NASA Thinks There’s a Way to Get to Mars in 3 Days

Interstellar travel will require near-light-speed to be feasible. Image: NASA
Interstellar travel will require near-light-speed to be feasible. Image: NASA

We’ve achieved amazing things by using chemical rockets to place satellites in orbit, land people on the Moon, and place rovers on the surface of Mars. We’ve even used ion drives to reach destinations further afield in our Solar System. But reaching other stars, or reducing our travel time to Mars or other planets, will require another method of travel. One that can approach relativistic speeds.

Your aim has to be really really good.
Your aim has to be really really good. Credit: UCSB Experimental Cosmology Group
We can execute missions to Mars, but it takes several months for a vehicle to reach the Red Planet. Even then, those missions have to be launched during the most optimal launch windows, which only occur every 2 years. But the minds at NASA never stop thinking about this problem, and now Dr. Philip Lubin, Physics Professor at the University of California, Santa Barbara, may have come up with something: photonic propulsion, which he thinks could reduce the travel time from Earth to Mars to just 3 days, for a 100 kg craft.

The system is called DEEP IN, or Directed Propulsion for Interstellar Exploration. The general idea is that we have achieved relativistic speeds in the laboratory, but haven’t taken that technology—which is electromagnetic in nature, rather than chemical—and used it outside of the laboratory. In short, we can propel individual particles to near light speed inside particle accelerators, but haven’t expanded that technology to the macro level.

Directed Energy Propulsion differs from rocket technology in a fundamental way: the propulsion system stays at home, and the craft doesn’t carry any fuel or propellant. Instead, the craft would carry a system of reflectors, which would be struck with an aimed stream of photons, propelling the craft forward. And the whole system is modular and scalable.

Photonic propulsion explained.
Photonic propulsion explained.

If that’s not tantalizing enough, the system can also be used to deflect hazardous space debris, and to detect other technological civilizations. As talked about in this paper, detecting these types of systems in use by other civilizations may be our best hope for discovering those civilizations.

There’s a roadmap for using this system, and it starts small. At first, DEEP IN would be used to launch small cube satellites. The feedback from this phase would then inform the next step, which would be to test a unit for defending the ISS from space debris. From then, the systems would meet goals of increasing complexity, from launching satellites to LEO (Low-Earth Orbit) and GEO (Geostationary Orbit), all the way up to asteroid deflection and planetary defense. After that, relativistic drives capable of interstellar travel is the goal.

There are lots of questions still to be answered of course, like what happens when a vehicle at near light-speed hits a tiny meteorite. But those questions will be asked and answered as the system is developed and its capabilities grow.

Obviously, DEEP IN has the potential to bring other stars into reach. This system could deliver probes to some of the more promising exo-planets, and give humanity its first detailed look at other solar systems. If DEEP IN can be successfully scaled up, as Lubin says, then it will be a transformational technology.

Here’s a longer video of Dr. Lubin explaining DEEP IN in greater depth and detail: http://livestream.com/viewnow/niac2015seattle

Here’s the website for the University of California Santa Barbara Experimental Cosmology Group: http://www.deepspace.ucsb.edu/

We Have Underestimated Our Sun’s Destructive Reach

Artists concept of a shredded asteroid getting too close to a star. (NASA/JPL-Caltech)
Artists concept of a shredded asteroid getting too close to a star. (NASA/JPL-Caltech)

The Sun has enormous destructive power. Any objects that collide with the Sun, such as comets and asteroids, are immediately destroyed.

But now we’re finding that the Sun has the ability to reach out and touch asteroids at a far greater distance than previously thought. The proof of this came when a team at the University of Hawaii Institute of Astronomy was looking at Near-Earth Objects (NEOs) catalogued by the Catalina Sky Survey, and trying to understand what asteroids might be missing from that survey.

An asteroid is classified as an NEO when, at its closest point to the Sun, it is less than 1.3 times the distance from the Earth to the Sun. We need to know where these objects are, how many of them there are, and how big they are. They’re a potential threat to spacecraft, and to Earth itself.

The 60 inch Mt. Lemmon telescope is one of three telescopes used in the Catalina Sky Survey. Image: Catalina Sky Survey, University of Arizona.
The 60 inch Mt. Lemmon telescope is one of three telescopes used in the Catalina Sky Survey. Image: Catalina Sky Survey, University of Arizona.

