NASA is about to reach another milestone in the development of its Space Launch System (SLS.) The SLS is designed to take humans on future deep space missions, and the heart of the system is the RS-25 engine. March 10th will be the first test of this flight-model engine, which will be the most powerful rocket in the world, once in its final configuration.
SLS is the future of space flight for NASA. It’s planned uses include missions to Mars and to an asteroid. The rockets for the system have to be powerful, and they have to have a proven track record. The RS-25 fits the bill: they are a high-performance system that has seen much use.
The RS-25 has been used on over 135 shuttle missions, and they have seen over 1 million seconds of hot-fire time during ground testing. For the SLS, four RS-25s will be used to generate over 2 million pounds of thrust, and they will operate in conjunction with two solid rocket boosters.
“This year is all about collecting the data we need to adapt these proven engines for SLS’s first flight,” says Steve Wafford, the SLS Engines Manager. The team conducted a series of tests on a developmental RS-25 engine last year, but this is the first one that will fly.
Ronnie Rigney is the RS-25 project manager at the Stennis Space Center, where the tests are being conducted. “Every test is important, but there really is a different energy level associated with flight engines. It’s hard to describe the feeling you get knowing you’re going to see that engine lift off into the sky one day soon. It’s a very exciting time for all of us here,” said Rigney.
The SLS will be built in 3 stages, called blocks:
Block 1 will have a 70 metric ton lift capability.
Block 1B will be more powerful for deeper missions and will have a 105 metric ton lift capability.
Block 2 will add a pair of solid or liquid propellant boosters and will have a 130 metric ton lift capability.
Each of these blocks will use 4 RS-25 engines, and in its Block 2 configuration it will be the most powerful rocket in the world.
Engine #2059 is more than just a test engine. It will be used on the second SLS exploration mission (EM2), which will carry 4 astronauts into lunar orbit to test the SLS spacecraft.
“You can’t help but be excited about the test on A-1 (test stand,) especially when you realize that the engines that carried us to the moon and that carried astronauts on 135 space shuttle missions were tested on this very same stand. We’re just adding to a remarkable history of space exploration,” said Stennis Space Center Director Rick Gilbrech.
The team at Stennis feels the characteristic enthusiasm that NASA is known for. “We’re not just dreaming of the future. We’re enabling it to happen right now,” said Rigney.
Though the March 10th test is definitely a milestone, there’s still lots more work to do. Testing on RS-25 engines and flight controllers will continue, and in 2017, testing of the core stage will take place. 4 RS-25 engines will be tested at the same time.
We’re a long ways away from colonizing another planet—depending on who you talk to—but it’s not too soon to start understanding how we might do it when the time comes. Growing enough food will be one of the primary concerns for any future settlers of Mars. With that in mind, researchers at the Wageningen University and Research Centre in the Netherlands have created simulated Martian soil and used it to grow food crops.
This is actually the second experiment the team has performed with simulated soil, and the results were promising. The team harvested not only tomatoes and peas, but also rye, garden rocket, radish, and watercress. But it’s not just the edibles that were promising, it was the overall ability of the simulated soil to produce biomass in general. According to the researchers, the soil produced biomass equal to that produced by Earth soil, which was used as a control.
The team also grew crops in simulated Moon soil, to understand how that soil performed, but it produced much less biomass, and only the humble spinach was able to grow in it. The simulated Martian and Lunar soils were provided by NASA. The Martian soil came from a Hawaiian volcano, and the Lunar soil came from a desert in Arizona.
The soil used was not exactly the same as the soil you would scoop up if you were on the Moon or Mars. It was amended with organic matter in the form of manure and fresh cut grass. While this may sound like a ‘cheat’, it’s no different than how gardens are grown on Earth, with gardeners using manure, compost, grass clippings, leaves, and even seaweed to provide organic matter.
