Soyuz Crew Safe After a Violent Re-entry and Landing 400km Off-target

The highly successful Russian Soyuz spacecraft (NASA)

The Russian Soyuz re-entry capsule, carrying the first South Korean astronaut back to Earth, suffered a “ballistic re-entry” on Saturday, putting the capsule 400 km (250 miles) off-target. This is the second time in a row that the return vessel has landed off course; even officials were shocked about this inaccuracy. The astronauts endured forces of up to 10-G as the capsule took a very steep trajectory as it dropped through the atmosphere for three and half hours. Fortunately the three crew members are safe and well. What’s the explanation for the mishap? An unauthorized change to the flight plan and an old naval superstition…

South Koreas Yi So-yeon spent 11 days at the International Space Station (AFP/BBC)
At least the whole crew returned to Earth safely after their violent re-entry, but questions are being asked as to why the capsule landed so far off course and 20 minutes behind schedule.

The Russian TMA-11 craft touched down on the Kazakh steppe at 4:51am Saturday morning after making the long trip through the atmosphere. On board was South Korea’s first astronaut, Yi So-yeon, Russian cosmonaut Yuri Malenchenko and American Peggy Whitson, who broke NASA’s record for time in space. Whitson spent a total of 377 days orbiting the Earth whilst carrying out experiments on the International Space Station. Yi So-yeon spent 11 days on the station after a flawless Soyuz launch (April 8th) and stay in space. However things seemed to go wrong as the trio undocked from the station and headed home.

The Soyuz descent module (highlighted) (NASA)

According to the BBC report, Russian officials blamed the crew for making changes to the flight plan just before re-entry. This change was not communicated to mission control who assumed the original plan was going ahead. The result from this change was a steeper than normal angle on entering the atmosphere (a.k.a. a ballistic re-entry), putting the capsule hundreds of kilometres off course. Rescue helicopters took 25 minutes to arrive to the landing site where the crew waited in temperatures of 6°C (43°F). Other than the off-target location, apparently the touch-down went according to plan.

See the BBC video coverage of this event »

However, not all sources indicate the sole blame falling on a lack of communication between capsule and mission control. In a controversial statement to reporters, Federal Space Agency chief Anatoly Perminov placed some of the blame on an old naval superstition that the female-dominated crew were bad luck and the first female commander (Peggy Whitson) was responsible for the change of plan.

You know in Russia, there are certain bad omens about this sort of thing, but thank God that everything worked out successfully. Of course in the future, we will work somehow to ensure that the number of women will not surpass [the number of men].” – Anatoly Perminov

Naturally, this kind of statement will have caused a bit of a stir. A reporter pushed for elaboration and Perminov continued, “This isn’t discrimination. I’m just saying that when a majority is female, sometimes certain kinds of unsanctioned behaviour or something else occurs, that’s what I’m talking about.”

It looks like some space agency officials still believe in old naval superstitions, let’s hope it doesn’t influence future female involvement in the Russian space program. If anything, as the whole crew is safe and well, the South Korean and American should be considered the mission’s “lucky charms”.

Update: April 22nd – Read the developments on this story…

Sources: BBC, Yahoo!, Space.com

NASA Official Wants a Six Month Stay on Moon

Lunar footprint from the Apollo missions (NASA)

NASA is exploring the possible designs for lunar bases, intended for an extended stay on the Moon. A NASA official from the Advanced Capabilities Division also said on Friday that they may be inspired by a concept based on the technology of the International Space Station (ISS). Very little official indication about the future of NASA’s lunar policy has come to light, so this is interesting news. Although the statement was suitably sketchy, a six-month extended mission to the Moon seems to be most likely. How does this development compare with the lunar settlement designs already proposed?

