 collided with another, larger galaxy, one with an even larger black hole. During this collision B3 had most of its stars stripped away, except for the ones closest to it. B3 is still speeding away, at more than 2000 km per second.

Nearly Naked Black Hole from NRAO Outreach on Vimeo.

B3 and what’s left of its stars will continue to move through space, escaping their encounter with the other galaxy. It probably won’t escape from the cluster of galaxies it’s in though.

“What happens to a galaxy when most of its stars have been stripped away, but it still has an active super-massive black hole at the middle?” – James Condon

Condon outlines the likely end for B3. It won’t have enough stars and gas surrounding it to trigger new star birth. It also won’t be able to attract new stars. So eventually, the remnant stars of B3’s original galaxy will travel with it, growing progressively dimmer over time.

B3 itself will also grow dimmer, since it has no new material to “feed” on. It will eventually be nearly impossible to see. Only its gravitational effect will betray its position.

“In a billion years or so, it probably will be invisible.” – James Condon

How many B3s are there? If B3 itself will eventually become invisible, how many other super-massive black holes like it are there, undetectable by our instruments? How often does it happen? And how important is it in understanding the evolution of galaxies, and of clusters of galaxies. Condon asks these questions near the end of the clip. For now, at least, we have no answers.

Condon and his team used the NRAO‘s VLBA to search for these lonely holes. The VLBA is a radio astronomy instrument made up of 10 identical 25m antennae around the world, and controlled at a center in New Mexico. The array provides super sharp detail in the radio wave part of the spectrum.

Their black hole search is a long term project, making use of filler time available at the VLBA. Future telescopes, like the Large Synoptic Survey Telescope being built in Chile, will make Condon’s work easier.

Condon worked with Jeremy Darling of the University of Colorado, Yuri Kovalev of the Astro Space Center of the Lebedev Physical Institute in Moscow, and Leonid Petrov of the Astrogeo Center in Falls Church, Virginia. They will report their findings in the Astrophysical Journal.

NASA’s New Asteroid Alert System Gives 5 Whole Days of Warning

An asteroid strike that could wreak some serious havoc against Earth may be statistically unlikely. But it's not like there's no precedent for one. Artist's Image: . Credit: NASA

Everyone knows it was a large asteroid striking Earth that led to the demise of the dinosaurs. But how many near misses were there? Modern humans have been around for about 225,000 years, so we must have come close to death by asteroid more than once in our time. We would have had no clue.

Of course, it’s the actual strikes that are cause for concern, not near misses. Efforts to predict asteroid strikes, and to catalogue asteroids that come close to Earth, have reached new levels. NASA’s newest tool in the fight against asteroids is called Scout. Scout is designed to detect asteroids approaching Earth, and it just passed an important test. Scout was able to give us 5 days notice of an approaching asteroid.

Here’s how Scout works. A telescope in Hawaii, the Panoramic Survey Telescope & Rapid Response System (Pan-STARRS) detected the asteroid, called 2016 UR36, and then alerted other ‘scopes. Three other telescopes confirmed 2016 UR36 and were able to narrow down its trajectory. They also learned its size, about 5 to 25 meters across.

The Pan STARRS telescope in Hawaii. Image: Institute for Astronomy, University of Hawaii.
The Pan STARRS telescope in Hawaii. Image: Institute for Astronomy, University of Hawaii.

After several hours, we knew that UR 36 would come close to us, but was not a threat to impact Earth. UR 36 would pass Earth at a distance of about 498,000 km. That’s about 1.3 times further away than the Moon.

The key part of this is that we had 5 days notice. And five days notice is a lot more than the few hours that we usually have. The approach of 2016 UR36 was the first test for the Scout system, and it passed the test.

Asteroids that come close to Earth are called Near Earth Objects (NEOs) and finding them and tracking them has become a growing concern for NASA. In fact NASA has about 15,000 NEOs catalogued, and they’re still finding about 5 more every night.

NASA is getting much better at discovering and detecting NEOs. Image: NASA/NEO Program.
NASA is getting much better at discovering and detecting NEOs. Image: NASA/NEO Program.

Not only does NASA have the Scout system, whose primary role is to speed up the confirmation process for approaching asteroids, but they also have the Sentry program. Sentry’s role is a little different.