Of course, none of these soil amendments will be available on the Moon or Mars, and we won’t be sending a supply ship full of manure. Colonists will have to make use of all of the inedible parts of their crops—and human feces—to provide the organic material necessary for plant growth. It’ll be a closed system, after all.
The crops were grown in a controlled environment, where temperature, humidity, and other factors were kept within Earthly parameters. Any crops grown on Mars will be grown in the same controlled environments, at least until genetic modification can create plants able to withstand the increased radiation and other factors.
A problem facing colonists trying to grow food on Mars is the heavy metal content of the soil. Mars soil contains mercury, lead, cadmium, and arsenic, which are all toxic to humans. The presence of these elements doesn’t bother the plants; they just keep growing. But any crops grown in this soil will have to be tested for toxicity before they can be consumed. This is the next experiment that the team has planned.
Researchers at the Wageningen University are currently crowdfunding for this next experiment. If you’d like to contribute, check out their page here.
China has plans to build a new space telescope which should outperform Hubble. According to the Chinese English Language Daily, the new telescope will be similar to Hubble, but will have a field of view that is 300 times larger. The new telescope, which has not been named yet, will have the ability to dock with China’s modular space station, the Tiangong.
The China National Space Administration has come up with a solution to a problem that dogged the Hubble Telescope. Whenever the Hubble needed repairs or maintenance, a shuttle mission had to be planned so astronauts could service it. China will avoid this problem with its innovative solution. The Chinese telescope will keep its distance from the Tiangong, but if repairs or maintenance are needed, it can dock with Tiangong.
No date has been given for the launch of this new telescope, but its plans must be intertwined with plans for the modular Tiangong space station. Tiangong-1 was launched in 2011 and has served as a crewed laboratory and a technological test-bed. The Tiangong-2, which has room for a crew of 3 and life support for twenty days, is expected to be launched sometime in 2016. The Tiangong-3 will provide life support for 3 people for 40 days and will expand China’s capabilities in space. It’s not expected to launch until sometime in the 2020’s, so the space telescope will likely follow its launch.
The telescope, according to the People’s Daily Online, will take 10 years to capture images of 40% of space, with a precision equal to Hubble’s. China hopes this data will allow it to make breakthroughs in the understanding of the origin, development, and evolution of the universe.
This all sounds great, but there’s a shortage of facts. When other countries and space agencies announce projects like this, they give dates and timelines, and details about the types of cameras and sensors. They talk about exactly what it is they plan to study and what results they hope to achieve. It’s difficult to say what level of detail has gone into the planning for this space telescope. It’s also difficult to say how the ‘scope will dock with the space station.
It may be that China is nervous about spying and doesn’t want to reveal any technical detail. Or it may be that China likes announcing things that make it look technologically advanced. (China is in a space race with India, and likes to boast of its prowess.) In any case, they’ve been talking about a space telescope for many years now. But a little more information would be nice.
Come on China. Give us more info. We’re not spies. We promise.
All over the Earth, there is a buried layer of sediment rich in iridium called the Cretaceous Paleogene-Boundary (K-Pg.) This sediment is the global signature of the 10-km-diameter asteroid that killed off the dinosaurs—and about 50% of all other species—66 million years ago. Now, in an effort to understand how life recovered after that event, scientists are going to drill down into the site where the asteroid struck—the Chicxulub Crater off the coast of Mexico’s Yucatan Peninsula.
The end-Cretaceous extinction was a global catastrophe, and a lot is already known about it. We’ve learned a lot about the physical effects of the strike on the impact area from oil and gas drilling in the Gulf of Mexico. According to data from that drilling, released on February 5th in the Journal of Geophysical Research: Solid Earth, the asteroid that struck Earth displaced approximately 200,000 cubic km (48,000 cubic miles) of sediment. That’s enough to fill the largest of the Great Lakes—Lake Superior—17 times.