When Carl Walz, director of NASA’s Advanced Capabilities Division, says “I would anticipate that we would build something similar as what we are building for the ISS, but maybe something different,” I think we can conclude that his department is keeping its options open as far as the future of Moon bases is concerned. But it seems settlement design isn’t very far along either…

Moon base rover concept - could be used for long-term missions (NASA)

Putting uncertainties in lunar base designs to one side, Waltz did confirm that he envisions a long-term, six-month stay over on the Moon, “We need to establish a long, extended presence on the moon, up to six months — same as the time we spend at ISS,” the veteran astronaut told AFP during a forum on the future of NASA at the University of Miami, Florida. The ISS remains mankind’s best experiment into long-term living in space, so its little wonder the station should be used as a model for Moon bases.

The ISS is due for completion in 2010 and houses three scientists for several months at a time. Also, there is enough room for the regular Shuttle crews who arrive to deliver experiments and attach modules. It’s not hard to imagine a future manned lunar base can be used in a similar way, perhaps have a small long-period contingent of scientists, allowing space for short-term visits.

The Apollo 15 lunar rover, awaiting the return of man to the Moon (NASA)

NASA hopes to return to the Moon by 2020 to build a permanent outpost on our planet’s natural satellite. The settlement will need transportation, communication and power systems (see Building a Base on the Moon: Part 4 – Infrastructure and Transportation), allowing lunar astronauts to have the freedom to carry out scientific research on the lunar surface. Many lunar base concepts utilize local materials to fabricate many aspects of a permanent lunar habitat, and continued research by satellites such as the Japanese probe SELENE will aid future colonists prospect for useful minerals and ores.

We will live at the moon, work at the moon, do sites at the moon and use its resources.” – Walz

It looks as if NASA is working toward a modular settlement design, using the technology that powers the ISS and would be in keeping with “erectable”, or modular designs. Initially, building Moon bases on Earth (or low Earth orbit) and sending them to the lunar surface appears to be the most viable solution. Once a human presence can be established on the Moon, it seems possible that Mars habitats could be fabricated there and sent to the Red Planet. Exciting times.

More about building a manned base on the Moon:

Source: Physorg.com

Galactic Ghosts Haunt Their Killers

Image of the stellar tidal stream surrounding the spiral galaxy NGC 5907 obtained with an amateur robotic telescope in the mountains of New Mexico. (R. Jay Gabany)

The title may sound dramatic, but it is very descriptive. New observations of two galaxies have shown huge streams of stars, not belonging inside those galaxies, reaching out into space. These streams are all that are left of galaxies that are now dead, eaten by their cannibal neighbour, now sitting in their place. The streams form an eerie halo around their killers, looking like ghosts of their former selves…

So what happened to these ill-fated galaxies? Galactic cannibalism is what happened. In both examples, large spiral galaxies have overrun smaller dwarf galaxies, devouring most of their stars. All that is left are the huge fossilized remains in the form of a tenuous distribution of dim, old, metal-poor stars. Judging by the lack of galactic structure in these “ghosts”, the cannibalizing spiral galaxies have been very efficient at eating their smaller dwarf cousins.

a gigantic, tenuous loop-like structure extending more than 80 000 light-years from the centre of the galaxy (towards the top left). (R. Jay Gabany)

The debris surrounding NGC 5907 (approximately 40 million light-years from Earth) extends 150,000 light-years across (pictured top). NGC 5907 destroyed one of its dwarf satellite galaxies at least 4,000 million years ago, consuming the stars, star clusters and dark matter, leaving only a small number of old stars behind to form a complicated criss-cross pattern of galactic fossils.

Our results provide a fresh insight into this spectacular phenomenon surrounding spiral galaxies and show that haloes contain fossil dwarf galaxies, thus providing us with a unique opportunity to study the final stages in the assembly of galaxies like ours.” – David Martínez, from the Instituto de Astrofísica de Canarias (IAC) leading the team that carried out these observations.

In the second spiral galaxy, NGC 4013 (50 million light-years from Earth in the constellation of Ursa Major), the ghost of another dead dwarf galaxy stretches 80,000 light-years across and is made up of old stars. Its 3D geometry is unknown, but it has similar characteristics to the Monoceros tidal stream which surrounds the Milky Way. The Monoceros tidal stream is a ring of stars, originating from a local dwarf galaxy that was eaten by our galaxy over 3,000 million years ago.

