Returned Samples Of Asteroid Itokawa Show Violent 4.5 Billion Year History

The surface patterns on one of the microscopic dust particles from asteroid Itokawa. Image: JAXA
The surface patterns on one of the microscopic dust particles from asteroid Itokawa. Image: JAXA

In 2003, the Japanese Aerospace Exploration Agency (JAXA) launched the Hayabusa probe. Its mission was to rendezvous with asteroid 25143 Itokawa in 2005. Once there, it studied a number of things about Itokawa, including its shape, topography, composition, colour, spin, density, and history. But the most exciting part of its mission was to collect samples from the asteroid and return them to Earth.

The mission suffered some complications, including the failure of Minerva, Hayabusa’s detachable mini-lander. But Hayabusa did land on the asteroid, and it did collect some samples; tiny grains of material from the surface of Itokawa. This was the first time a mission had landed somewhere and returned samples, other than missions to the Moon.

The Hayabusa spacecraft burned up on re-entry into Earth's atmosphere, but the capsule containing the samples survived. The glowing piece on the bottom front of the debris stream is the sample capsule. Image: NASA Ames, Public Domain
The Hayabusa spacecraft burned up on re-entry into Earth’s atmosphere, but the capsule containing the samples survived. The glowing piece on the bottom front of the debris stream is the sample capsule. Image: NASA Ames, Public Domain

Once the collected grains made it back to Earth in 2010, and were confirmed to be from the asteroid, scientists got excited. These grains would be key to helping understand the early Solar System when the planetary bodies were formed. And they have revealed a sometimes violent history going back 4.5 billion years.

The grains themselves are truly microscopic, at just over 10 micrometers in size. The marks and surface patterns on them are measured in nanometers. Initially, all the marks on the surfaces of the particles were thought to be of one type. But the team behind the study used electron microscopes and X-Ray Microtomography to reveal four different types of patterns on their surfaces.

One 4.5 billion year old pattern shows crystallization from intense heat. At this time period, Itokawa was part of a larger asteroid. The second pattern indicates a collision with a meteor about 1.3 billion years ago. Another pattern was formed by exposure to the solar wind between 1 million and 1,000 years ago. A fourth pattern detected by scientists shows that the particles have been rubbing against each other.

The team has concluded that Itokawa didn’t always exist in its current shape and form. When it was formed over 4 billion years ago, it was about 40 times bigger than it is now. That parent body was destroyed, and the researchers think that Itokawa re-formed from fragments of the parent body.

If there is still any lingering doubt about the violent nature of the Solar System’s history, the grains from Itokawa help dispel it. Collision, fragmentation, bombardments, and of course solar wind, seem to be the norm in our Solar System’s history.

The return of these samples was a bit of a happy accident. The sample collection mechanism on Hayabusa suffered a failure, and the returned dust grains were actually kicked up by the landing of the probe, and some ended up in the sample capsule.

For their part, JAXA has already launched Hayabusa’s successor, Hayabusa 2. It was launched in December 2014, and is headed for asteroid 162173 Ryugu. It should reach its destination in July 2018, and spend a year and a half there. Hayabusa 2 is also designed to collect asteroid samples and return them to Earth, this time using an explosive device to dig into the asteroid’s surface for a sample. Hayabusa 2 should return to Earth in December 2020.

An artist's image of Hayabusa leaving Earth. Image credit: JAXA
An artist’s image of Hayabusa leaving Earth. Image credit: JAXA

Hayabusa suffered several failures, including the failure of its mini-lander, problems with sample collection, and it even suffered damaged to its solar panels caused by a solar flare, which reduced its power and delayed its arrival at Itokawa. Yet it still ended up being a success in the end.

If Hayabusa 2 can avoid some of these problems, who knows what we may learn from more intentional samples. Sample missions are tricky and complex. If Hayabusa can return samples, it would be only the fourth body to have samples successfully returned to Earth, including the Moon, asteroid Itokawa, and comet Wild 2.

HiRISE Captures Curiosity on the Naukluft Plateau

MSL Curiosity on the Naukluft Plateau on the Martian surface. This image was captured by HiRise on the Mars Reconnaissance Orbiter. Image: NASA/JPL/University of Arizona
MSL Curiosity on the Naukluft Plateau on the Martian surface. This image was captured by HiRise on the Mars Reconnaissance Orbiter. Image: NASA/JPL/University of Arizona

Viewing orbital images of the rovers as they go about their business on the surface of Mars is pretty cool. Besides being of great interest to anyone keen on space in general, they have scientific value as well. New images from the High Resolution Imaging Science Equipment (HiRise) camera aboard the Mars Reconnaissance Orbiter (MRO) help scientists in a number of ways.

Recent images from HiRise show the Mars Science Laboratory (MSL) Curiosity on a feature called the Naukluft Plateau. The Plateau is named after a mountain range in Namibia, and is the site of Curiosity’s 10th and 11th drill targets.