The Chicxulub impact caused earthquakes and tsunamis that first loosened debris, then swept it from nearby areas like present-day Florida and Texas into the Gulf basin itself. This layer is hundreds of meters thick, and is hundreds of kilometers wide. It covers not only the Gulf of Mexico, but also the Caribbean and the Yucatan Peninsula.
In April, a team of scientists from the University of Texas and the National University of Mexico will spend two months drilling in the area, to gain insight into how life recovered after the impact event. Research Professor Sean Gulick of the University of Texas Institute for Geophysics told CNN in an interview that the team already has a hypothesis for what they will find. “We expect to see a period of no life initially, and then life returning and getting more diverse through time.”
Scientists have been wanting to drill in the impact region for some time, but couldn’t because of commercial drilling activity. Allowing this team to study the region directly will build on what is already known: that this enormous deposit of sediment happened over a very short period of time, possibly only a matter of days. The drilling will also help paint a picture of how life recovered by looking at the types of fossils that appear. Some scientists think that the asteroid impact would have lowered the pH of the oceans, so the fossilized remains of animals that can endure greater acidity would be of particular interest.
The Chicxulub impact was a monumental event in the history of the Earth, and it was extremely powerful. It may have been a billion times more powerful than the atomic bomb dropped on Hiroshima. Other than the layer of sediment laid down near the site of the impact itself, its global effects probably included widespread forest fires, global cooling from debris in the atmosphere, and then a period of high temperatures caused by an increase in atmospheric CO2.
We already know what will happen if an asteroid this size strikes Earth again—global devastation. But drilling in the area of the impact will tell us a lot about how geological and ecological processes respond to this type of devastation.
As the director of “Star Wars: The Force Awakens,” and “Star Trek Into Darkness”, J.J. Abrams is no stranger to space narratives. But now he’s leaving behind light saber battles and warp drive chase sequences to tackle something a little more realistic.
Abrams’ newest project is a 9 part documentary series, called “Moon Shot,” that showcases 16 different teams of people competing for Google’s Lunar X-Prize. The teams of entrepreneurs, scientists, and inventors will have to engineer a spacecraft, have it land a rover on the Moon, travel 500 meters, and then transmit HD video and images back to Earth. And they have to have their launch contract verified by the end of 2017. This is a daunting task.
Though the Moon might appear rather placid, and even safe compared to some of the hostile environments Earthlings and their spacecraft have ventured to, it’s not an easy place to do business in. We’re getting used to seeing rovers and landers and orbiters visit the Moon in what seems like a work-a-day process. But the Moon is still a hostile place.
The temperature on the Moon fluctuates wildly. At its coldest, the temperature drops to a frigid -246 C (-412 F.) At its hottest, the temperature jumps to a scorching 100 C (212F.) A 350 C swing in temperatures is hard on equipment and requires robust designing and engineering.
Temperature fluctuation aside, there is also the increased radiation to contend with. The Moon lacks the magnetosphere and atmosphere that protects Earth from the full onslaught of the Sun, so sensitive electronics have to contend with that. And then there’s the dust, which can also be hard on equipment. Remember, the Google Lunar X-Prize is a competition to land a privately-funded robot on the Moon. Dealing with these formidable challenges as a small team is much harder, considering that the teams don’t have the resources that NASA and other groups have. But with $30 million in prize money at stake, we can expect to see some highly-motivated people competing.
Competitors include a German team backed by Audi (teams have to prove that they are 90% funded by private money,) a father and son working from a bedroom in Vancouver, a team of IT specialists from India, and a Japanese team from the Department of Aerospace Engineering at Tohoku University.
Though the science aspect of the series will no doubt be fascinating—the Japanese team has revealed that they will use VR to control their innovative camera system—it’s the stories of the people trying to win the prize that should be even more gripping. Who are these people? What drives these people to do such a thing?
The series will be available for viewing on YouTube on March 17, 2016, and on Google Play on March 15, 2016. Can’t wait to check it out.
