Astronomy Generates Mountains of Data. That’s Perfect for AI

A drone's view of the Rubin Observatory under construction in 2023. The 8.4-meter telescope is getting closer to completion and first light in 2025. The telescope will create a vast amount of data that will require special resources to manage, including AI. Image Credit: Rubin Observatory/NSF/AURA/A. Pizarro D

Consumer-grade AI is finding its way into people’s daily lives with its ability to generate text and images and automate tasks. But astronomers need much more powerful, specialized AI. The vast amounts of observational data generated by modern telescopes and observatories defies astronomers’ efforts to extract all of its meaning.

Continue reading “Astronomy Generates Mountains of Data. That’s Perfect for AI”

Enjoy Five New Images from the Euclid Mission

The central, brightest region of this Euclid image is the Messier 78 star formation region. This is the widest and deepest image of this often-imaged region ever taken. Image Credit: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi LICENCE CC BY-SA 3.0 IGO

We’re fortunate to live in these times. Multiple space telescopes feed us a rich stream of astounding images that never seems to end. Each one is a portrait of some part of nature’s glory, enriched by the science behind it all. All we have to do is revel in the wonder.

Continue reading “Enjoy Five New Images from the Euclid Mission”

Merging Black Holes Could Give Astronomers a Way to Detect Hawking Radiation

Simulation of merging supermassive black holes. Credit: NASA's Goddard Space Flight Center/Scott Noble
Simulation of merging supermassive black holes. New research shows how dark matter overcomes the Final Parsec Problem. Credit: NASA's Goddard Space Flight Center/Scott Noble

Nothing lasts forever, including black holes. Over immensely long periods of time, they evaporate, as will other large objects in the Universe. This is because of Hawking Radiation, named after Stephen Hawking, who developed the idea in the 1970s.

The problem is Hawking Radiation has never been reliably observed.

Continue reading “Merging Black Holes Could Give Astronomers a Way to Detect Hawking Radiation”

Astronomers Propose a 14-Meter Infrared Space Telescope

An artist's illustration of the SALTUS Observatory concept. SALTUS is a Far-IR space telescope that will open a new window into the cosmos. Image Credit: NASA

The Universe wants us to understand its origins. Every second of every day, it sends us a multitude of signals, each one a clue to a different aspect of the cosmos. But the Universe is the original Trickster, and its multitude of signals is an almost unrecognizable cacophony of light, warped, shifted, and stretched during its long journey through the expanding Universe.

Continue reading “Astronomers Propose a 14-Meter Infrared Space Telescope”

Could Alien Solar Panels Be Technosignatures?

This image shows the Westlands Solar Park in the San Joaquin Valley. Could massive solar farms create a distinct technosignature? Image Credit: Westlands Solar Park

If alien technological civilizations exist, they almost certainly use solar energy. Along with wind, it’s the cleanest, most accessible form of energy, at least here on Earth. Driven by technological advances and mass production, solar energy on Earth is expanding rapidly.

It seems likely that ETIs (Extraterrestrial Intelligence) using widespread solar energy on their planet could make their presence known to us.

Continue reading “Could Alien Solar Panels Be Technosignatures?”

The Venerable Hubble Space Telescope Keeps Delivering

The Hubble Space Telescope is amazing! It's still going strong more than 34 years after it was launched. This Hubble image showcases a nearly edge-on view of the lenticular galaxy NGC 4753. ESA/Hubble & NASA, L. Kelsey

The world was much different in 1990 when NASA astronauts removed the Hubble Space Telescope from Space Shuttle Discovery’s cargo bay and placed it into orbit. The Cold War was ending, there were only 5.3 billion humans, and the World Wide Web had just come online.

Continue reading “The Venerable Hubble Space Telescope Keeps Delivering”

The BepiColombo Mission To Mercury is Losing Power

Artist's impression of the European Space Agency/JAXA BepiColombo mission in operation around Mercury. Credit: Astrium

BepiColombo is a joint ESA/JAXA mission to Mercury. It was launched in 2018 on a complex trajectory to the Solar System’s innermost planet. The ESA reports that the spacecraft’s thrusters have lost some power.

Continue reading “The BepiColombo Mission To Mercury is Losing Power”

Not All Black Holes are Ravenous Gluttons

This artist’s impression shows the record-breaking quasar J059-4351, the bright core of a distant galaxy that is powered by a supermassive black hole. The light comes from gas and dust that's heated up before it's drawn into the black hole. Credit: ESO/M. Kornmesser

Some Supermassive Black Holes (SMBHs) consume vast quantities of gas and dust, triggering brilliant light shows that can outshine an entire galaxy. But others are much more sedate, emitting faint but steady light from their home in the heart of their galaxy.

Observations from the now-retired Spitzer Space Telescope help show why that is.

Continue reading “Not All Black Holes are Ravenous Gluttons”

Linking Organic Molecules to Hydrothermal Vents on Enceladus

Saturn's moon Enceladus isn't just bright and beautiful. It has an ocean under all that ice that could have hydrothermal vents that create organic chemicals. Image Credit: NASA, ESA, JPL, SSI, Cassini Imaging Team

Despite the vast distance between us and Saturn’s gleaming moon Enceladus, the icy ocean moon is a prime target in our search for life. It vents water vapour and large organic molecules into space through fissures in its icy shell, which is relatively thin compared to other icy ocean moons like Jupiter’s Europa. Though still out of reach, scientific access to its ocean is not as challenging as on Europa, which has a much thicker ice shell.

Continue reading “Linking Organic Molecules to Hydrothermal Vents on Enceladus”

A Star Became 1,000 Times Brighter, and Now Astronomers Know Why

Artist’s impression of one of the two stars in the FU Orionis binary system, surrounded by an accreting disk of material. What has caused this star — and others like it — to dramatically brighten? [NASA/JPL-Caltech]
Artist’s impression of one of the two stars in the FU Orionis binary system, surrounded by an accreting disk of material. Credit: NASA/JPL-Caltech

Astronomers were surprised in 1937 when a star in a binary pair suddenly brightened by 1,000 times. The pair is called FU Orionis (FU Ori), and it’s in the constellation Orion. The sudden and extreme variability of one of the stars has resisted a complete explanation, and since then, FU Orionis has become the name for other stars that exhibit similar powerful variability.

Continue reading “A Star Became 1,000 Times Brighter, and Now Astronomers Know Why”