How Did Supermassive Black Holes Get So Big, So Early? They Might Have Had a Head Start

An artist's illustration of a supermassive black hole (SMBH.) The JWST has revealed SMBHs in the early Universe that are much more massive than our scientific models can explain. Could primordial black holes have acted as "seeds" for these massive SMBHs? Image Credit: ESA

Supermassive Black Holes (SMBHs) can have billions of solar masses, and observational evidence suggests that all large galaxies have one at their centres. However, the JWST has revealed a foundational cosmic mystery. The powerful space telescope, with its ability to observe ancient galaxies in the first billion years after the Big Bang, has shown us that SMBHs were extremely massive even then. This contradicts our scientific models explaining how these behemoths became so huge.

How did they get so massive so early?

Continue reading “How Did Supermassive Black Holes Get So Big, So Early? They Might Have Had a Head Start”

A Star Disappeared in Andromeda, Replaced by a Black Hole

This Illustration shows a failed supernova turning directly into a black hole without an explosion. Credit: NASA/ESA/P. Jeffries (STScI)

Massive stars about eight times more massive than the Sun explode as supernovae at the end of their lives. The explosions, which leave behind a black hole or a neutron star, are so energetic they can outshine their host galaxies for months. However, astronomers appear to have spotted a massive star that skipped the explosion and turned directly into a black hole.

Continue reading “A Star Disappeared in Andromeda, Replaced by a Black Hole”

Flowing Martian Water was Protected by Sheets of Carbon Dioxide

An artistic interpretation of an ice-covered river sourced from meltwater beneath Mars’ south polar cap. Image Credit: Peter Buhler/PSI.

Mars’ ancient climate is one of our Solar System’s most perplexing mysteries. The planet was once wet and warm; now it’s dry and cold. Whatever befell the planet, it didn’t happen all at once.

New research shows that on ancient cold Mars, sheets of frozen carbon dioxide allowed rivers to flow and a sea the size of the Mediterranean to exist.

Continue reading “Flowing Martian Water was Protected by Sheets of Carbon Dioxide”

A Space Walking Robot Could Build a Giant Telescope in Space

Artist impression of the James Webb Space Telescope. Its design and construction were made more complicated and expensive because it had to fit into the nosecone of the rocket that launched it. Assembling telescopes in space could be an improvement. Image Credit: ESA.

The Hubble Space Telescope was carried to space inside the space shuttle Discovery and then released into low-Earth orbit. The James Webb Space Telescope was squeezed inside the nose cone of an Ariane 5 rocket and then launched. It deployed its mirror and shade on its way to its home at the Sun-Earth L2 Lagrange point.

However, the ISS was assembled in space with components launched at different times. Could it be a model for building future space telescopes and other space facilities?

Continue reading “A Space Walking Robot Could Build a Giant Telescope in Space”

Habitable Worlds are Found in Safe Places

Illustration of Kepler-186f, a recently-discovered, possibly Earthlike exoplanet that could be a host to life. (NASA Ames, SETI Institute, JPL-Caltech, T. Pyle)
This is Kepler 186f, an exoplanet in the habitable zone around a red dwarf. We've found many planets in their stars' habitable zones where they could potentially have surface water. But it's a fairly crude understanding of true habitability. Image Credit: NASA Ames, SETI Institute, JPL-Caltech, T. Pyle)

When we think of exoplanets that may be able to support life, we hone in on the habitable zone. A habitable zone is a region around a star where planets receive enough stellar energy to have liquid surface water. It’s a somewhat crude but helpful first step when examining thousands of exoplanets.

However, there’s a lot more to habitability than that.

Continue reading “Habitable Worlds are Found in Safe Places”

The Aftermath of a Neutron Star Collision Resembles the Conditions in the Early Universe

This artist's illustration shows a neutron star collision leaving behind a rapidly expanding cloud of radioactive material. The conditions in the cloud are similar to the conditions in the early Universe, shortly after the Big Bang. Image Credit: NASA GODDARD SPACE FLIGHT CENTER, CI LAB

Neutron stars are extraordinarily dense objects, the densest in the Universe. They pack a lot of matter into a small space and can squeeze several solar masses into a radius of 20 km. When two neutron stars collide, they release an enormous amount of energy as a kilonova.

That energy tears atoms apart into a plasma of detached electrons and atomic nuclei, reminiscent of the early Universe after the Big Bang.

Continue reading “The Aftermath of a Neutron Star Collision Resembles the Conditions in the Early Universe”

Webb Reveals a Steam World Planet Orbiting a Red Dwarf

An artist’s conception of the “steam world” GJ 9827 d, shown in the foreground in blue. Astronomers have theorized about these worlds, but this is the first one they've observed. Image credit: NASA, ESA, Leah Hustak (STScI), Ralf Crawford (STScI)

The JWST has found an exoplanet unlike any other. This unique world has an atmosphere almost entirely composed of water vapour. Astronomers have theorized about these types of planets, but this is the first observational confirmation.

Continue reading “Webb Reveals a Steam World Planet Orbiting a Red Dwarf”

Artemis V Astronauts Will be Driving on the Moon

NASA astronaut Kate Rubins takes Apollo 17 Lunar Module Pilot Harrison “Jack” Schmitt on a ride on NASA’s LTV rover prototype at Johnson Space Center in Houston. NASA is building the prototype and has selected three other companies to provide the prototype with capabilities for use on the lunar surface. Image Credit: NASA/James Blair

In the summer of ’69, Apollo 11 delivered humans to the surface of the Moon for the first time. Neil Armstrong and Buzz Aldrin spent just over two hours exploring the area near their landing site on foot. Only during Apollo 15, 16, and 17 did astronauts have a vehicle to move around in.

Artemis astronauts on the Moon will have access to a vehicle right away, and NASA is starting to test a prototype.

Continue reading “Artemis V Astronauts Will be Driving on the Moon”

Tiny Fragments of a 4-Billion Year Old Asteroid Reveal Its History

Asteroid Ryugu contains organic molecules called polycyclic aromatic hydrocarbons, thought to be chemical building blocks for life. Courtesy ISAS/JAXA
Asteroid Ryugu as seen by Japan's Hayabusa 2 spacecraft, which returned a sample of the ancient asteroid to Earth in 2020. Image Courtesy ISAS/JAXA

In June 2018, Japan’s Hayabusa 2 mission reached asteroid 162173 Ryugu. It studied the asteroid for about 15 months, deploying small rovers and a lander, before gathering a sample and returning it to Earth in December 2020.

The Ryugu sample contains some of the Solar System’s most ancient, primitive, and unaltered material, opening a window into its earliest days about 4.6 billion years ago.

Continue reading “Tiny Fragments of a 4-Billion Year Old Asteroid Reveal Its History”