Sentry’s job is to focus on asteroids that are large enough to wipe out a city and cause widespread destruction. That means NEOs that are larger than about 140 metres. Sentry has over 600 large NEOs catalogued, and astronomers think there are a lot more of them out there.

NASA also has the Planetary Defense Coordination Office (PDCO), which has got to be the greatest name for an office ever. (Can you imagine having that on your business card?) Anyway, the PDCO has the over-arching role of preparing for asteroid impacts. The Office is there to make emergency plans to deal with the impact aftermath.

5 days notice for a small asteroid striking Earth is a huge step for preparedness. Resources can be mobilized, critical infrastructure can be protected, maybe things like atomic power plants can be shut down if necessary. And, of course, people can be evacuated.

We haven’t always had any notice for approaching asteroids. Look at the Chelyabinsk meteor from 2013. It was a 10,000 ton meteor that exploded over the Chelyabinsk Oblast, injuring 1500 people and damaging an estimated 3,000 building in 6 cities. If it had been a little bigger, and reached the surface of the Earth, the damage would have been widespread. 5 days notice would likely have saved a lot of lives.

Smaller asteroids may be too small to detect when they’re very far away. But larger ones can be detected when they’re still 10, 20, even 30 years away. That’s enough time to figure out how to stop them. And if you can reach them when they’re that far away, you only need to nudge them a little to deflect them away from Earth, and maybe to the Sun to be destroyed.

Large asteroids with the potential to cause widespread destruction are the attention-getters. Hollywood loves them. But it may be more likely that we face numerous impacts from smaller asteroids, and that they could cause more damage overall. Scout’s ability to detect these smaller asteroids, and give us several days notice of their approach, could be a life-saver.

No, There Won’t Be 15 Days of Darkness in November. It’s Another Stupid Hoax.

Venus and Jupiter at dusk over Australia's Outback on June 27, 2015. Credit: Joseph Brimacombe

The internet is great, isn’t it?

You can post anything you want on the internet, and if people like the sound of it, they spread it. It doesn’t make any difference if it’s true or not. We’re not born fact checkers and skeptics, are we?

Pretty soon, before you know it, it’s gone viral. Then it becomes its own sensation, and people who don’t even believe it start reporting it. Never is this more true than with hoaxes.

The latest hoax is the “15 Days of Darkness in November” thing that’s going around. Everyone’s on the bandwagon.

The 15 days hoax is not new. It made an appearance last year, and was thoroughly debunked. And of course, there wasn’t 15 day of darkness last year, was there? (Unless NASA covered it up!)

It’s here again this year, and will be debunked again, and will probably be here next year, too.

The whole thing started at a site that will remain linkless, and caught on from there. This is what the site reported:

“NASA has confirmed that the Earth will experience 15 days of total darkness between November 15 and November 29, 2015. The event, according to NASA, hasn’t occurred in over 1 Million years.”

Of course, NASA never said any such thing.

Here is supposedly what will happen to cause this calamity. Try and follow along with the nonsensical foolishness.

During the conjunction between Venus and Jupiter on October 26, light from Venus would cause gases in Jupiter to heat up. The heated gasses will cause a large amount of hydrogen to be released into space. The gases will reach the Sun and trigger a massive explosion on the surface of the star, heating it to 9,000 degrees Kelvin. The heat of the explosion would then cause the Sun to emit a blue color.
The dull blue color will last for 15 days during which the Earth will be thrown into darkness.

Where to begin? Let’s start with conjunctions.

Conjunctions are mostly just visual phenomena. The fact that two things in the sky look closer together from our point of view on Earth doesn’t mean that they’re that close together. In fact, even when Jupiter and Venus are in conjunction, they can still be over 800 million km apart. For perspective, the Sun and the Earth are about 150 million km apart.

So, as the hoax goes, at that great distance, light from Venus will cause gases on Jupiter to heat up. News Flash: the light from the Sun is far more intense than light from Venus could ever be, and it doesn’t heat up the gases on Jupiter. In fact, any light from Venus that makes it to Jupiter is just reflected sunlight anyway.

