Massive Stars Have the Power to Shape Solar Systems

This image is a Hubble image of the inner regions in the Orion Nebula, with a JWST image of a protoplanetary disk named d203-506. The disk is close enough to the massive Trapezium Cluster stars that their UV radiation is shaping the planet-forming process in the disk. Image Credit: NASA/STSCI/RICE UNIV./C.O'DELL ET AL / O. BERNÉ, I. SCHROTTER, PDRS4ALL

Stars shape their solar systems. It’s true of ours, and it’s true of others. But for some massive stars, their power to shape still-forming systems is fateful and final.

Continue reading “Massive Stars Have the Power to Shape Solar Systems”

How Warm Are the Oceans on the Icy Moons? The Ice Thickness Provides a Clue.

Jupiter's moon Ganymede is the largest moon in the Solar System and may have an ocean sandwiched between two layers of ice. But how warm is that ocean? Image Credit: By National Oceanic and Atmospheric Administration Public Domain, https://commons.wikimedia.org/w/index.php?curid=8070396

Scientists are discovering that more and more Solar System objects have warm oceans under icy shells. The moons Enceladus and Europa are the two most well-known, and others like Ganymede and Callisto probably have them too. Even the dwarf planet Ceres might have an ocean. But can any of them support life? That partly depends on the water temperature, which strongly influences the chemistry.

We’re likely to visit Europa in the coming years and find out for ourselves how warm its ocean is. Others on the list we may never visit. But we may not have to.

Continue reading “How Warm Are the Oceans on the Icy Moons? The Ice Thickness Provides a Clue.”

NASA Tests the New Starship Docking System

SpaceX and NASA recently performed full-scale qualification testing of the docking system that will connect SpaceX’s Starship Human Landing System (HLS) with Orion and later Gateway in lunar orbit during future crewed Artemis missions. Based on the flight-proven Dragon 2 active docking system, the Starship HLS docking system will be able to act as an active or passive system during docking. Image Credit: SpaceX

The Apollo Program delivered 12 American astronauts to the surface of the Moon. But that program ended in 1972, and since then, no human beings have visited. But Artemis will change that. And instead of just visiting the Moon, Artemis’ aim is to establish a longer-term presence on the Moon. That requires more complexity than Apollo did. Astronauts will need to transfer between vehicles.

All of that activity requires a reliable spacecraft docking system.

Continue reading “NASA Tests the New Starship Docking System”

This Planet-Forming Disk has More Water Than Earth’s Oceans

Astronomers have found water vapour in a disc around a young star exactly where planets may be forming. In this image, the new observations from the Atacama Large Millimeter/submillimeter Array (ALMA) show the water vapour in shades of blue. Image Credit: ALMA (ESO/NAOJ/NRAO)/S. Facchini et al.

Astronomers have detected a large amount of water vapour in the protoplanetary disk around a young star. There’s at least three times as much water among the dust as there is in all of Earth’s oceans combined. And it’s not spread throughout the disk; it’s concentrated in the inner disk region.

Continue reading “This Planet-Forming Disk has More Water Than Earth’s Oceans”

How We Get Planets from Clumping Dust

This artist’s impression shows a young star surrounded by a protoplanetary disk, where dust grains gather together to form planetesimals—the building blocks of new planets. © ESO/L. Calçada

Our gleaming Earth, brimming with liquid water and swarming with life, began as all rocky planets do: dust. Somehow, mere dust can become a life-bearing planet given enough time and the right circumstances. But there are unanswered questions about how dust forms any rocky planet, let alone one that supports life.

Continue reading “How We Get Planets from Clumping Dust”

Dwarf Galaxies Banished the Darkness and Lit Up the Early Universe

The JWST used gravitational lensing to search for the sources of light that triggered the Epoch of Reionization and brought darkness to an end. The white hazy blobs are galaxies in Pandora's Cluster, which acts as the gravitational lens. The red objects are the distant and ancient objects magnified by the lens, some of them warped into arcs. Many of them are early dwarf galaxies, some of them responsible for the Epoch of Reionization. Image Credit: NASA/ESA/CSA JWST

During the Universe’s Dark Ages, dense primordial gas absorbed and scattered light, prohibiting it from travelling. Only when the first stars and galaxies began to shine in energetic UV light did the Epoch of Reionization begin. The powerful UV light shone through the Universe and punched holes in the gas, allowing light to travel freely.

New observations with the James Webb Space Telescope reveal how it happened. The telescope shows that faint dwarf galaxies brought an end to the darkness.

Continue reading “Dwarf Galaxies Banished the Darkness and Lit Up the Early Universe”

See the Dramatic Final Moments of the Doomed ERS-2 Satellite

The ESA's ERS-2 Earth observation satellite was destroyed when it re-entered Earth's atmosphere on February 21st 2004. Heavy parts of satellites like reaction wheels don't don't always burn up in the atmosphere and can pose a hazard. ESA engineers are working on reaction wheels that will break into pieces to reduce the hazard. Image Credit: Fraunhofer FHR

When a satellite reaches the end of its life, it has only two destinations. It can either be maneuvered into a graveyard orbit, a kind of purgatory for satellites, or it plunges to its destruction in Earth’s atmosphere. The ESA’s ERS-2 satellite took the latter option after 30 years in orbit.

Continue reading “See the Dramatic Final Moments of the Doomed ERS-2 Satellite”

New Moons Found at Uranus and Neptune

The discovery image of the new Uranian moon S/2023 U1 using the Magellan telescope on November 4, 2023. Uranus is just off the field of view in the upper left, as seen by the increased scattered light. S/2023 U1 is the faint point of light in the center of the image with the yellow arrow. The trails are from background stars. Credit: Scott Sheppard.

Astronomers have found three new moons orbiting our Solar System’s ice giants. One is orbiting Uranus, and two are orbiting Neptune. It took hard work to find them, including dozens of time exposures by some of our most powerful telescopes over several years. All three are captured objects, and there are likely more moons around both planets waiting to be discovered.

Continue reading “New Moons Found at Uranus and Neptune”

Some Intelligent Civilizations Will Be Trapped on their Worlds

With thousands of exoplanets discovered so far, astronomers are learning how different planets can be. What if intelligent alien civilizations arise on extremely different habitable worlds? Some civilizations could develop space exploration technologies, but others would be trapped underwater, under ice, or in enormous gravity wells. How could they escape? Image Credit: DALL-E

Evolution has produced a wondrously diverse variety of lifeforms here on Earth. It just so happens that talking primates with opposable thumbs rose to the top and are building a spacefaring civilization. And we’re land-dwellers. But what about other planets? If the dominant species on an ocean world builds a technological civilization of some sort, would they be able to escape their ocean home and explore space?

Continue reading “Some Intelligent Civilizations Will Be Trapped on their Worlds”

If Exoplanets Have Lightning, it’ll Complicate the Search for Life

Lightning on exoplanets could mask some biosignatures and amplify others. Image Credit: NASA/T.Pyle

Discovering exoplanets is almost routine now. We’ve found over 5,500 exoplanets, and the next step is to study their atmospheres and look for biosignatures. The James Webb Space Telescope is leading the way in that effort. But in some exoplanet atmospheres, lightning could make the JWST’s job more difficult by obscuring some potential biosignatures while amplifying others.

Continue reading “If Exoplanets Have Lightning, it’ll Complicate the Search for Life”