These images have a huge amount of science to offer researchers. Primarily, the detection of these galactic fossils confirms the predictions of the cold dark matter model of cosmology, which describes how the large spiral galaxies were formed from merging stellar systems.

“…fitting theoretical models to these star streams enables us to reconstruct their history and describe one of the most mysterious and controversial components of galaxies: dark matter.” – Jorge Peñarrubia, theoretical astrophysicist at the University of Victoria (Canada) who is working on this project.

Source: IAC

The Pioneer Anomaly: A Deviation from Einstein Gravity?

Artist impression of the Pioneer 10 probe (NASA)

Both Pioneer probes are approximately 240,000 miles (386,000 km) closer to the Sun than predicted by calculation. Scientists have been arguing over the cause of this mysterious force for a decade and reasons for the Pioneer anomaly range from the bizarre to the sublime. Is it a simple fuel leak, pushing the probes of course? Is it phantom dark matter dragging them down? Or do the gravity textbooks need to be re-written? Unfortunately there’s still no one answer, but some researchers believe there might be a small deviation in the large-scale space-time Einstein described in his famous theory of general relativity. See, I knew there would be a simple explanation…

The Pioneer 10 and 11 deep space probes were launched in 1972 and 1973, visiting Jupiter and Saturn before pushing on toward interplanetary space, into the unknown. The Pioneer program really lived up to its name, pioneering deep space exploration. But a few years on, as the probes passed the through the 20-70 AU mark, something strange happened… not suddenly, but gradually. Ten years ago Pioneer scientists noticed that something was wrong; the probes were slightly off course. Not by much, but both were experiencing a slight but constant sunward acceleration. The Pioneer probes had been measured some 240,000 miles (386,000 km) closer to the Sun than predicted. This might sound like a long way, but in astronomical terms it’s miniscule. 240,000 miles is a tiny deviation after 6.5 billion miles (10.5 billion km) of travel (it would take light 10 hours to cover this distance), but it’s a deviation all the same and physicists are having a very hard time trying to work out what the problem is.

That is until NASA physicist Slava Turyshev, co-discoverer of the anomaly, rescued a number of Pioneer magnetic data storage disks from being thrown out in 2006. These disks contain telemetric data, temperature and power readings that both Pioneer probes had transmitted back to mission control up to 2003 (when Pioneer 10 lost contact with Earth). From this, Turyshev and his colleagues teamed up with Viktor Toth, a computer programmer in Ottawa, Ontario, to design a new code designed to extract the vast quantity of raw binary code (1s and 0s), revealing the temperature and power readings from the crafts instruments. It sounds as if the search for the culprit of the Pioneer anomaly required a bit of forensic science.

Now the researchers have a valuable tool at their disposal. Turyshev and 50 other scientists are trying to match this raw data with modelled data in an effort to reconstruct the heat and electricity flow around the craft’s instrumentation. Electricity was supplied by the on-board plutonium generator, but this is only a small portion of the energy generated; the rest was converted to heat, lost to space and warmed up the probe’s bodywork. Heat lost to space and warming of the probe’s instruments are both thought to have a part to play in altering spacecraft momentum. So could this be the answer?

Tests are ongoing, and only a select few simulations have been run. However, early results indicate that around 30% of the Pioneer anomaly is down to the on-board heat distribution. The rest, it seems, still cannot be explained by probe dynamics alone. The team are currently processing a total of 50 years of telemetry data (from both Pioneer 10 and 11), so more simulations on the rich supply of transmissions from the probes may still uncover some surprises.

But on the back of everyone’s mind, and it keeps cropping up in every Pioneer anomaly article I find, that the fundamental physics of our universe may need to be brought into question. Sending long-distance deep space probes gives us a huge opportunity to see if what we observe locally is the same for other parts of the Solar System. Could Einstein’s general theory of relativity need to be “tweaked” when considering interplanetary (or interstellar) travel?