Science—like literature and the arts—helps nations cooperate together, even when they’re in conflict politically. The USA and Russia are in conflict over the Ukraine and Syria, yet both nations still cooperate when it comes to the International Space Station. With that in mind, it’s great to see other nations—in this case India—taking on a greater role in space exploration and sharing their scientific results.
India’s Mars Orbiter Mission (MOM) probe has been in orbit around Mars since September 2014, after being launched in November 2013. Though the Indian Space Research Organization (ISRO) has released plenty of pictures of the surface of Mars, they haven’t released any scientific data. Until now.
In September 2015, MOM’s orbit was adjusted to bring it to within 260 km of Mars’ surface, significantly closer to the surface than the usual 400 km altitude. This manoeuver allowed one of MOM’s six instruments, the Mars Exospheric Neutral Composition Analyzer (MENCA), to measure the atmospheric composition at different altitudes. The sensor measured carbon dioxide, oxygen, nitrogen and carbon monoxide to see how they were distributed at different altitudes.
MOM’s activity at Mars is important for a couple of reasons. Its results confirm the results of other probes that have studied Mars’ atmosphere. And confirmation is an important part of science. But there’s another reason why MOM is important, and this centres around the search for evidence of life on the Red Planet.
Methane is considered a marker for the presence of life. It’s not an absolute indicator that life is or was present, but it’s a good hint. One of MOM’s sensors is the Methane Sensor for Mars (MSM.) Methane has been detected in Mars’ atmosphere before, but these could have been spikes, and not a strong indicator of living processes. If MSM provides stronger data indicating a consistent methane presence, that would be very interesting.
Releasing these results is also vindication for ISRO. In 2008, ISRO released data from their lunar mission, Chandrayaan-1, showing the presence of water on the Moon. Those results, which were gathered with an instrument called Chandra’s Altitudinal Composition Explorer (CHACE) were rejected by several scientific publications, on the grounds that the results were contaminated. Only when they were confirmed by another of Chandrayaan-1’s instruments—the Moon Mineralogy Mapper (M3)—were the results accepted.
But MOM’s MENCA instrument is based on the CHACE instrument aboard Chandrayaan-1, so ISRO feels that MENCA’s success in the atmosphere at Mars vindicates CHACE’s results on the Moon. And rightly so.
You can read a blog post by Syed Maqbool Ahmed at the Planetary Society, where he talks about the success of MOM’s MENCA, and how it vindicates ISRO’s earlier results with CHACE that showed the presence of water on the Moon.
MOM is India’s first interplanetary mission, and is expected to last until its fuel runs out, which could take many years. India is the first Asian nation to make it to another planet, and the first of any nation to make it to Mars on their first attempt. Not bad for a mission that was initially considered to be only a technology demonstration mission.
“What happened to Mars?” is one of the most compelling questions in space science. It probably wasn’t always the dead, dry, cold place it is now. Did its core cool and stop rotating, allowing the full glare of the sun to blast away its atmosphere and water, and kill anything that may have lived there? Was it struck by a large body, which incinerated its atmosphere, and led to its demise? Were there other causes?
According to a new research paper from Sylvain Bouley at the University of Paris-South, and his colleagues, it may have been a massive, ancient outpouring of molten rock that threw Mars off kilter and helped change Mars into what it is today.
The Tharsis region is an ancient lava complex on Mars that dates back to between 4.1 billion and 3.7 billion years ago. It’s located in Mars’ Western Hemisphere, right near the equator. It’s made up of three huge shield volcanoes—Arsia Mons, Pavonis Mons, and Ascraeus Mons. Collectively, they’re known as Tharsis Montes. (Olympus Mons, the largest volcano in the Solar System, is not a part of the Tharsis complex, though it is near it.)
Tharsis is over 5,000 km across and over 10 miles thick, making it the largest volcanic complex in the Solar System. That much mass positioned after Mars was already formed and had an established rotation would have been cataclysmic. Think what would happen to Earth if Australia rose up 10 miles.