Orbital imagery of the rovers is used to track the activity of sand dunes in the areas the rovers are working in. In this case, the dune field is called the Bagnold Dunes. HiRise imagery allows a detailed look at how dunes change over time, and how any tracks left by the rover are filled in with sand over time. Knowledge of this type of activity is a piece of the puzzle in understanding the Martian surface.

Curiosity on the Naukluft Plateau as captured by HiRise. Image: NASA/JPL/University of Arizona
Curiosity on the Naukluft Plateau as captured by HiRise. Image: NASA/JPL/University of Arizona

But the ability to take such detailed images of the Martian surface has other benefits, as well. Especially as we get nearer to a human presence on Mars.

Orbital imaging is turning exploration on its ear. Throughout human history, exploration required explorers travelling by land and sea to reconnoiter an area, and to draw maps and charts later. We literally had no idea what was around the corner, over the mountain, or across the sea until someone went there. There was no way to choose a location for a settlement until we had walked the ground.

From the serious (SpaceX, NASA) to the fanciful (MarsOne), a human mission to Mars, and an eventual established presence on Mars, is a coming fact. The how and the where are all connected in this venture, and orbital images will be a huge part of choosing where.

Tracking the changes in dunes over time will help inform the choice for human landing sites on Mars. The types and density of sand particles may be determined by monitoring rover tracks as they fill with sand. This may be invaluable information when it comes to designing the types of facilities used on Mars. Critical infrastructure in the form of greenhouses or solar arrays will need to be placed very carefully.

Sci-Fi writers have exaggerated the strength of sand storms on Mars to great effect, but they are real. We know from orbital monitoring, and from rovers, that Martian sandstorms can be very powerful phenomena. Of course, a 100 km/h wind on Earth is much more dangerous than on Mars because of the density of the atmosphere. Martian air is 1% the density of Earth’s, so on Mars the 100 km/h wind wouldn’t do much.

But it can pick up dust, and that dust can foul important equipment. With all this in mind, we can see how these orbital images give us an important understanding of how sand behaves on Mars.

This Martian sandstorm was captured by the MRO's Mars Color Imager instrument. Scientists were monitoring such storms prior to Curiosity's arrival on Mars. Image: NASA/JPL-Caltech/MSSS
This Martian sandstorm was captured by the MRO’s Mars Color Imager instrument. Scientists were monitoring such storms prior to Curiosity’s arrival on Mars. Image: NASA/JPL-Caltech/MSSS

There’s an unpredictability factor to all this too. We can’t always know in advance how important or valuable orbital imagery will be in the future. That’s part of doing science.

But back to the cool factor.

For the rest of us, who aren’t scientists, it’s just plain cool to be able to watch the rovers from above.

And, look at all the Martian eye candy!

These sand dunes in the southern hemisphere of Mars are just starting their seasonal defrost of carbon dioxide. Image: NASA/JPL/University of Arizona
These sand dunes in the southern hemisphere of Mars are just starting their seasonal defrost of carbon dioxide. Image: NASA/JPL/University of Arizona

Can Boeing Launch A Crewed Starliner By February 2018?

Boeing is competing with SpaceX to be the first American company to provide commercial crew capabilities to NASA. Image: Boeing
Boeing is competing with SpaceX to be the first American company to provide commercial crew capabilities to NASA. Image: Boeing

Boeing thinks it can have its Starliner spacecraft ready to fly crewed missions by February, 2018. This is 4 months later than the previous date of October 2017. It isn’t yet clear what this will mean in Boeing’s race against SpaceX to relieve NASA’s dependence on Russian transportation to the ISS.

Currently, astronauts travel to the ISS aboard the Russian workhorse Soyuz capsule. Ever since the end of the Space Shuttle program, NASA has relied on Russia to transport astronauts to the station. Both Boeing and SpaceX have received funds to develop a crewed capsule, and both companies are working at a feverish pace to be the first to do so.

Boeing has a long history of involvement with NASA. It’s the prime contractor for ISS operations, and is also the prime contractor for NASA’s Space Launch System (SLS), which will be the most powerful rocket ever built and will power NASA’s exploration of deep space. So Boeing is no stranger to complex development cycles and the types of delays that can crop up.

In a recent interview, Boeing’s Chris Ferguson acknowledged that everything has to go well for the Starliner to meet its schedule. But things don’t always go well in such a complex engineering program, and that’s just the way things are.

The Starliner, and every other spacecraft, has to undergo extensive testing of each component before any flight can be attempted. Various suppliers are responsible for over 200 pieces of equipment, just in avionics alone, and each one of those pieces has to assembled, integrated, and tested. Not just by Boeing, but by NASA as well. This takes an enormous amount of time, and requires great rigor to carry out. In some cases, a problem with one piece of equipment can delay testing of other pieces. It’s the nature of complex systems.