The Catalina Sky Survey (CSS) detected over 9,000 NEOs in eight years. But asteroids are notoriously difficult to detect. They are tiny points of light, and they’re moving.  The team knew that there was no way the CSS could have detected all NEOs, so Dr. Robert Jedicke, a team member from the University of Hawaii Institute of Astronomy, developed software that would tell them what CSS had missed in its survey of NEOs.

This took an enormous amount of work—and computing power—and when it was completed, they noticed a discrepancy: according to their work, there should be over ten times as many objects within ten solar diameters of the Sun as they found. The team had a puzzle on their hands.

The team spent a year verifying their work before concluding that the problem did not lay in their analysis, but in our understanding of how the Solar System works. University of Helsinki scientist Mikael Granvik, lead author of the Nature article that reported these results, hypothesized that their model of the NEO population would better suit their results if asteroids were destroyed at a much greater distance from the sun than previously thought.

They tested this idea, and found that it agreed with their model and with the observed population of NEOs, once asteroids that spent too much time within 10 solar diameters of the Sun were eliminated. “The discovery that asteroids must be breaking up when they approach too close to the Sun was surprising and that’s why we spent so much time verifying our calculations,” commented Dr. Jedicke.

There are other discrepancies in our Solar System between what is observed and what is predicted when it comes to the distribution of small objects. Meteors are small pieces of dust that come from asteroids, and when they enter our atmosphere they burn up and make star-gazing all the more eventful. Meteors exist in streams that come from their parent objects. The problems is, most of the time the streams can’t be matched with their parent object. This study shows that the parent objects must have been destroyed when they got too close to the Sun, leaving behind a stream of meteors, but no apparent source.

There was another surprise in store for the team. Darker asteroids are destroyed at a greater distance from the Sun than lighter ones are. This explains an earlier discovery, which showed that brighter NEOs travel closer to the Sun than darker ones do. If darker asteroids are destroyed at a greater distance from the Sun than their lighter counterparts, then the two must have differing compositions and internal structure.

“Perhaps the most intriguing outcome of this study is that it is now possible to test models of asteroid interiors simply by keeping track of their orbits and sizes. This is truly remarkable and was completely unexpected when we first started constructing the new NEO model,” says Granvik.

Did a Gamma Ray Burst Accompany LIGO’s Gravity Wave Detection?

An artist's impression of a Gamma Ray Burst. Credit: Stanford.edu
An artist's impression of a Gamma Ray Burst. Credit: Stanford.edu

Last week’s announcement that Gravitational Waves (GW) have been detected for the first time—as a result of the merger of two black holes—is huge news. But now a Gamma Ray Burst (GRB) originating from the same place, and that arrived at Earth 0.4 seconds after the GW, is making news. Isolated black holes aren’t supposed to create GRB’s; they need to be near a large amount of matter to do that.

NASA’s Fermi telescope detected the GRB, coming from the same point as the GW, a mere 0.4 seconds after the waves arrived. Though we can’t be absolutely certain that the two phenomena are from the same black hole merger, the Fermi team calculates the odds of that being a coincidence at only 0.0022%. That’s a pretty solid correlation.

So what’s going on here? To back up a little, let’s look at what we thought was happening when LIGO detected gravitational waves.

Our understanding was that the two black holes orbited each other for a long time. As they did so, their massive gravity would have cleared the area around them of matter. By they time they finished circling each other and merged, they would have been isolated in space. But now that a GRB has been detected, we need some way to account for it. We need more matter to be present.

According to Abraham Loeb, of Harvard University, the missing piece of this puzzle is a massive star—itself the result of a binary star system combining into one—a few hundred times larger than the Sun, that spawned two black holes. A star this size would form a black hole when it exhausted its fuel and collapsed. But why would there be two black holes?

Again, according to Loeb, if the star was rotating at a high enough rate—just below its break up frequency—the star could actually form two collapsing cores in a dumbbell configuration, and hence two black holes. But now these two black holes would not be isolated in space, they would actually be inside a massive star. Or what was left of one. The remnants of the massive star is the missing matter.

When the black holes joined together, an outflow would be generated, which would produce the GRB.  Or else the GRB came “from a jet originating out of the accretion disk of residual debris around the BH remnant,” according to Loeb’s paper. So why the 0.4 s delay? This is the time it took the GRB to cross the star, relative to the gravitational waves.