The new paper, published on March 2nd, 2016, in the journal Nature, says that the position of the Tharsis complex would have initiated a True Polar Wander (TPW.) Basically, what this means is that Tharsis’ huge mass would have forced Mars to shift its rotation, so that the location of Tharsis became the new equator.
It was thought that the emergence of Tharsis made Martian rivers—which formed later—flow the direction they do. But the study from Bouley and his colleagues shows that Martian rivers and valleys formed first—or maybe concurrently—and that the Tharsis TPW deformed the planet later.
The authors of the study calculated where the Martian poles would have been prior to Tharsis, and looked for evidence of polar conditions at those locations. The location of this ancient north pole contains a lot of ice today, and the location of the ancient south polar region also shows evidence of water.
What it all adds up to is that the disappearance of water on Mars probably happened at the same time as the TPW. Whether the appearance of the Tharsis lava complex, and the resulting cataclysmic shifting of Mars’ rotational orientation, were the cause of Mars losing its climate is not yet known for sure. But this study shows that the ancient volcanic cataclysm did at least help shape Mars into what it is today.
Space is mostly vast and empty. So whenever we notice something like ripples on a lake, on the frozen moon of a gas giant, we take notice.
At a meeting of the American Geophysical Union in San Francisco this week, it was reported that Cassini images of Saturn’s moon Titan showed light being reflected from the Ligeia Mare, a frigid sea of hydrocarbons on that moon. Subsequent images showed the same phenomenon on two other seas of Titan, as well. These are thought to be waves, the first waves detected anywhere other than Earth, and suggest that Titan has more geophysical activity than previously thought.
Surfers on Earth, known for seeking out remote and secretive locations, shouldn’t get too excited. According to mathematical modelling and radar imagery, these waves are only 1.5 cm (0.6 inches) tall, and they’re moving only 0.7 metres (2.3 feet) per second. Plus, they’re on a sea of liquid hydrocarbons—mostly methane—that is a frigid -180 degrees Celsius (-292 F.)
Planetary scientists are taking note, though, because these waves show that Titan has an active environment, rather than just being a moon frozen in time. It’s thought that the change in seasons on Titan is responsible for these waves, as Titan begins its 7 year summer. Processes related to the changing seasons on Titan have created winds, which have cause these ripples.
There’s other evidence of active weather on Titan, including dunes, river channels, and shorelines. But this is the first observation of active weather phenomena, rather than just the results. All together, it shows that Titan is a more active, dynamic environment than previously thought.
Titan’s hydrocarbon lakes are thought to be up to 200 metres (656 ft.) deep, and are clustered around the north polar region. Just one of its lakes is thought to contain approximately 9,000 cubic km of methane, which is about 40 times more than the Earth’s reserves of oil and gas.
Titan is the second largest moon in the Solar System, second only to Ganymede, and both moons are larger than the planet Mercury. Titan was discovered in 1655 by Christiaan Huygens.
The first spacecraft to reach the surface of another world was the Soviet Venera 3 probe. Venera 3 crash-landed on the surface of Venus on March 1, 1966, 50 years ago. It was the 3rd in the series of Venera probes, but the first two never made it.
Venera 3 didn’t last long. It survived Venus’ blistering heat and crushing atmospheric pressure for only 57 minutes. But because of that 57 minutes, its place in history is cemented.
With a temperature of 462 degree C. (863 F.,) and a surface pressure 90 times greater than Earth’s, Venus’ atmosphere is the most hostile one in the Solar System. But Venus is still a tantalizing target for exploration, and rather than letting the difficult conditions deter them, Venus is a target that NASA thinks it can hit.
The Venus Landsail—called Zephyr—could be the first craft to survive the hostile environment on Venus. If approved, it would launch in 2023, and spend 50 days on the surface of Venus. But to do so, it has to meet several challenges.