The researchers are excited if a mundane solution does not present itself (i.e. probe heat distribution effects), therefore indicating some other cosmic reason is behind this anomaly:

If we actually had a means in the solar system here to measure deviations from Einstein’s gravity, that would be phenomenal.” – Viktor Toth

In the mean time, Pioneer 10 is drifting silently toward the red star of Aldebarran and (barring any more anomalous behaviour) will arrive there in 2 million years time…

Sources: Scientific American, Symmetry Breaking News

Radiation Sickness, Cellular Damage and Increased Cancer Risk for Long-term Missions to Mars

A mission to Mars will benefit from a mini-magnetosphere (NASA)

There is a nagging problem under the surface of the excitement surrounding the future of long-term missions into space. Human exposure to the high amounts of solar radiation and other sources of cosmic rays is likely to be the main factor that could curtail mankind’s dreams for future manned settlements on other planets. The effects of radiation exposure to astronauts is not fully understood, but could range from acute radiation sickness (perhaps after being caught in an intense solar storm during interplanetary transit) to gradual cellular damage, greatly increasing the risk of cancer in long-term missions. So what can we do about it? Mankind is highly adaptive and some countermeasures are gradually being realized. (And yes, the Russian Space Monkeys might be able to help…)

The problem comes when humans leave the protective blanket of the Earth’s magnetic field. Acting like a huge, invisible force field, the magnetosphere deflects most of the harmful high energy particles being fired from the Sun. Anything that penetrates this barrier is quickly absorbed by our thick atmosphere. Even at high altitudes, in low Earth orbit, some protection to astronauts can be provided (although the ambient radiation is far higher up there than down here). So when we talk about colonizing other planets and sending astronauts further and further into deep space, radiation exposure becomes a bigger risk.

Solar flares will be a problem for future colonists (SOHO/EIT)

An immediate concern is that astronauts may get caught in a solar storm, where the Sun (usually around solar maximum) ejects huge clouds of highly energetic protons. If the storm is intense enough, huge doses of radiation could be inflicted on the men and women in space. Roughly, a dose of 500 rads or more will kill a human in two to three hours, and a smaller dose could cause acute radiation sickness. Radiation sickness could be fatal in weeks should the astronaut not receive urgent medical care. How about the long-term, gradual impact of prolonged exposure to higher-than-normal doses of radiation? This is an area of space medicine that we do not completely understand as yet.

In new research by the Lombardi Comprehensive Cancer Center at Georgetown University Medical Center, the high-energy nature of radiation in space may lead to premature aging and prolonged oxidative stress in cells. This also suggests that astronauts risk a higher than normal risk of cancers, such as colon cancer, through exposure to “high linear energy transfer” (LET) radiation. LET radiation consists of the high energy protons emitted by the Sun and cause a huge amount of damage to small areas of tissue.

Radiation exposure, either intentional or accidental, is inevitable during our lifetimes, but with plans for a mission to Mars, we need to understand more about the nature of radiation in space. There is currently no conclusive information for estimating the risk that astronauts may experience.” – Kamal Datta, M.D., assistant professor at Lombardi and lead author.

With NASA’s Project Constellation on the horizon, there has been a focus on the long-term effects of interplanetary radiation. Ultimately, this project aims to send humans to the Moon and Mars, but there are strong indicators that astronauts will face in increased cancer risk and lifespan reduction, a massive hindrance to a mission spanning several months or a thriving proto-settlement.

This is where the lab mice help us out. The amount of “free radicals” (highly reactive molecules often linked with cancer and cell aging) were measured and found that the mice developed highly oxidative (i.e. full of free radical molecules) gastrointestinal tracts when exposed to space-like high-LET radiation. The Lombardi group concluded that the mice had developed a high risk to various cancers, particularly gastrointestinal cancers. They also noticed that after exposure (even after two months), the mice prematurely aged, signifying that the effect of radiation damage can persist long after exposure to a high-LET environment.