It sounds like a nice tidy explanation. But, as Loeb notes, there are some problems with it. The main question is, why was the GRB so weak, or dim? Loeb’s paper says that “observed GRB may be just one spike in a longer and weaker transient below the GBM detection threshold.”

But was the GRB really weak? Or was it even real? The European Space Agency has their own gamma ray detecting spacecraft, called Integral. Integral was not able to confirm the GRB signal, and according to this paper, the gamma ray signal was not real after all.

As they say in show business, “Stay tuned.”

 

 

 

China to Relocate Thousands for World’s Largest Radio Telescope

China's new radio telescope, the world's largest, should be completed by September 2016. Image: FAST
China's new radio telescope, the world's largest, should be completed by September 2016. Image: FAST

China is building the world’s largest radio telescope, and will have to move almost 10,000 people from the vicinity to guarantee the telescope’s effectiveness. The telescope, called the Five-hundred-meter Aperture Spherical Telescope (FAST), will be completed in September, 2016. At 500 meters in diameter, it will surpass the workhorse Arecibo radio observatory in Puerto Rico, which is 305 meters in diameter.

China has routinely moved large amounts of people to make room for developments like the Three Gorges Dam. But in this case, the people are being moved so that FAST can have a five kilometre radio-quiet buffer around it.

According to China’s news agency Xinhua, an unnamed official said the people are being moved so that the facility can have a “sound electromagnetic wave environment.” Common devices and equipment like microwave ovens, garage door openers, and of course, mobile phones, all create radio waves that FAST will sense and which can interfere with the telescope’s operation.

The telescope’s high level of sensitivity “will help us to search for intelligent life outside of the galaxy,” according to Wu Xiangping, director-general of the Chinese Astronomical Society. But aside from searching for radio waves that could be from distant alien civilizations, like SETI does, the enormous dish will also to be used to study astronomical objects that emit radio signals, like galaxies, pulsars, quasars, and supernovae. The radio signals from these objects can tell us about their mass, and their distance from us. But the signals are very weak, so radio telescopes have to be huge to be effective.

Radio telescopes are also used to send out radio signals and bounce them off objects like asteroids and the other planets in our Solar System. These signals are detected by the telescope when they return to Earth, and used to create images.

Huge radio telescopes like FAST can only be built in certain places. They require a large, naturally dish-shaped area for construction. (Arecibo is built in a huge karst sinkhole in Puerto Rico.) Though FAST is in a fairly remote location, where there are no major cities or towns, there are still approximately 10,000 people who will have to be moved. Most of the people moved will be compensated to the tune of  $2500, with some receiving more than that.

The FAST facility is part of a concerted effort by China to be a dominant player in space study and exploration. The Chang e 3 mission to the Moon, with its unmanned lander and rover, showed China’s growing capabilities in space. China also plans to have its own space station, its own space weather station at LaGrange 1, and a mission to Mars by 2020, consisting of an orbiter and a rover.

Construction on FAST began in 2011, and will cost 1.2 billion yuan ($260 million) to build.

 

 

 

First Super-Earth Atmosphere Detected

A new paper says that a Super-Earth may have formed in our Solar System and been swallowed by the Sun. Image Credit: ESA/Hubble, M. Kornmesser
A new paper says that a Super-Earth may have formed in our Solar System and been swallowed by the Sun. Image Credit: ESA/Hubble, M. Kornmesser

55 Cancri-e was once touted as one of the most exotic exo-planets ever discovered. Mass and radius modelling led some astronomers to speculate that its interior could be rich in carbon. And that much carbon crushed together under extreme pressure = diamonds. That’s how it got its nickname “Diamond Planet.”

But 55 Cancri-e—now named “Janssen” (Thank you International Astronomical Union!)—is even more exotic with the recent discovery of an atmosphere. A February 7th research paper in the Astrophysical Journal, by a team of European astronomers, reports that Janssen has an atmosphere rich in hydrogen. This makes Janssen the first exo-planet, that we know of, to have an atmosphere.

The team used the Wide Field Camera 3 (WDF3) on the Hubble Space Telescope, and a new scanning technique, to gain an understanding of Janssen’s atmosphere. Along with hydrogen, the team also found helium, and potentially, hydrogen cyanide.