The Moon and this dead tree are in conjunction. This will cause the Martian Pyramids to vibrate harmonically. These vibrations will shake the walls of the movie studio where the Moon landing was faked, causing it to collapse. Image: Evan Gough
The Moon and this dead tree are in conjunction. This will cause the Martian Pyramids to vibrate harmonically. These vibrations will shake the walls of the movie studio where the Moon landing was faked, causing it to collapse. Image: Evan Gough

The hoax gets more outrageous as it goes along. These supposed heated gases then escape from Jupiter into space, and head for the Sun. But Jupiter is enormous and has enormous gravitational pull. How are any gases going to escape Jupiter’s overpowering gravity? Answer: they can’t and they won’t.

Then, these gases supposedly strike the Sun, and trigger a massive explosion on the Sun’s surface, which turn the Sun blue and plunges the Earth into darkness. Not blueness, which I could understand, but darkness.

This is absurd, of course. The Sun dominates the planets in a one-way relationship, and nothing the planets ever do could change that. No escaped gases from Jupiter would ever strike the Sun.

Jupiter is puny and insignificant compared to the Sun. And it's also hundreds of millions of kilometers away. How is a puny puff of hydrogen from Jupiter supposed to darken the Sun? Image: NASA/SDO
Jupiter is puny and insignificant compared to the Sun. And it’s also hundreds of millions of kilometers away. How is a puny puff of hydrogen from Jupiter supposed to darken the Sun? Image: NASA/SDO

Nothing Jupiter does can affect the Sun. Jupiter is, on average, 778 million km from the Sun. Jupiter could change places with Venus, and the Sun would keep shining normally. Jupiter could explode completely and the Sun would go on shining normally. Jupiter could put on a big red nose and some clown shoes, and the Sun would remain unaffected.

The Sun is a giant atom-crushing machine 1000 times more massive than Jupiter. The massive wall of energy and solar wind that comes from the Sun slams into Jupiter, and completely overwhelms anything Jupiter can do to the Sun. It’s just the way it is. It’s just the way it will always be.

Like the faked Moon landing hoax, and the Nibiru/Planet X hoax, this 15 days of darkness meme just keeps coming around. There may be no end to it.

It’s annoying, for sure, but maybe there’s a silver lining. Maybe some people reading about this supposed calamity will enter the word “conjunction” into a search engine, and begin their own personal journey of learning how the universe works.

We can hope so, can’t we?

Either Stars are Strange, or There Are 234 Aliens Trying to Contact Us

The Sloan Digital Sky Survey telescope stands out against the breaktaking backdrop of the Sacramento Mountains. 234 stars out of the Sloan's catalogue of over 2.5 million stars are producing an unexplained pulsed signal. Image: SDSS, Fermilab Visual Media Services
The Sloan Digital Sky Survey telescope stands out against the breaktaking backdrop of the Sacramento Mountains. 234 stars out of the Sloan's catalogue of over 2.5 million stars are producing an unexplained pulsed signal. Image: SDSS, Fermilab Visual Media Services

We all want there to be aliens. Green ones, pink ones, brown ones, Greys. Or maybe Vulcans, Klingons, even a being of pure energy. Any type will do.

That’s why whenever a mysterious signal or energetic fluctuation arrives from somewhere in the cosmos and hits one of our many telescopes, headlines erupt across the media: “Have We Finally Detected An Alien Signal?” or “Have Astronomers Discovered An Alien Megastructure?” But science-minded people know that we’re probably getting ahead of ourselves.

Skepticism still rules the day when it comes to these headlines, and the events that spawn them. That’s the way it should be, because we’ve always found a more prosaic reason for whatever signal from space we’re talking about. But, being skeptical is a balancing act; it doesn’t mean being dismissive.

What we’re talking about here is a new study from E.F. Borra and E. Trottier, two astronomers at Laval University in Canada. Their study, titled “Discovery of peculiar periodic spectral modulations in a small fraction of solar type stars” was just published at arXiv.org. ArXiv.org is a pre-print website, so the paper itself hasn’t been peer reviewed yet. But it is generating interest.

The two astronomers used data from the Sloan Digital Sky Survey, and analyzed the spectra of 2.5 million stars. Of all those stars, they found 234 stars that are producing a puzzling signal. That’s only a tiny percentage. And, they say, these signals “have exactly the shape of an ETI signal” that was predicted in a previous study by Borra.

