Earth’s Long-Term Habitability Relies on Chemical Cycles. How Can We Better Understand Them?

Biogeochemical cycles move matter around Earth between the atmosphere, the oceans, the lithosphere, and living things. Image Credit: By Alexander Davronov - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=106124364

We, and all other complex life, require stability to evolve. Planetary conditions needed to be benign and long-lived for creatures like us and our multicellular brethren to appear and to persist. On Earth, chemical cycling provides much of the needed stability.

Chemical cycling between the land, atmosphere, lifeforms, and oceans is enormously complex and difficult to study. Typically, researchers try to isolate one cycle and study it. However, new research is examining Earth’s chemical cycling more holistically to try to understand how the planet has stayed in the ‘sweet spot’ for so long.

Continue reading “Earth’s Long-Term Habitability Relies on Chemical Cycles. How Can We Better Understand Them?”

This New Map of 1.3 Million Quasars Is A Powerful Tool

This figure from the research shows the sky distribution of the new Quaia quasar catalogue in Galactic coordinates and is displayed using a Mollweide projection. The grey region across the center is the Milky Way, a blind spot in the Quaia catalogue. Image Credit: K. Storey-Fisher et al. 2024

Quasars are the brightest objects in the Universe. The most powerful ones are thousands of times more luminous than entire galaxies. They’re the visible part of a supermassive black hole (SMBH) at the center of a galaxy. The intense light comes from gas drawn toward the black hole, emitting light across several wavelengths as it heats up.

But quasars are more than just bright ancient objects. They have something important to show us about the dark matter.

Continue reading “This New Map of 1.3 Million Quasars Is A Powerful Tool”

Could Earth Life Survive on a Red Dwarf Planet?

This artist's illustration shows planets orbiting a red dwarf star. Many red dwarfs have planets in their habitable zones, but red dwarf flaring might mean those zones aren't habitable at all. New research explores the idea. Image Credit: NASA

Even though exoplanet science has advanced significantly in the last decade or two, we’re still in an unfortunate situation. Scientists can only make educated guesses about which exoplanets may be habitable. Even the closest exoplanet is four light-years away, and though four is a small integer, the distance is enormous.

That doesn’t stop scientists from trying to piece things together, though.

Continue reading “Could Earth Life Survive on a Red Dwarf Planet?”

Another Hycean Planet Found? TOI-270 d

Artist's impression of the surface of a hycean world. Hycean worlds are still hypothetical, and have large oceans and thick hydrogen-rich atmospheres that trap heat. They could be habitable even if they're outside the traditional habitable zone. Credit: University of Cambridge

Hycean planets may be able to host life even though they’re outside what scientists consider the regular habitable zone. Their thick atmospheres can trap enough heat to keep the oceans warm even though they’re not close to their stars.

Astronomers have found another one of these potential hycean worlds named TOI-270 d.

Continue reading “Another Hycean Planet Found? TOI-270 d”

Astronomers Propose a 50-Meter Submillimeter Telescope

The Atacama Large Millimeter/submillimeter Array (ALMA) in northern Chile is our most powerful radio telescope. But astronomers are hungering for a new radio telescope made of one massive dish. Image Credit: A. Marinkovic/X-Cam/ALMA (ESO/NAOJ/NRAO)

Some parts of the Universe only reveal important details when observed in radio waves. That explains why we have ALMA, the Atacama Large Millimetre-submillimetre Array, a collection of 7-meter and 12-meter radio telescopes that work together as an interferometer. But, ALMA-type arrays have their limitations, and astronomers know what they need to overcome those limitations.

They need a radio telescope that’s just one single, massive dish.

Continue reading “Astronomers Propose a 50-Meter Submillimeter Telescope”

Perseverance Sees Phobos, Deimos and Mercury Passing in Front of the Sun

NASA's Perseverance Mars rover used its Mastcam-Z camera to capture the silhouette of Phobos, the larger of Mars' pair of moons, as it passed in front of the Sun on Feb. 8, 2024, the 1,056th Martian day, or sol, of the mission. Image Credit: NASA/JPL-Caltech/ASU/MSSS/SSI

NASA’s Perseverance rover is busy exploring the Martian surface and collecting samples for eventual return to Earth. But the rover recently took some time to gaze upward and observe the heavens. Using Mastcam-Z, the rover’s primary science camera, Perseverance captured Phobos, Deimos, and Mercury as they transited in front of the Sun.

Continue reading “Perseverance Sees Phobos, Deimos and Mercury Passing in Front of the Sun”

Webb Sees a Surprisingly Active Galaxy When the Universe Was Only 430 Million Years Old

This JWST image shows thousands of galaxies of various shapes and colours on the black background of space. It's called the GOODS North Field. The pullout features GN-z11, an ancient and extremely luminous galaxy, seen as a fuzzy yellow dot. Image Credit: NASA, ESA, CSA, B. Robertson (UC Santa Cruz), B. Johnson (CfA), S. Tacchella (Cambridge), M. Rieke (University of Arizona), D. Eisenstein (CfA) CC BY 4.0 INT

Unlocking the mysteries of the early Universe is one of the JWST’s primary endeavours. Finding and examining some of the first galaxies is an important part of its work. One of the Universe’s first galaxies is extraordinarily luminous, and researchers have wondered why. It looks like the JWST has found the answer.

Continue reading “Webb Sees a Surprisingly Active Galaxy When the Universe Was Only 430 Million Years Old”

Juno Measures How Much Oxygen is Being Produced by Europa

This view of Jupiter’s icy moon Europa was captured by the JunoCam imager aboard NASA’s Juno spacecraft during the mission’s close flyby on Sept. 29, 2022. Image data: NASA/JPL-Caltech/SwRI/MSSS Image processing: Kevin M. Gill CC BY 3.0

If the periodic table listed the elements in order of their importance to life, then oxygen might bully its way to the top. Without oxygen, Earth’s complex life likely would not exist. So when scientists detect oxygen on another world, they turn their attention to it.

Continue reading “Juno Measures How Much Oxygen is Being Produced by Europa”

The LIFE Telescope Passed its First Test: It Detected Biosignatures on Earth.

LIFE will have five separate space telescopes that fly in formation and work together to detect biosignatures in exoplanet atmospheres. Image Credit: LIFE, ETH Zurich

We know that there are thousands of exoplanets out there, with many millions more waiting to be discovered. But the vast majority of exoplanets are simply uninhabitable. For the few that may be habitable, we can only determine if they are by examining their atmospheres. LIFE, the Large Interferometer for Exoplanets, can help.

Continue reading “The LIFE Telescope Passed its First Test: It Detected Biosignatures on Earth.”

Massive Stars Have the Power to Shape Solar Systems

This image is a Hubble image of the inner regions in the Orion Nebula, with a JWST image of a protoplanetary disk named d203-506. The disk is close enough to the massive Trapezium Cluster stars that their UV radiation is shaping the planet-forming process in the disk. Image Credit: NASA/STSCI/RICE UNIV./C.O'DELL ET AL / O. BERNÉ, I. SCHROTTER, PDRS4ALL

Stars shape their solar systems. It’s true of ours, and it’s true of others. But for some massive stars, their power to shape still-forming systems is fateful and final.

Continue reading “Massive Stars Have the Power to Shape Solar Systems”