Given Janssen’s surface temperature of 2000 K (1727 C), and its proximity to its host star, the existence of an atmosphere is surprising. The team suspects that the hydrogen-rich atmosphere is left over from the planet’s formation 8 billion years ago, and is a remnant of the nebula that the planet and star formed from.

“Our observations of 55 Cancri e’s atmosphere suggest that the planet has managed to cling on to a significant amount of hydrogen and helium from the nebula from which it formed,” said Angelos Tsiaras, a PhD student at UCL, who helped develop the new scanning technique. “This is a very exciting result because it’s the first time that we have been able to find the spectral fingerprints that show the gases present in the atmosphere of a super-Earth.”

Super-Earths are the most common type of planet in our galaxy, though none exist in our solar system. They are called super-Earths because they have more mass than Earth, but are smaller than the gas giants. A greater understanding of super-Earths should mean a greater understanding of the most common type of planet around.

“This result gives a first insight into the atmosphere of a super-Earth. We now have clues as to what the planet is currently like, how it might have formed and evolved, and this has important implications for 55 Cancri e and other super-Earths,” said Professor Giovanna Tinetti of UCL.

The existence of hydrogen cyanide in Janssen’s atmosphere is also significant. Its presence indicates a carbon-rich atmosphere. This supports the idea that Janssen is a diamond planet, though that conclusion is still far from certain. “If the presence of hydrogen cyanide and other molecules is confirmed in a few years time by the next generation of infrared telescopes, it would support the theory that this planet is indeed carbon rich and a very exotic place,” said Professor Jonathan Tennyson, UCL.

The team has used their new technique on 2 other super-Earths, but no atmosphere was found.

55-Cancri e is about 40 light years from Earth. Its host star is slightly smaller, cooler, and a little dimmer than our Sun, and its year is shorter than an Earth day.

 

 

Russia’s New Ballistic Missiles to be Tested on Asteroids

Asteroids represent a real danger to Earth. But is targeting them with missiles, maybe nuclear, a good idea? Image: NASA/JPL/CalTech
Asteroids represent a real danger to Earth. But is targeting them with missiles, maybe nuclear, a good idea? Image: NASA/JPL/CalTech

In a shocking announcement, Russian scientists say they want to test improved ballistic missiles on the asteroid Apophis, which is expected to come dangerously close to Earth in 2036. If this doesn’t send chills down your spine, you haven’t read enough science fiction.

In a February 11th article in the Russian state-owned news agency TASS, Sabit Saitgarayev, the lead researcher at the Makeyev Rocket Design Bureau, says Russian scientists are developing a program to upgrade Inter-Continental Ballistic Missiles (ICBMs) to destroy near-Earth meteors from 20-50 metres in size. Apophis’ approach in 2036 would be a test for this program.

ICBM’s are the kind of long range nukes that the USSR and the USA had pointed at each other for decades during the Cold War. They still have some pointed at each other, and they can be launched quickly. This program would take that technology and improve it for anti-asteroid use.

Typical rockets of the type that take payloads into space are not good candidates for intercepting asteroids. They require too much lead time to meet the threat of an incoming asteroid that might be detected only days before impact. They can take several days to fuel. But ICBM’s are different. They can stand at the ready for long periods of time, and be launched at a moment’s notice. But to be suitable for use as asteroid killers, they have to be upgraded.

Design work on the asteroid-killing ICBM’s has already begun, admitted Saitgarayev, but he did not say whether the money has been committed or whether the authorization has been given to go ahead with the project. But like a lot of things that are said and done by Russia, it’s difficult to know exactly where the truth lies.

There’s no question that being prepared to prevent an asteroid strike on Earth is of the utmost importance. No matter where on Earth one was to strike, the effects could be global. But one thing’s certain: the development and testing of missiles designed to be used in space is unsettling.

It’s also unsettling in light of the January 16th TASS article stating that “The international scientific community has asked Russian scientists to develop an asteroid deflection system on the basis of nuclear explosions in space.” Taken together, the two announcements point towards a program of weaponizing space, something the international community has agreed should be avoided. In fact, there is a ban on nuclear explosions in space.

We don’t want to be alarmist. There are only a handful of countries in the world that have the capacity to develop some protective system against asteroids, and Russia is definitely one of them. And if Earth were threatened by an asteroid, the weaponization of space would be the least of our concerns.