A portion of the 234 stars that are sources of the pulsed ETI-like signal. Note that all the stars are in the narrow spectral range F2 to K1, very similar to our own Sun. Image: Ermanno F. Borra and Eric Trottier
A portion of the 234 stars that are sources of the pulsed ETI-like signal. Note that all the stars are in the narrow spectral range F2 to K1, very similar to our own Sun. Image: Ermanno F. Borra and Eric Trottier

Prediction is a key part of the scientific method. If you develop a theory, your theory looks better and better the more you can use it to correctly predict some future events based on it. Look how many times Einstein’s predictions based on Relativity have been proven correct.

The 234 stars in Borra and Trottier’s study aren’t random. They’re “overwhelmingly in the F2 to K1 spectral range” according to the abstract. That’s significant because this is a small range centred around the spectrum of our own Sun. And our own Sun is the only one we know of that has an intelligent species living near it. If ours does, maybe others do too?

The authors acknowledge five potential causes of their findings: instrumental and data reduction effects, rotational transitions in molecules, the Fourier transform of spectral lines, rapid pulsations, and finally the ETI signal predicted by Borra (2012). They dismiss molecules or pulsations as causes, and they deem it highly unlikely that the signals are caused by the Fourier analysis itself. This leaves two possible sources for the detected signals. Either they’re a result of the Sloan instrument itself and the data reduction, or they are in fact a signal from extra-terrestrial intelligences.

This graph shows the number of detected signals by Spectral Type of star. Image: Ermanno F. Borra and Eric Trottier
This graph shows the number of detected signals by Spectral Type of star. Image: Ermanno F. Borra and Eric Trottier

The detected signals are pulses of light separated by a constant time interval. These types of signals were predicted by Borra in his 2012 paper, and they are what he and Trottier set out to find in the Sloan data. It may be a bit of a red flag when scientist’s find the very thing they predicted they would find. But Trottier and Borra are circumspect about their own results.

As the authors say in their paper, “Although unlikely, there is also a possibility that the signals are due to highly peculiar chemical compositions in a small fraction of galactic halo stars.” It may be unlikely, but lots of discoveries seem unlikely at first. Maybe there is a tiny subset of stars with chemical peculiarities that make them act in this way.

To sum it all up, the two astronomers have found a tiny number of stars, very similar to our own Sun, that seem to be the source of pulsed signals. These signals are the same as predicted if a technological society was using powerful lasers to communicate with distant stars.

We all want there to be aliens, and maybe the first sign of them will be pulsed light signals from stars like our own Sun. But it’s all still very preliminary, and as the authors acknowledge, “…at this stage, this hypothesis needs to be confirmed with further work.”

That further work is already being planned by the Breakthrough Listen Initiative, a project that searches for intelligent life in the cosmos. They plan to use the Automated Planet Finder telescope at the Lick Observatory to further observe some of Borra’s 234 stars.

The Breakthrough team don’t seem that excited about Borra’s findings. They’ve already poured cold water on it, trotting out the old axiom that “Extraordinary claims require extraordinary evidence” in a statement on Borra’s paper. They also give Borra’s findings a score of 0 to 1 on the Rio Scale. The Rio Scale is something used by the international SETI community to rank detections of phenomena that could indicate advanced life beyond Earth. A rating of 0 to 1 means its insignificant.

Better reign in the headline writers.

President Obama Puts US All In For Mars

President Barack Obama, the 44th President of the United States. Image: Official White House Photo by Pete Souza Public Domain

In the waning days of his presidency, Barack Obama has made a bold statement in favor of the US getting to Mars. Obama didn’t mince any words in his opinion piece written for CNN. He said that America’s next goal in space is “…sending humans to Mars by the 2030s and returning them safely to Earth, with the ultimate ambition to one day remain there for an extended time.”

President Obama has long been a proponent of a strong presence in space for the US, and of the science and technology that supports those efforts. He has argued for healthy NASA budgets in his time, and under his administration, NASA has reached some major milestones.

“Last year alone, NASA discovered flowing water on Mars and evidence of ice on one of Jupiter’s moons, and we mapped Pluto — more than 3 billion miles away — in high-resolution,” Obama said. He also mentioned the ongoing successful hunt for exoplanets, and the efforts to understand asteroids.