Another challenge that Boeing engineers face is limiting the mass of the spacecraft. Recent wind-tunnel testing of a Starliner model produced aero-acoustic issues when mated to a model of the Atlas 5, the rocket built by United Launch Alliance (ULA) which will carry the Starliner into space. Now Boeing is modifying the exterior lines of the vehicle to get the airflow just right.

The spacecraft also has to be tested for emergencies. Though the Starliner is designed to land on solid ground, it’s also being tested for emergency landings on water.

NASA blames the delays in the development of the Starliner, and the SpaceX Dragon, on funding cuts from Congress. Administrator Charles Bolden has criticized Congress for consistent under-funding since the retirement of the Space Shuttle fleet in 2011. According to NASA, this has caused a 2 year delay in development of the Dragon and the Starliner. This delay, in turn, has meant that NASA has had to keep paying Russia for trips to the ISS. And like everything else, that cost keeps rising.

But it looks like the end, or maybe the beginning, is in sight for the Starliner. Boeing has paid deposits to ULA for four flights with the Atlas 5. A 2017 un-crewed test flight, a 2018 crewed test flight, and two crewed flights to the ISS.

Beyond that, the future looks a little hard to predict for Boeing and the Starliner. With both SpaceX and Blue Origin developing re-usable rockets, the future viability of the Atlas 5 might be in jeopardy. Compounding the uncertainty is NASA’s stated plan to stop funding the ISS by 2024 or 2028.
By that time, NASA should be focused on establishing a presence in cislunar space, which would require different spacecraft.

But you can’t wait forever to develop spacecraft. The only way to stay in the game is for Boeing to develop the spacecraft that are required right now, and let the knowledge and experience from that feed the development of the next spacecraft, whether for cislunar space or beyond.

In the big scheme of things, a four month delay for the first flight of the Starliner is not that big of a deal. If the Starliner is successful, and there’s no reason to think it won’t be, considering Boeing’s track record, the four month delay in the initial flight won’t even be remembered.

Whether its SpaceX or Boeing who get America back into space first, that moment will be celebrated, and all the delays and funding cuts will be left in the dust-bin of history.

Port Canaveral Considers Charging SpaceX 14 Times Normal Fee For Booster Return

A recovered Falcon 9 first stage arriving in port on-board the drone ship. Image: SpaceX
A recovered Falcon 9 first stage arriving in port on-board the drone ship. Image: SpaceX

A dispute may be brewing between SpaceX and the Canaveral Port Authority, where the private space company brings its recovered boosters back to land. Citing concerns over wear and tear on the port’s facilities, the Authority is considering raising SpaceX’s fees by 14 times, to a total of $15,000 for each booster passing through.

Port Canaveral is the facility that SpaceX relies on in its operations. Spent boosters are recovered aboard their drone ship, which docks at the Port. They are then offloaded from the drone ship with SpaceX’s special crane, loaded onto a truck and delivered to Kennedy Space Center.

All of this activity puts a special strain on the Port’s facilities, according to Rodger Rees, the port’s deputy executive director and chief financial officer. In a memo to port commissioners, he said “Due to the heavy weight and the effect of this weight on the port’s berths, staff is recommending that the tariff be expanded to include a wharfage charges category for aerospace/aircraft items.”

So far, SpaceX has transported 3 recovered boosters through Port Canaveral. The rationalization for the fee increase is based on some minor damage caused to the Port, and on the increased wear and tear that 30 ton boosters will have on the Port and its structures. SpaceX’s special crane also takes up space at the Port.

A SpaceX Falcon 9 reusable first stage lands on the drone ship before being transported to Port Canaveral. Image: SpaceX
A SpaceX Falcon 9 reusable first stage lands on the drone ship before being transported to Port Canaveral. Image: SpaceX

But SpaceX isn’t being singled out. The Port is trying to develop a fee structure for private space companies, who are expected to proliferate in the future and require port facilities the same way SpaceX does.

“As new aerospace companies relocate to the Space Coast, it is anticipated that the port will need to accommodate items of a similar nature in the future, and will retain the right to negotiate these future charges, if needed,” said Rees in the same memo.

The fees themselves are a result of research into what other ports charge for oversized items. Staff at Port Canaveral have recommended charging $500 a ton or $15,000 per item, whichever amount is greater. In his memo to the port’s commissioners, Rees also said “Staff understands that the current Falcon first stage weighs approximately 30 tons when it arrives in the port on the drone ship. Under this weight, it is anticipated that each time the rocket stage is transported over the berth, a charge of $15,000 will be assessed and collected from the owner of the item.”

Rees made note of the cool factor that having SpaceX recover boosters at their facility gives the Port. SpaceX’s use of the Port attracts a lot of public interest, which also creates additional security and logistical considerations for the Port.