So what can we do? There are several plans in motion to further test the effects of radiation on humans and to predict when astronauts will be at risk. This week, Russia announced (controversial) plans to send monkeys back into space, possibly as far as Mars. Once the shock of this “outdated” proposal wore off (the previous Russian space monkey program ran out of funding in the 1990’s), it became very clear as to what the Russian space agency is hoping to achieve: to have a better understanding of the long-term exposure to a high-LET environment on the human physiology. Many will argue that this practice is cruel and unnecessary, but others will say monkeys are used in experiments every day, why shouldn’t they help us in the ultra-modern world of space travel? The jury is still out on this debate, but there are many ways to investigate and counteract the radiation effect on humans.

Energetic particle tracks in a bubble chamber (NASA)

There are also many systems in place to protect mankind from the onslaught of solar storms. Using the Solar and Heliospheric Observatory (SOHO) and other craft located between the Earth and Sun, an early warning system has been set up to provide astronauts on orbit with some time to take cover should a solar flare be launched Earth-bound. This system is fully operational and has already proven itself. Recently, I toyed with the idea of a similar Mars-based early warning system, providing future Mars colonies with about 40 minutes advanced notice of an incoming solar storm.

Shielding is another obvious protective measure. Lunar and Mars colonies are most likely going to use large amounts of regolith to block the incoming particles. Only a few meters of locally dug-up regolith will provide excellent protection. But what about the journey to Mars? How will the astronauts of projects such as Constellation be protected? Perhaps an advanced “Ion Shield” might work?

Whatever the effect of radiation on humans in space, it seems obvious that we are in the infancy of space flight and we are already addressing some of the most difficult problems. Over the next few years, much effort will be focused on the health of astronauts, hopefully finding some answers to the space radiation problem.

Original source: Georgetown University Medical Center

Coolest, Darkest Brown Dwarf Discovered

An artist impression of a brown dwarf (Hallinan et al., NRAO/AUI/NSF)

The coolest brown dwarf has been discovered, with a surface temperature of 623 Kelvin (that’s only 350 Celsius or 660 degrees Fahrenheit). Compare with the surface temperature of our Sun, a modest 6,000 Kelvin, you can see that this featherweight dwarf “star” is a little odd. As far as stars go, this one is pretty unspectacular, but it does hold a vast amount of interest. It may not be as sexy as a supernova or as exotic as a neutron star, the humble brown dwarf may provide the essential link between planets (specifically gas giants) and stars. They are effectively failed stars, and this new discovery demonstrates just how cold they can be…

Brown dwarfs are the link between massive planets and small stars. They have an upper limit of about 80 Jupiter masses, but are not massive enough to sustain nuclear fusion in their core. They do however experience convection from the interior to the surface. The confusion arises when trying to find the lower limit of brown dwarf size, at what mass does the gas giant planet start being a brown dwarf star? This grey area is thought to be characterized by an entirely new stellar type: Y-class dwarfs. Until now Y-class dwarfs have been very elusive and have only existed in theory.

A comparison of the size of Jupiter, a brown dwarf, a small star and the Sun (Gemini Observatory/Artwork by Jon Lomberg)

Astronomers using near-infrared and infrared instruments at the Canada France Hawaii and Gemini North telescopes and the European Southern Observatory in Chile have discovered a Y-class dwarf, bringing this strange failed star from theory and into reality. What’s more, it’s in our cosmic neighbourhood, only 40 light-years from Earth. This brown dwarf has been unglamorously named “CFBDS0059”, but I would have called it something like “The Dark Star” or “The Death Star”, as it is so dim and its surface temperature is approximately the same as the surface temperature of the planet Mercury (but much cooler than the surface temperature of Venus). As it is so cool, it isn’t very luminescent and only radiates in the near-infrared wavelengths (it’s not even as hot as a standard electric stove element), requiring specialist equipment to detect it. As it turns out, CFBDS0059 is small, only 15-30 times the mass of Jupiter, fulfilling the lower mass limit of brown dwarf stars and will be known as the first Y-class dwarf to be observed.

But what is the indicator that a Y-class brown dwarf has been observed? Using spectrometers, astronomers have been able to see the constituent compounds making up the brown dwarf’s atmosphere. Should ammonia be discovered, it’s a pretty sure sign that a Y-class dwarf has been found.