Some of his work in support of space and science in general has been more symbolic. His annual White House Science Fairs in particular. He was the first president to hold these fairs, and he hosted 6 of them during his 8 years in office.

Presidents go different directions once they leave office. Some keep a low profile (Bush Jr.), some get targeted for assassination (Bush Sr.), and some become advocates for humanitarian efforts and global peace (Jimmy Carter.) But Obama made it clear that his efforts to promote America’s efforts in space won’t end when his presidency ends. “This week, we’ll convene some of America’s leading scientists, engineers, innovators and students in Pittsburgh to dream up ways to build on our progress and find the next frontiers,” Obama said.

In his piece, Obama gave a laundry list of the USA’s achievements in space. He also pointed out that “Just five years ago, US companies were shut out of the global commercial launch market.” Now they own a third of that market. And, according to Obama, they won’t stop there.

In 2010 he set a goal for American space efforts: to reach Mars by the 2030s. “The next step is to reach beyond the bounds of Earth’s orbit. I’m excited to announce that we are working with our commercial partners to build new habitats that can sustain and transport astronauts on long-duration missions in deep space.” He didn’t elaborate on this in his opinion piece, but it will be interesting to hear more.

Other presidents have come out strongly in favor of efforts in space. The first one was Eisenhower, and Obama mentioned him in his piece. Eisenhower is the one who created NASA in 1958, though it was called NACA (National Advisory Committee for Aeronautics) at the time. This put America’s space efforts in civilian control rather than military.

President Kennedy got the Apollo program off the ground in 1961. Image: White House Press Office (WHPO)
President Kennedy got the Apollo program off the ground in 1961. Image: White House Press Office (WHPO)

President Kennedy asked Congress in 1961 to commit to the Apollo program, an effort to get a man on the Moon before the 60s ended. Apollo achieved that, of course, but with only a few months to spare. Kennedy’s successor, President Lyndon Johnson, was a staunch supporter of NASA’s Apollo Program, especially in the wake of disaster.

In 1967 the entire Apollo 1 crew was killed in a fire while testing the craft on its launch pad. The press erupted after that, and Congress began to question the Apollo Program, but Johnson stood firmly in NASA’s corner.

Like some other Presidents before him, Obama has always been a good orator. That was in full view when he ended his piece with these words: “Someday, I hope to hoist my own grandchildren onto my shoulders. We’ll still look to the stars in wonder, as humans have since the beginning of time.”

The focus has really been on Mars lately, and with Obama’s continued support, maybe humans will make it to Mars in the next decade or two. Then, from the surface of that planet, we can do what we’ve always done: continue to look to the stars with a sense of wonder.

JPL Predicts Mars’ Global Dust Storm To Arrive Within Weeks

These two images from the camera on NASA's Mars Global Surveyor show the effect that a global dust storm has on Mars. On the left is a normal view of Mars, on the right is Mars obscured by the haze from a dust storm. Image: NASA/JPL/MSSS

Our ability to forecast the weather here on Earth has saved countless lives from the onslaught of hurricanes and typhoons. We’ve gotten better at predicting space weather, too, and that has allowed us to protect sensitive satellites and terrestrial facilities from bursts of radiation and solar wind. Now, it looks as though we’re getting closer to predicting bad weather on Mars.

NASA’s Jet Propulsion Laboratory is forecasting the arrival of a global dust storm on Mars within weeks. The storm is expected to envelop the red planet, and reduce the amount of solar energy available to NASA’s rovers, Opportunity and Curiosity. The storm will also make it harder for orbiters to do their work.

Dust storms are really the only type of weather that Mars experiences. They’re very common. Usually, they’re only local phenomena, but sometimes they can grow to effect an entire region. In rarer cases, they can envelop the entire globe.

It’s these global storms that concern James Shirley, a planetary scientist at NASA’s Jet Propulsion Laboratory, in Pasadena, California. Shirley published a study showing that there is a pattern to these global storms. If his forecasted storm appears on time, it means that he has correctly determined that pattern.

“Mars will reach the midpoint of its current dust storm season on October 29th of this year. Based on the historical pattern we found, we believe it is very likely that a global dust storm will begin within a few weeks or months of this date,” Shirley said.

Predicting these huge dust storms will be of prime importance when humans gain a foothold on Mars. The dust could wreak havoc on sensitive systems, and can limit the effectiveness of solar power for weeks at a time.