SpaceX has indicated that it is concerned with the raise in fees. Representatives from Port Canaveral and SpaceX are due to discuss the issue at a meeting on Wednesday, June 22nd.

Huge Plasma Tsunamis Hitting Earth Explains Third Van Allen Belt

This is an illustration to explain the dynamics of the ultra-relativistic third Van Allen radiation belt. Credit: Andy Kale
This is an illustration to explain the dynamics of the ultra-relativistic third Van Allen radiation belt. Credit: Andy Kale

The dynamic relationship between Earth and the Sun two sides. The warmth from the Sun makes life on Earth possible, but the rest of the Sun’s intense energy pummels the Earth, and could destroy all life, given the chance. But thanks to our magnetosphere, we are safe.

The magnetosphere is our protective shield. It’s created by the rotation of the molten outer core of the Earth, composed largely of iron and nickel. It absorbs and deflects plasma from the solar wind. The interactions between the magnetosphere and the solar wind are what create the beautiful auroras at Earth’s poles.

Visualization of the solar wind encountering Earth's magnetic "defenses" known as the magnetosphere. Clouds of southward-pointing plasma are able to peel back layers of the Sun-facing bubble and stack them into layers on the planet's nightside (center, right). The layers can be squeezed tightly enough to reconnect and deliver solar electrons (yellow sparkles) directly into the upper atmosphere to create the aurora. Credit: JPL
Visualization of the solar wind encountering Earth’s magnetic “defenses” known as the magnetosphere. Clouds of southward-pointing plasma are able to peel back layers of the Sun-facing bubble and stack them into layers on the planet’s nightside (center, right). The layers can be squeezed tightly enough to reconnect and deliver solar electrons (yellow sparkles) directly into the upper atmosphere to create the aurora. Credit: JPL

In the inner regions of Earth’s magnetosphere are the Van Allen belts, named after their discoverer James Van Allen. They consist of charged particles, mostly from the Sun, and are held in place by the magnetosphere. Usually, there are two such belts.

The Van Allen radiation belts surrounding Earth. Image: NASA
The Van Allen radiation belts surrounding Earth. Image: NASA

But the output from the Sun is not stable. There are periods of intense energy output from the Sun, and when that happens, a third, transient belt can be created. Up until now, the nature of this third belt has been a puzzle. New research from the University of Alberta has shown how this phenomena can happen.

Researchers have shown how a so-called “space tsunami” can create this third belt. Intense ultra-low frequency plasma waves can transport the outer part of the radiation belt into interplanetary space, and create the third, transient belt.

The lead author for this study is physics professor Ian Mann from the University of Alberta, and former Canada Research Chair in Space Physics. “Remarkably, we observed huge plasma waves,” said Mann. “Rather like a space tsunami, they slosh the radiation belts around and very rapidly wash away the outer part of the belt, explaining the structure of the enigmatic third radiation belt.”

This new research also sheds light on how these “tsunamis” help reduce the threat of radiation to satellites during other space storms. “Space radiation poses a threat to the operation of the satellite infrastructure upon which our twenty-first century technological society relies,” adds Mann. “Understanding how such radiation is energized and lost is one of the biggest challenges for space research.”

It’s not just satellites that are at risk of radiation though. When solar wind is most active, it can create extremely energetic space storms. They in turn create intense radiation in the Van Allen belts, which drive electrical currents that could damage our power grids here on Earth. These types of storms have the potential to cause trillions of dollars worth of damage.

A better understanding of this space radiation, and an ability to forecast it, are turning out to be very important to our satellite operations, and to our exploration of space.

The Van Allen belts were discovered in 1958, and classified into an inner and an outer belt.

The Van Allen Belts around Earth. The inner red belt is mostly protons, and the outer blue belt is mostly electrons. Image Credit: NASA
The Van Allen Belts around Earth. The inner red belt is mostly protons, and the outer blue belt is mostly electrons. Image Credit: NASA

In 2013, probes reported a third belt which had never before been seen. It lasted a few weeks, then vanished, and its cause was not known. Thanks to Mann and his team, we now know what was behind that third belt.

“We have discovered a very elegant explanation for the dynamics of the third belt,” says Mann. “Our results show a remarkable simplicity in belt response once the dominant processes are accurately specified.”

An understanding of the radiation in and around Earth and the Van Allen belts is of growing importance to us, as we expand our presence in space. Our technological society relies increasingly on satellite communications, and on GPS satellites. Radiation in the form of high-energy electrons can wreak havoc on satellites. In fact, this type of radiation is sometimes referred to as a satellite killer. Satellites require robust design to be protected from them.

Organizations like the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) and the International Living with a Star (ILWS) Program are attempts to address the threat that radiation poses to our system of satellites.