The fact that Russia wants to develop a missile system with nuclear warheads, and employ it in space, is not entirely unreasonable. But it should make us stop and think. What will happen if something goes wrong?

It’s easy to imagine a scenario where an atomic explosion went off in low-Earth orbit. What would the consequences be? And what are the consequences to having one country develop this capability, rather than an international group? How can this whole endeavour be managed responsibly?

What do you think?

 

 

 

 

Retro Travel Posters Show Us The Future

Visitors to Jupiter view the Jovian auroras from balloons. Image: NASA/JPL.
Visitors to Jupiter view the Jovian auroras from balloons. Image: NASA/JPL.

One of the greatest things about being a space enthusiast is all of the discoveries that come out on an almost daily basis. One of the saddest things about being a space enthusiast is all of the discoveries and destinations that are so close, just beyond the horizon of our lifespan.

Will we colonize other planets? Sure, but most of us living will be gone by then. Will we spend time in glorious, gleaming space habitats? Obviously, but we’ll just be epitaphs by then. Sentient, alien species that gift us faster-than-light travel and other wonders? Maybe, but not before my bucket list has its final item checked off.

Citizen space travel? Hmmmm, tantalizingly within reach.

But now, new retro style posters from NASA, designed by the team at Invisible Creature, are making us feel nostalgic about things that haven’t even happened yet, and are helping us leave behind gloomy thoughts of being born at the wrong time.

The Grand Tour. Image: NASA/JPL
The Grand Tour. Image: NASA/JPL

The Grand Tour celebrates a time when our probes toured the planets, using gravity assist to propel them on their missions.

“Grandpa, do you remember the Grand Tour, when spacecraft used gravity assist to visit other worlds?”

“I sure do. Gravity assist. Those were the days. Swooping so close to Jupiter, you could feel the radiation killing your hair follicles. Only to be sling-shotted on to the next planet.”

“But why didn’t you just use a quantum drive to bend space time and appear at your destination?”

“Quantum drives! Those things ain’t natural. And neither is bending space-time. Give me a good old-fashioned chemical rocket any time.”

“Oh Grandpa.”

Visit Historic Mars. Image: NASA/JPL
Visit Historic Mars. Image: NASA/JPL

Visit the Historic Sites of Mars recalls a time when space pioneers colonized and terraformed Mars.

“Grandpa, what was Mars like in the Early Days?”

“You mean before it was terraformed? Very tough times.”

“Because conditions were so difficult? And food was hard to grow?”

“No. Because of the protesters.”

“Protesters? On Mars?”

“Yup. Every time we found a good spot for a Bacterial Production Facility (BPF), it seemed like there was an expired old rover in the way. The protesters didn’t think we should move ’em. Part of our heritage.”

“So what did you do Grandpa?”

“We created a network of computers that everybody would stare at all day. After that, nobody noticed what we did anymore.”

“Oh Grandpa.”

Visit Beautiful Southern Enceladus. Image: NASA/JPL
Visit Beautiful Southern Enceladus. Image: NASA/JPL

Visit Beautiful Southern Enceladus invites vacationers to visit Saturn’s sixth largest moon to view the ice geysers there.

“Grandpa, did you ever visit Enceladus?”

“I sure did. A beautiful, haunting place.”

“Was it scary? With all of the ice geysers erupting unpredictably?”

“On no. I always knew when one was going to erupt.”

“What? How did you know?”

“My arthritis would flare up.”

“Oh Grandpa.”

Other Posters

NASA has a growing collection of other posters. You can see them here.

SpaceX has their own posters, which you can see here. They also have cool t-shirts with the same designs.

Massive Planet Gone Rogue Discovered

In this artist's conception, a rogue planet drifts through space. Credit: Christine Pulliam (CfA)
In this artist's conception, a rogue planet drifts through space. Credit: Christine Pulliam (CfA)

A massive rogue planet has been discovered in the Beta Pictoris moving group. The planet, called PSO J318.5338-22.8603 (Sorry, I didn’t name it), is over eight times as massive as Jupiter. Because it’s one of the few directly-imaged exoplanets we know of, and is accessible for study by spectroscopy, this massive planet will be extremely important when piecing together the details of planetary formation and evolution.