NASA thinks they have the electronics that can withstand the heat, pressure, and corrosive atmosphere of Venus. Their development of sensors that can function inside jet engines proves this, and is the kind of breakthrough that really helps to advance space exploration. They also have solar cells that should function on the surface of Venus.
But the thick cloud cover will prevent the Zephyr’s solar cells from generating much electricity; certainly not enough for mobility. They needed another solution for traversing the surface of Venus: the land sail.
Venus has very slow winds—less than one meter per second—but the high density of the atmosphere means that even a slow wind will allow Zephyr to move effectively around the Venusian surface. But a land sail will only work on a surface without large rocks in the way. Thanks to the images of the surface of Venus sent back to Earth from the Venera probes, we know that a land sail will work, at least in some parts of the Venusian surface.
So Venus is back on the menu. With all the missions to other places in the Solar System, Venus is kind of forgotten, right here in our own backyard. But there’s actually a pretty rich history of missions to Venus, even though an extended visit to the surface has been out of reach. Since it’s been 50 years since Venera 3 reached the surface, now is a good time to look back at the history of the exploration of Venus.
The Soviet Union dominated the exploration of Venus. The Venera probes went all the way up to Venera 16, though some were orbiters rather than landers. From one perspective, the whole Venera program was plagued with problems. Many of the craft failed completely, or else had malfunctions that crippled them. But they still returned important information, and achieved many firsts, so the Venera program overall has to be considered a success.
The Soviet Union did not like to acknowledge or talk about space missions that failed. They often changed the name of a mission if it failed, so the names and numbers can get a little confusing.
Venera 4 was actually the first spacecraft to transmit any data from another world. On October 18th, 1967, it transmitted data from Venus’ atmosphere, but none from the surface. There were actually ten Venera missions before it, but most of them didn’t make it to Venus, suffering explosions or failing to leave Earth’s orbit and crashing back to the surface of Earth. Two of the Venera probes, numbers 1 and 2, suffered a loss of communications, so their fate is unknown.
After Venera 4’s relative success, there was another failed craft that fell back to Earth. Then on May 16th, 1969, Venera 5 successfully entered Venus’ atmosphere, and made it to within 26 kilometers of the surface before being crushed by the pressure. The next day—the Soviets often launched missions in pairs—Venera 6 entered the atmosphere of Venus and successfully transmitted data. It made it deeper into the atmosphere before being crushed within 11 kilometers of the surface.
Venera 7 was a successful mission. On December 15th, 1970, it landed on the surface of Venus and survived for 23 minutes. Venera 7 was the very first broadcast from the surface of another planet.
In 1972 Venera 8 survived for 50 minutes on the surface, followed by Venera 9 in 1975. Venera 9 survived for 53 minutes and sent back the first black and white images of the surface of Venus. Venera 10 landed 3 days after Venera 9 and survived 65 minutes, and also sent photos back. Grainy and blurry, but still amazing!
December 1978 saw the arrival of Venera 11 and 12, surviving 95 and 112 minutes respectively. Venera 11’s camera failed, but Venera 12 recorded what is thought to be lightning.
In March 1982, Venera 13 and 14 arrived. 13 took the first color images of the surface of Venus, and both craft took soil samples. Venera 15 and 16—both orbiters—arrived in 1983 and mapped the northern hemisphere.
The Soviet Unions final missions to Venus were Vega 1 and Vega 2, in 1985, which combined landings on Venus and flybys of Halley’s comet into each mission. Vega 1’s surface experiments failed, while Vega 2 transmitted data from the surface for 56 minutes.
The United States has also launched several mission to Venus, though none have been landers. Spacecraft in the Mariner series studied Venus from orbit and during flybys, sometimes getting quite close to the cloud tops.
In 1962 and 1967, Mariner 2 and 5 completed flybys of Venus and transmitted data back to Earth. Mariner 5 came as close as 4094 km of the surface. In February 1974, Mariner 10 approached Venus and came to within 5,768 km. It returned color images of Venus, and then used gravitational assist—the first spacecraft to ever do so—to propel itself to Mercury.