Saturn V’s New Mission Is To…Mississippi?

Looking at the business end of the Saturn V as it gets moved towards the barge that will transport it to Mississippi. Image: Infinity Science Center.
Looking at the business end of the Saturn V as it gets moved towards the barge that will transport it to Mississippi. Image: Infinity Science Center.

Tourist attractions can be pretty hokey. In the part of Canada where I’m from, one town boasts the “largest hockey stick in the world.” I’m not kidding. You can see it when you drive by. But Mississippi is getting what may be one of the world’s greatest tourist attractions: a Saturn V rocket, or the first stage of one, anyways.

Obviously, this is more than just a tourist attraction. This is an historic science exhibit of epic proportions. This Saturn V is the rocket that was supposed to launch Apollo 19 to the Moon in 1973, until that trip was cancelled.

For 38 years, this Saturn V has been at its home at NASA’s Michoud Assembly Facility in New Orleans, where it was built more than 40 years ago. But now, it’s found a new home at the Stennis Space Center, about 77 km. (48 miles) away. And getting there is quite a journey.

The heart of this journey is a 64 km. (40 mile) trip through the Intercoastal Waterway, and up the Pearl River. Not only that, but it had to be loaded onto a barge to start the trip, and unloaded once it arrived.

The Saturn V on its way to its new home at the Infinity Science Center in Mississippi. Image: Infinity Science Center.
The Saturn V on its way to its new home at the Infinity Science Center in Mississippi. Image: Infinity Science Center.

The actual home of the Saturn V will be the Infinity Science Center, which is a non-profit science outreach organization that has partnered with NASA, and is located next to the Stennis Space Center in Mississippi. And people there are proud and excited to be a part of this.

“There’s a saying that if you wanted to get to the moon, you had to go through south Mississippi first,” said John Wilson, executive director for INFINITY Science Center. “Our goal with this Saturn V first stage exhibit is to educate our guests on our region’s critical role in space exploration and bring to life the ingenuity of the men and women who built, transported, tested and flew the machines that took us to worlds beyond our own.”

There’s a lot of history behind the Saturn V. It was developed to support NASA’s Apollo program to land men on the Moon. The Saturn V was launched 13 times between 1966 and 1973. It still retains its status as the world’s most powerful rocket, though its end will reign soon, thanks to NASA’s Space Launch System (SLS) and SpaceX’s Falcon Heavy.

This Saturn V was supposed to carry Apollo 19 on its way to the Moon until that missions was cancelled. One of the would-be crew members of Apollo 19, Fred Haise, was also a crew member on the ill-fated Apollo 13. Fred Haise is now on the Board of Directors at the Saturn’s new home, the Infinity Science Center. I can’t imagine how pleased he is to have his Saturn V coming home.

The Saturn V is a three stage rocket. The section being moved and exhibited is the first stage, known as the S-IC. It’s 42 meters (138 ft.) long and 10 meters (33 ft.) in diameter. This first stage had five massive F-1 engines which produced more than 7.5 million pounds of thrust.

The engines combined and burned liquid oxygen and kerosene for about 2.5 minutes. At that point, the rocket would be 61 km (38 miles) above Earth. Then, empty of fuel and with its job done, it would fall back towards Earth and burn up. But this one was built before its mission was cancelled, which is why its available for display.

The Infinity Science Center has 72,000 square feet of space, and has over 50 years of NASA history on display. Over 65,000 guests visit each year. That number is sure to rise, once the Saturn V comes home.

Earth Has An Almost-Moon

Earth has a new quasi-moon: an asteroid called 2016 H03. (Not shown) Image: NASA
Earth has a new quasi-moon: an asteroid called 2016 H03. (Not shown) Image: NASA

Earth has a small companion that NASA is calling an almost-Moon. The small asteroid, called 2016 H03, isn’t quite a moon because it’s actually orbiting the Sun. In its orbit around the Sun, it spends about half of its time closer to the Sun than the Earth.

2016 H03 is called a “quasi-moon” or a “near-Earth companion”. It doesn’t quite qualify as a moon because of its orbit.

Paul Chodas is the manager of NASA’s Center for Near-Earth Object (NEO) Studies at the Jet Propulsion Laboratory in Pasadena, California. He had this to say about 2016 H03: “Since 2016 HO3 loops around our planet, but never ventures very far away as we both go around the sun, we refer to it as a quasi-satellite of Earth.”

2016 H03’s orbit is tilted relative to Earth’s, and it passes through the plane of Earth’s orbit. Over the decades, it also performs a slow, back and forth twist. NASA describes 2016 H03’s orbit as a game of leap frog.

“The asteroid’s loops around Earth drift a little ahead or behind from year to year, but when they drift too far forward or backward, Earth’s gravity is just strong enough to reverse the drift and hold onto the asteroid so that it never wanders farther away than about 100 times the distance of the moon,” said Chodas. “The same effect also prevents the asteroid from approaching much closer than about 38 times the distance of the moon. In effect, this small asteroid is caught in a little dance with Earth.”