We are starting to see a little hint of ammonia absorption.” Loic Albert (stellar researcher) of the Canada France Hawaii Telescope in Hawaii, commenting on CFBDS0059.

There are two other verified classes of dwarfs, L and T-class dwarfs. L-class dwarfs are hotter, with temperatures from 2200 to 3600°F and T-class dwarfs are cooler than 2190°F and methane-rich. CFBDS0059 is obviously much, much cooler, but researchers believe there may be still cooler dwarfs out there, possibly condensing any water vapour in their atmospheres to form clouds, setting Y-class dwarfs far from the characteristics of its L and T-class cousins. Should they get any colder, water will freeze into ice crystals, giving them more planetary than stellar characteristics.

Source: Discovery.com

What was Before the Big Bang? An Identical, Reversed Universe

The Big Bounce Theory
Graphic of the Big Bounce concept (Relativity4Engineers.com)

So what did exist before the Big Bang? This question would normally belong in the realms of deep philosophical thinking; the laws of physics have no right to probe beyond the Big Bang barrier. There can be no understanding of what was there before. We have no experience, no observational capability and no way of travelling back through it (we can’t even calculate it), so how can physicists even begin to think they can answer this question? Well, a new study of Loop Quantum Gravity (LQG) is challenging this view, perhaps there is a way of looking into the pre-Big Bang “universe”. And the conclusion? The Big Bang was more of a “Big Bounce”, and the pre-bounce universe had the same physics as our universe… just backwards… Confused? I am

LQG is a tough theory to put into words, but it basically addresses the problems associated with the incompatibilities behind quantum theory and general relativity, two crucial theories that characterize our universe. If these two theories are not compatible with each other, the search for the “Theory Of Everything” will be hindered, disallowing gravity to merge with the “Grand Unified Theory” (a.k.a. the electronuclear force). LQG quantizes gravity, thereby providing a possible explanation for gravity and a possible key to unlocking the Theory Of Everything. However, from the outset, LQG has many critics as there is little direct or indirect evidence backing up the theory.

See the previous Universe Today article on Loop Quantum Gravity»

Regardless, much work is being done into this area of research. The primary consequence to come from LQG is that it predicts that the Big Bang which occurred 13.7 billion years ago was actually a “Big Bounce”; our universe is therefore the product of a contracting universe before the Big Bang. The previous universe (or our universe “twin”) contracted to a single point (which could be interpreted as a “Big Crunch”) and then rebounded in a Big Bounce to produce the Big Bang as we’ve learned to accept as the birth of the universe as we know it. But until now, although the pre-bounce universe has been predicted, its characteristics could not be known. No information about the pre-bounce universe could be observed in today’s universe, the Big Bounce causes a “cosmic amnesia”, destroying all information of the previous universe.

Now, physicists Alejandro Corichi from Universidad Nacional Autónoma de México and Parampreet Singh from the Perimeter Institute for Theoretical Physics in Ontario are working on a simplified Loop Quantum Gravity (sLQG) theory where they approximate the value of the “quantum constraint”, a key equation in the LQG theory. What happens next is a little surprising. From their calculations, it would appear that a universe, identical to our own, with identical mechanics, existed before the Big Bounce.

…the twin universe will have the same laws of physics and, in particular, the same notion of time as in ours. The laws of physics will not change because the evolution is always unitary, which is the nicest way a quantum system can evolve. In our analogy, it will look identical to its twin when seen from afar; one could not distinguish them.” – Parampreet Singh

We are not talking about an alternate dimension; we are talking about an identical universe with the same space-time and quantum characteristics as our own. If we look at our universe now (13.7 billion years post-bounce), it would be identical to the universe 13.7 billion years before the Big Bounce. The only difference being the direction of time would be opposite; the pre-bounce universe would be reversed.