In December 1978, the Pioneer Venus Orbiter reached Venus and studied the atmosphere, surface, and other aspects of Venus. It lasted until August 1992, when its fuel ran out and it was destroyed when it entered the atmosphere.
On August 1990, the Magellan mission reached Venus and used radar to map the surface of the planet. On October 1994, Magellan entered the Venusian atmosphere and was destroyed, but not before successfully mapping over 99% of the planet’s surface.
Messenger was a NASA mission to Mercury that was launched in August 2004. It did two flybys of Venus, in October 2006 and June 2007.
The Venus Express, a European Space Agency mission, orbited Venus and studied the atmosphere and plasma of Venus. Of special interest to Venus Express was the study of what role greenhouse gases played in the formation of the atmosphere.
In 2010, the Japanese Space Agency launched Akatsuki, also known as the Venus Climate Orbiter. It’s role is to orbit Venus and study the atmospheric dynamics. It will also look for evidence of lightning and volcanic activity.
If there’s one thing that space exploration keeps teaching us, it’s to expect the unexpected. Who knows what we’ll find on Venus, if the Land Sail mission is approved, and it survives for its projected 50 days.
American astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko will return to Earth tonight after 340 days aboard the International Space Station. The year in space may have been fairly routine in some aspects (other than goofing around in a gorilla suit,) but the return to Earth aboard the Soyuz capsule will be anything but.
After un-docking from the ISS at 8:02 pm EST, the Soyuz—piloted by commander Sergey Volkov—will move about 12 miles away. Then the Soyuz’s braking rockets will be fired for 4 minutes and 49 seconds, slowing the craft by 460 kmh (286 mph.) Then begins the harrowing part.
Soyuz will free-fall for 25 minutes, until it hits the Earth’s atmosphere at 100 km (62 miles) above the surface. Then the craft has to withstand a five-minute stretch of extreme heating as it descends to 20 miles above the Earth’s surface. At an altitude of 10.6 km (6.6 miles), a large parachute—called a drogue chute—will deploy from Soyuz’s descent module, helping to slow the craft’s descent. Lastly, rockets will fire, which will lead to a jarring and nerve-wracking touchdown in Kazakhstan. According to Kelly, who has two space shuttle flights to his credit, the whole experience defies description.
But it’s what happens when Kelly is back on Earth that is the most important part of this record-breaking 340 day mission aboard the ISS. It’s no coincidence that the mission was exactly 340 days long. That’s how long a manned mission to Mars is expected to take, and Kelly’s and Kornienko’s mission was designed to mimic that. NASA hopes to gain an understanding of the effects a Mars mission will have on the astronauts who make that trip.
What’s unique about Kelly is that he has a twin brother Mark—also an astronaut and former shuttle commander—who is being monitored and subjected to the same tests as Scott during his year in space. By comparing the twin brothers before, during, and after Scott’s year aboard the ISS, NASA expects to learn a lot about extended periods of weightlessness and long-term exposure to radiation, and how astronauts will be affected. And that will all happen as soon as Kelly and Kornienko return.
Any crew member returning from space faces a battery of tests to determine their condition. But Kelly and Kornienko will face all that and then some. It’s essential that the two are assessed as soon as they return, because their bodies will begin to acclimatize to Earth’s gravity as soon as they land. After exiting Soyuz, they will be transported directly to medical tents, where they will sit in recliners. They will have a short time to get their bearings, then testing will begin. For Kelly, the testing will continue on his flight back to the USA. The more detail they can gather on Kelly’s condition and physiology, the better it will be for any astronauts making the trip to Mars in the future.
This is important, ground-breaking stuff. And with missions like this, NASA and other organizations are learning a lot and are continuing to expand humanity’s horizons. But, as we keep seeing, there is always a lighter side to these endeavours: For fun, check out NASA’s Crazy Facts About The Year In Space.