Earth’s little quasi-moon has been in its stable orbit for about a century, according to calculations, though it was only spotted on April 27th, 2016, by the Pan-STARRS 1 asteroid survey telescope in Hawaii. Pan-STARRS 1 is operated by the University of Hawaii’s Institute for Astronomy and NASA’s Planetary Defense Coordination Office. (Did you know we had a Planetary Defense Coordination Office?)

2016 H03 is small. It’s exact size has not been established, but it’s between 40 and 100 meters (120 and 300 ft.) It’s been around a century, and calculations say it will be around for centuries more.

2016 H03 is not quite unique. Earth has had other dance partners like it.

“One other asteroid — 2003 YN107 — followed a similar orbital pattern for a while over 10 years ago, but it has since departed our vicinity. This new asteroid is much more locked onto us. Our calculations indicate 2016 HO3 has been a stable quasi-satellite of Earth for almost a century, and it will continue to follow this pattern as Earth’s companion for centuries to come,” said Chudas.

NASA tracks thousands of NEOs and assesses their risk of collision with Earth. Though 2016 H03 is an interesting specimen because of its orbit, it poses no threat to Earth.

First 3D Tools Printed Aboard Space Station

This simple wrench was the first tool printed with the Additive Manufacturing Facility on board the ISS. Image: NASA/MadeInSpace/Lowe's
This simple wrench was the first tool printed with the Additive Manufacturing Facility on board the ISS. Image: NASA/MadeInSpace/Lowe's

Astronauts aboard the International Space Station have manufactured their first tool using the 3D printer on board the station. This is another step in the ongoing process of testing and using additive manufacturing in space. The ability to build tools and replacement parts at the station is something NASA has been pursuing keenly.

The first tool printed was a simple wrench. This may not sound like ground-breaking stuff, unless you’ve ever been in the middle of a project only to find you’re missing a simple tool. A missing tool can stop any project in its tracks, and change everybody’s plans.

The benefits of manufacturing needed items in space are obvious. Up until now, every single item needed on the ISS had to be sent up via re-supply ship. That’s not a quick turnaround. Now, if a tool is lost or destroyed during normal use, a replacement can be quickly manufactured on-site.

This isn’t the first item to be printed at the station. The first one was printed back in November 2014. That item was a replacement part for the printer itself. This was important because it showed that the machine can be used to keep itself running. This reliability is key if astronauts are going to be able to rely on the printer for manufacturing critical replacements for components and spare parts.

The first item ever manufactured in space was a replacement part for the printer itself, in November 2014. Image: NASA
The first item ever manufactured in space was a replacement part for the printer itself, in November 2014. Image: NASA

Niki Werkheiser, the project manager for the ISS 3D printer, said in a NASA YouTube video, “Since the inception of the human space program, we have been completely dependent on launching every single thing we need from Earth to space … I think we’re making history for the first time ever being able to make what we need when we need it in space.”

The 3D printer, which is more accurately called an Additive Manufacturing Facility (AMF) was built by a company called Made In Space. The one that was used to make the first tool is actually a different one than was used to make the replacement part for the printer itself. The first one was part of a test in 2014 to see how 3D printing would work in microgravity. It printed several items which were returned to Earth for testing. Those tests went well, which led to the second one being sent to the station.

This second machine, which was used to create the wrench, is a much more fully featured, commercial 3D printer. According to Made In Space, this newer AMF “can be accessed by any Earth-bound customer for job-specific work, like a machine shop in space. Example use cases include a medical device company prototyping space-optimized designs, or a satellite manufacturer testing new deployable geometries, or creating tools for ISS crew members.”

This is exciting news for we space enthusiasts, but even more exciting for a certain engineering student from the University of Alabama. The student, Robert Hillan, submitted a tool design to a NASA competition called the Future Engineers Space Tool design competition. The challenge was to design a tool that could be used successfully by astronauts in space. The catch was that the tool design had to upload to the ISS electronically and be printed by the AMF on the station.

In January, Hillan was announced as the winner. His design? The Multipurpose Precision Maintenance Tool, a kind of multi-tool that handy people are familiar with. The tool allows astronauts to tighten and loosen different sizes of nuts and bolts, and to strip wires.

The Multi-Purpose Precision Maintenance Tool designed by student Robert Hillan and printed with the AMF on the ISS. Image: NASA
The Multi-Purpose Precision Maintenance Tool designed by student Robert Hillan and printed with the AMF on the ISS. Image: NASA

NASA astronaut Tim Kopra, who is currently aboard the ISS, praised both Hillan and the 3D printing technology itself. “When you have a problem, it will drive specific requirements and solutions. 3-D printing allows you to do a quick design to meet those requirements. That’s the beauty of this tool and this technology. You can produce something you hadn’t anticipated and do it on short notice.”