Most planets outside our solar system are not directly observable. They are discovered when they transit in front of their host star. That’s how the Kepler mission finds exoplanets. After that, their properties are inferred by their gravitational interactions with their star and with any other planets in their system. We can infer a lot, and get quite detailed, but studying planets with spectroscopy is a whole other ball game.

The team of researchers, led by K. Allers of Bucknell University, used the Gemini North telescope, and its Near-Infrared Spectrograph, to find PSO’s  radial and rotational velocities. As reported in a draft study on January 20th, PSO J318.5338-22.8603 (PSO from now on…) was confirmed as a member of the Beta Pictoris moving group, a group of young stars with a known age.

The Beta Pictoris moving group is a group of stars moving through space together. Since they are together, they are understood to be formed at the same time, and to have the same age. Confirming that PSO is a member of this group also confirmed PSO’s age.

Once the age of PSO was known, its identity as a planet was confirmed. Without knowing the age, it’s impossible to rule it out as a brown dwarf, a “failed star” that lacked the mass to ignite fusion.

This new rogue planet is 8.3 + or – 0.5 times the mass of Jupiter, and its temperature is about 1130 K. Spectra from the Gemini scope show that PSO rotates at between 5 to 10.2 hours, and that its radial velocity is within the envelope of values for this group. According to the researchers, determining these properties accurately means that PSO J318.5338-22.8603 is “an important benchmark for studies of young, directly imaged planets.”

PSO is in an intermediate position in terms of other planets in the Beta Pictoris moving group. 51 Eridani-b is another directly imaged planet, only slightly larger than Jupiter, discovered in 2014. The third planet in the group is Beta Pictoris b, which is thought to be almost 11 times as massive as Jupiter.

Beta Pictoris-b in orbit around the debris-disk star Beta Pictoris. Image: ESA/A-M LeGrange et. al.
Beta Pictoris-b in orbit around the debris-disk star Beta Pictoris. Image: ESA/A-M LeGrange et. al.

Rogue, or “free-floating” planets like PSO J318.5338-22.8603 are important because they are not near a star. Light from a star dominates the star’s  surroundings, and makes it difficult to discern much detail in the planets that orbit the star. Now that PSO is confirmed as a planet, rather than a brown dwarf, studying it will add to our knowledge of planetary formation.

Gravitational Waves Discovered: A New Window on the Universe

An illustration of Markarian 231, a binary black hole 1.3 billion light years from Earth. Their collision generated the first gravitational waves we've ever detected. Image: NASA
An illustration of Markarian 231, a binary black hole 1.3 billion light years from Earth. Their collision generated the first gravitational waves we've ever detected. Image: NASA

“Ladies and Gentlemen, we have detected gravitational waves. We did it.”

With those words, Dave Reitze, executive director of the U.S.-based Laser Interferometry Gravitational-Wave Observatory (LIGO), has opened a new window into the universe, and ushered in a new era in space science.

Predicted over 100 years ago by Albert Einstein, gravitational waves are ripples in space-time. They travel in waves, like light does, but they aren’t radiation. They are actual perturbations in the fabric of space-time itself. The ones detected by LIGO, after over ten years of “listening”, came from a binary system of black holes over 1.3 billion light years away, called Markarian 231.

The two black holes, each 30 times as massive as the Sun, orbited each other, then spiralled together, ultimately colliding and merging together. The collision sent gravitational waves rippling through space time.

LIGO, which is actually two separate facilities separated by over 3,000 km, is a finely tuned system of lasers and sensors that can detect these tiny ripples in space-time. LIGO is so sensitive that it can detect ripples 10,000 times smaller than a proton, in laser beams 4 kilometres long.

The Laser Interferometer Gravitational-Wave Observatory (LIGO)facility in Livingston, Louisiana. The other facility is located in Hanford, Washington. Image: LIGO
The Laser Interferometer Gravitational-Wave Observatory (LIGO)facility in Livingston, Louisiana. The other facility is located in Hanford, Washington. Image: LIGO

Light is—or has been up until now—the only way to study objects in the universe. This includes everything from the Moon, all the way out to the most distant objects ever observed.  Astronomers and astrophysicists use observatories that can see in not only visible light, but in all other parts of the electromagnetic spectrum, to study objects in the universe. And we’ve learned an awful lot. But things will change with this announcement.