But it’s not just future endeavours that are impacted by Martian dust storms. Spirit and Opportunity had to batten down the hatches when a global dust storm interrupted their exploration of Mars in 2007.

“We had to take special measures to enable their survival for several weeks with little sunlight to keep them powered.

John Callas is JPL’s project manager for Spirit and Opportunity. He describes the precautions that his team took during the 2007 dust storm: “We had to take special measures to enable their survival for several weeks with little sunlight to keep them powered. Each rover powered up only a few minutes each day, enough to warm them up, then shut down to the next day without even communicating with Earth. For many days during the worst of the storm, the rovers were completely on their own.”

This 30-day time-lapse of the Martian atmosphere was capture by Opportunity during the 2007 dust storm. That storm blocked out 99% of the Sun's energy, limiting the effectiveness of the rover's solar panels, and putting the mission in jeopardy. Image: Public Domain, https://commons.wikimedia.org/w/index.php?curid=2475872
This 30-day time-lapse of the Martian atmosphere was capture by Opportunity during the 2007 dust storm. That storm blocked out 99% of the Sun's energy, limiting the effectiveness of the rover's solar panels, and putting the mission in jeopardy. Image: Public Domain, https://commons.wikimedia.org/w/index.php?curid=2475872

We have observed 9 global dust storms on Mars since the first time in 1924, with the most recent one being the 2007 storm that threatened Spirit and Opportunity. Other storms were observed in 1977, 1982, 1994, and 2001. There’ve been many more of them, but we weren’t able to see them without orbiters and current telescope technology. And Earth hasn’t always been in a good position to view them.

These two images show dust build-up on NASA's Opportunity rover in 2014. In January, a dust storm left a layer of dust on Opportunity's solar panels (left.) By late March, the wind had blown most of it away. (right) Image: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
These two images show dust build-up on NASA’s Opportunity rover in 2014. In January, a dust storm left a layer of dust on Opportunity’s solar panels (left.) By late March, the wind had blown most of it away. (right) Image: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.

Global dust storms have left their imprint on the early exploration of Mars. In 1971, NASA’s Mariner 9 orbiter reached Mars, and was greeted by a global dust storm that made it impossible to image the planet. Only two weeks later, the Soviet Mars 2 and Mars 3 missions arrived at Mars, and sent their landers to the surface.

Mars 2 crashed into the planet and was destroyed, but Mars 3 made it to the surface and landed softly. That made Mars 3 the first craft to land on Mars. However, it failed after only 14.5 seconds, likely because of the global dust storm. So not only was Mars 3 the first craft to land on Mars, it was also the first craft to be destroyed by a global dust storm.

If we had been able to forecast the global dust storm of 1971, Mars 3 may have been a successful mission. Who knows how that may have changed the history of Martian exploration?

James Shirley’s paper shows a pattern in global dust storms on Mars based on the orbit of Mars, and on the changing momentum of Mars as the gravity of other planets acts on it.

Mars takes about 1.8 years to orbit the Sun, but its momentum change caused by other planets’ gravity is in a 2.2 year cycle. The relationship between these two cycles is always changing.

This graphic indicates a similarity between 2016 (dark blue line) and five past years in which Mars has experienced a global dust storm (orange lines and band), compared to years with no global dust storm (blue-green lines and band). The arrow nearly midway across in the dark blue line indicates the Mars time of year in late September 2016. Image: NASA/JPL-Caltech
This graphic indicates a similarity between 2016 (dark blue line) and five past years in which Mars has experienced a global dust storm (orange lines and band), compared to years with no global dust storm (blue-green lines and band). The arrow nearly midway across in the dark blue line indicates the Mars time of year in late September 2016. Image: NASA/JPL-Caltech

What Shirley found is that global dust storms occur while Mars’ momentum is increasing during the first part of the dust storm season. When looking back at our historical record of Martian global dust storms, he found that none of them occurred in years when the momentum was decreasing during the first part of the dust storm season.

Shirley’s paper found that current conditions on Mars are also very similar to other times when global dust storms occurred. Since we are much more capable of watching Mars than at any time in the past, we should be able to quickly confirm if Shirley’s understanding of Martian weather is correct.