The immediate and practical benefits of AMF in space are obvious and concrete. But like a lot of space technologies, it is part of a larger picture, too.

Werkheiser, NASA’s project manager for the ISS 3D printer, said “If a printer is critical for explorers, it must be capable of replicating its own parts, so that it can keep working during longer journeys to places like Mars or an asteroid. Ultimately, one day, a printer may even be able to print another printer.”

So there we have it. A journey to Mars and printers replicating themselves. Bring it on.

470 Million Year Old Meteorite Discovered In Swedish Quarry

Osterplana 65, the meteorite at the heart of a mystery. This meteorite is different than the thousands of other meteorites in collections around the world. Image: Birger Schmitz
Osterplana 65, the meteorite at the heart of a mystery. This meteorite is different than the thousands of other meteorites in collections around the world. Image: Birger Schmitz

470 million years ago, somewhere in our Solar System, there was an enormous collision between two asteroids. We know this because of the rain of meteorites that struck Earth at that time. But inside that rain of meteorites, which were all of the same type, there is a mystery: an oddball, different from the rest. And that oddball could tell us something about how rocks from space can change ecosystems, and allow species to thrive.

This oddball meteorite has a name: Osterplana 65. It’s a fossilized meteorite, and it was found in a limestone quarry in Sweden. Osterplana 65 fell to Earth some 470 mya, during the Ordovician period, and sank to the bottom of the ocean. There, it became sequestered in a bed of limestone, itself created by the sea-life of the time.

The Ordovician period is marked by a couple thing: a flourishing of life similar to the Cambrian period that preceded it, and a shower of meteors called the Ordovician meteor event. There is ample evidence of the Ordovician meteor event in the form of meteorites, and they all conform to similar chemistry and structure. So it’s long been understood that they all came from the same parent body.

The collision that caused this rain of meteorites had to have two components, two parent bodies, and Osterplana 65 is evidence that one of these parent bodies was different. In fact, Ost 65 represents a so far unknown type of meteorite.

The faint grey lines in this electron image of Ost 65 are called "shock deformation lamellae" and they are evidence that Ost 65 was the result of a collision. Image: B. Schmidt
The faint grey lines in this electron image of Ost 65 are called “shock deformation lamellae” and they are evidence that Ost 65 was the result of a collision. Image: B. Schmidt

The study that reported this finding was published in Nature on June 14 2016. As the text of the study says, “Although single random meteorites are possible, one has to consider that Ă–st 65 represents on the order of one per cent of the meteorites that have been found on the mid-Ordovician sea floor. “It goes on to say, “…Ă–st 65 may represent one of the dominant types of meteorites arriving on Earth 470 Myr ago.”

The discovery of a type of meteorite falling on Earth 470 mya, and no longer falling in our times, is important for a couple reasons. The asteroid that produced it is probably no longer around, and there is no other source for meteorites like Ost 65 today.

The fossil record of a type of meteorite no longer in existence may help us unravel the story of our Solar System. The asteroid belt itself is an ongoing evolution of collision and destruction. It seems reasonable that some types of asteroids that were present in the earlier Solar System are no longer present, and Ost 65 provides evidence that that is true, in at least one case.

Ost 65 shows us that the diversity in the population of meteorites was greater in the past than it is today. And Ost 65 only takes us back 470 mya. Was the population even more diverse even longer ago?

The Earth is largely a conglomeration of space rocks, and we know that there are no remnants of these Earthly building blocks in our collections of meteorites today. What Ost 65 helps prove is that the nature of space rock has changed over time, and the types of rock that came together to form Earth are no longer present in space.

Ost 65 was found in amongst about 100 other meteorites, which were all of the same type. It was found in the garbage dump part of the quarry. It’s presence is a blemish on the floor tiles that are cut at the quarry. Study co-author Birgen Schmitz told the BBC in an interview that “It used to be that they threw away the floor tiles that had ugly black dots in them. The very first fossil meteorite we found was in one of their dumps.”

According to Schmitz, he and his colleagues have asked the quarry to keep an eye out for these types of defects in rocks, in case more of them are fossilized meteorites.

Finding more fossilized meteorites could help answer another question that goes along with the discovery of Ost 65. Did the types and amounts of space rock falling to Earth at different times help shape the evolution of life on Earth? If Ost 65 was a dominant type of meteorite falling to Earth 470 mya, what effect did it have? There appear to be a confounding number of variables that have to be aligned in order for life to appear and flourish. A shower of minerals from space at the right time could very well be one of them.

Whether that question ever gets answered is anybody’s guess at this point. But Ost 65 does tell us one thing for certain. As the text of the study says, “Apparently there is potential to reconstruct important aspects of solar-system history by looking down in Earth’s sediments, in addition to looking up at the skies.”