“I think we’re opening a window on the universe,” Dave Reitze said.

Another member of the team that made this discovery, astrophysicist Szabolcs Marka from Columbia University, said, “Until this moment we had our eyes on the sky and we couldn’t hear the music.”

Gravitational waves are a new way to study notoriously difficult things to observe like black holes and neutron stars. Black holes emit no light at all, and their characteristics and properties are inferred from cause and effect relationships with objects near them. But the detection of gravitational waves holds the promise of answering questions about black holes, neutron stars, and even the early days of our universe, including the Big Bang.

It’s almost impossible to overstate the magnitude of this discovery. Once we understand how to better detect and observe gravitational waves, we may come to a whole new understanding of the universe, and we may look back on this day as truly ground-breaking and revolutionary.

And it all started 100 years ago with Albert Einstein’s prediction.

For a better understanding of Gravitational Waves, their sources, and their detection, check out Markus Possel’s excellent series of articles:

Gravitational Waves and How They Distort Space

Gravitational Wave Detectors and How They Work

Sources of Gravitational Waves: The Most Violent Events in the Universe

 

 

Great Attractor Revealed? Galaxies Found Lurking Behind the Milky Way

Milky Way by Matt Dieterich
Milky Way (without the constellations) by Matt Dieterich

Hundreds of galaxies hidden from sight by our own Milky Way galaxy have been studied for the first time. Though only 250 million light years away—which isn’t that far for galaxies—they have been obscured by the gas and dust of the Milky Way. These galaxies may be a tantalizing clue to the nature of The Great Attractor.

On February 9th, an international team of scientists published a paper detailing the results of their study of these galaxies using the Commonwealth Scientific and Industrial Research Organization’s (CSIRO) Parkes radio telescope, a 64 meter telescope in Australia. The ‘scope is equipped with an innovative new multi-beam receiver, which made it possible to peer through the Milky Way into the galaxies behind it.

The area around the Milky Way that is obscured to us is called the Zone of Avoidance (ZOA). This study focused on the southern portion of the ZOA, since the telescope is in Australia. (The northern portion of the ZOA is currently being studied by the Arecibo radio telescope, also equipped with the new multi-beam receiver.) The significance of their work is not that they found hundreds of new galaxies. There was no reason to suspect that galactic distribution would be any different in the ZOA than anywhere else. What’s significant is what it will tell us about The Great Attractor.

The Great Attractor is a feature of the large-scale structure of the Universe. It is drawing our Milky Way galaxy, and hundreds of thousands of other galaxies, towards it with the gravitational force of a million billion suns. The Great Attractor is an anomaly, because it deviates from our understanding of the universal expansion of the universe. “We don’t actually understand what’s causing this gravitational acceleration on the Milky Way or where it’s coming from,” said Professor Lister Staveley-Smith of The University of Western Australia, the lead author of the study.

“We know that in this region there are a few very large collections of galaxies we call clusters or superclusters, and our whole Milky Way is moving towards them at more than two million kilometres per hour.”

The core of the Milky Way seen in Infrared. Seeing through this has been a real challenge. Credit: NASA/Spitzer
The core of the Milky Way seen in Infrared. Seeing through this has been a real challenge. Credit: NASA/Spitzer

Professor Staveley-Smith and his team reported that they found 883 galaxies, of which over one third have never been seen before. “The Milky Way is very beautiful of course and it’s very interesting to study our own galaxy but it completely blocks out the view of the more distant galaxies behind it,” he said.

The team identified new structures in the ZOA that could help explain the movement of The Milky Way, and other galaxies, towards The Great Attractor, at speeds of up to 200 million kilometres per hour. These include three galaxy concentrations, named NW1, NW2, and NW3, and two new clusters, named CW1 and CW2.

University of Cape Town astronomer Professor Renée Kraan-Korteweg, a member of the team who did this work, says “An average galaxy contains 100 billion stars, so finding hundreds of new galaxies hidden behind the Milky Way points to a lot of mass we didn’t know about until now.”

How exactly these new galaxies affect The Great Attractor will have to wait for further quantitative analysis in a future study, according to the paper. The data from the Arecibo scope will show us the northern hemisphere of the ZOA, which will also help build our understanding. But for now, just knowing that there are hundreds of new galaxies in our region of space sheds some light on the large-scale structure of our neighbourhood in the universe.