Mammals Were Already Flourishing When The Axe Fell On The Dinosaurs

It's long been thought that a giant asteroid, which broke up long ago in the main asteroid belt between Mars and Jupiter, eventually made its way to Earth and led to the extinction of the dinosaurs. New studies say that the dinosaurs may have been facing extinction before the asteroid strike, and that mammals were already on the rise. Image credit: NASA/JPL-Caltech

It’s an apocryphal image. The ignorant faces of the dinosaurs, roaring helplessly at their fate, and looking skyward as an asteroid plunged to Earth. And the sneaky, clever little mammals coming out of their hiding holes to take their rightful place. If you grew up reading about this version of things, you’re not alone.

The line of reasoning says that mammals were present during the dinosaur’s reign, but their potential to thrive was suppressed by the dinosaurs, which were supremely evolved to dominate conditions on Earth at the time. It took the extinction of the dinosaurs to allow mammals to flourish. But according to new studies, that might not have been the case. As it turns out, mammals may have been well on their way to displacing the dinos long before the Chicxulub meteor hastened the dinosaur’s demise.

One such study, from researchers at the Universities of Southampton and Chicago, focused on hundreds of fossilized mammal teeth. As you know if you’ve been paying attention to how you eat, different teeth have different purposes. Carnivores have sharp teeth designed to rip and shred flesh, while herbivores have duller teeth for grinding up vegetation. Omnivores, like us, have a bit of both. That’s a simplification, of course, but its generally true.

What this study showed is that mammals with varied diets began to appear 10 to 20 million years before the dinosaurs were extinguished. It focused on early therian mammals, which are the ones that gave rise to the modern marsupials (ones with pouches) and placentals (ones where a fetus is carried inside the uterus). The third class of mammal, monotremes, were egg-laying mammals like the platypus.

In recent years, more and more early mammal fossils have been discovered, and they show that mammals were well on their way to diversifying long before the dinosaurs disappeared. The mammal fossil record also shows that mammal diversity suffered from the meteor strike, but mammals recovered and diversified into a greater number of species in the new conditions.

Another study, by Manabu Sakamoto and Chris Venditti from the University of Reading, and by Michael Benton from the University of Briston, shows that the opposite is true for dinosaurs. For tens of millions of years before their extinction, dinosaur species were becoming extinct and new species were not taking their place. This made the dinosaurs more vulnerable to extinction, whereas the diversifying mammals were in a better position to thrive, regardless of dinosaur extinction.

The main threat posed by the asteroid strike was the climate change that followed it. With greater species diversity in place immediately preceding the strike, mammals had a greater probability to survive the changing climate than did their dinosaur counterparts.

Evolutionary biologist and co-author of the study, Dr. Chris Venditti, told BBC News, “The current widespread view is that dinosaurs were reigning strong right up to the impact that hit the Earth – and it’s the impact that drove their final extinction,” he said. “And while that’s certainly true, what we found was that they were on the decline long before that.”

This image shows a very faint circular outline of the Chicxulub crater, site of the asteroid strike that finished off the dinosaurs. After 65 million years, it is barely visible. Image: NASA/JPL
This image shows a very faint circular outline of the Chicxulub crater, site of the asteroid strike that finished off the dinosaurs. After 65 million years, it is barely visible. Image: NASA/JPL

“If they were reigning strong perhaps they would have fared much better than they did,” said Venditti. Dinosaurs had been around for 160 million years and had faced pressures and had dips in their diversity before.

This begs the question, why were dinosaurs in decline?

It likely all revolves around the environmental conditions. At the dawn of the dinosaurs 230 million years ago, Earth was a warm, lush place. Not just near the equators, but all the way to the poles. And there was one single continent, called Pangaea. But it’s the nature of things to change, and change it did.

The climate cooled, the sea level changed, and the dinosaurs were facing new environmental pressures. And as the record shows, the dinosaurs were losing species faster than they could replace them. Chicxulub was more than they could recover from.

Study co-author Mike Benton also talked to the BBC about this study. He said, “World climates were getting cooler all the time. Dinosaurs rely on quite warm climates and mammals are better adapted to the cold.”

“So there might have been a switch over in any case without the asteroid impact.”

Looking back on the older narrative, that the asteroid strike wiped out the dinosaurs, and mammals took their place and became dominant, it looks a little simplistic. But it has a nice narrative hook, and there is the matter of the cataclysmic asteroid strike, which no doubt had a huge effect on life on Earth, any way you want to slice it.

It’s possible that had the asteroid not struck, or had struck a few million years earlier or later, Earth would be a much different place. Perhaps we would not be here, and maybe intelligent dinosaurs would be in our place.

We’ll never know, of course, but it’s a fun narrative.