In the universe before the bounce, all the general features will be the same. It will follow the same dynamical equations, the Einstein’s equations when the universe is large. Our model predicts that this happens when the universe becomes of the order 100 times larger than the Planck size. Further, the matter content will be the same, and it will have the same evolution. Since the pre-bounce universe is contracting, it will look as if we were looking at ours backward in time.” – Parampreet Singh

Analysing what happened before the Big Bang is only part of the story. By making this approximation of a key LQG equation, Singh and Corichi are working on models where galaxies and other physical structures leave an imprint in the pre-bounce universe to influence the post-bounce universe. Would these structures be distributed in similar ways? Will the structures in one universe be similar or identical to structures in the other universe? There may also be an opportunity to look into the future of this universe and predict whether the conditions are right for another Big Bounce (once can imagine repeated bounces, producing a cycle of universes).

For now, this research is highly theoretical and any observational evidence will remain sparse for the time being. Although this is the case, it does begin to probe the big question and may push physics a bit closer toward describing what existed before the Big Bang…

Source: Physorg.com

Russia to Send Monkeys to Mars

Bion, trying out an orbital module, was one of the first into space, in December 1983. (BBC)

Russia has a long history of scientific discovery and space exploration through the use of animals. Beginning with space dog Laika in 1957, the space program expanded to run tests on other dogs (many returned safely to Earth) and eventually monkeys. Although the monkey testing program was stopped through lack of funding in the mid-1990’s, the nation has announced plans to send the closest relation to humans to a place where no man has gone before: Mars. And here’s us thinking it will be a human first stepping onto the Martian surface…

I must admit, I had to read the story twice before I believed it. Russia wants to send monkeys not only into space, but to Mars. I had an idea that monkeys (or more specifically macaques) were used in space missions in the past, but in my mind this was in the past and would be considered cruel in this day and age. But hold on, aren’t macaques used in medical experiments the world over anyway? Why is it so shocking that macaques should be chosen to pioneer interplanetary travel before mankind?

These questions are emotive (and controversial) and will cause much debate internationally. Many will believe that the experimental testing on animals in the ultra-modern world of space travel will seem barbaric, but there are some serious problems we might definitively answer through the use of macaque space travel. First and foremost, due to the interplanetary radiation we expect to be bathed in during a transit to Mars, by studying a macaque’s physiology during the long journey we may be able to learn how the human body will react to larger than normal doses. The fact remains, monkeys are genetically close to humans, its little wonder that we turn to them for answers.

To this end, monkeys at the Sochi Institute of Medical Primatology, at Vesyoloye near the Black Sea, have begun the selection process for the ultimate medical animal testing experiment. The institute has a long history of involvement in the Russian and Soviet space program. Sochi was the training facility for the first monkeys into space in 1983. Abrek and Bion had a five-day trip around Earth and were returned safely in Kazakhstan and rehabilitated to live “normal lives”. Two years after this historic flight, monkeys Verny and Gordy spent seven days in space. In 1987, Dryoma and Yerosha spent a record breaking (for a monkey-assisted flight) two-weeks in space. Interestingly, Dryoma was given to Cuban leader Fidel Castro as a gift. Following this, in 1989, 1992 and 1996, three two-week flights were carried out until funding for the project ran out. Now experiments have been continued on Earth to simulate weightlessness.

Now, to revitalize Sochi’s history of macaque space flight, they are beginning a two-year program to select 40 monkeys to be sent to the Institute of Biomedical Problems in Moscow so tests can be continued into aerospace biomedicine. This will culminate in a possible primate mission to Mars.

People and monkeys have approximately identical sensitivity to small and large radiation doses, so it is better to experiment on the macaques, but not on dogs or other animals.” Boris Lapin, Institute Director.

Critics of the program are frustrated by the use of animal testing in any capacity, but remain realistic about the situation. “Humanity sacrifices more than 100 million animals a year in the name of health and beauty. It’s time to think of an alternative to experiments with animals,” says Andrei Zbarsky of the conservation group the World Wildlife Fund (WWF).

“…certainly, I feel sorry for the monkeys, they might die, but the experiments are necessary to preserve the lives of the cosmonauts who will fly to Mars in future” – Anaida Shaginyan, Institute Researcher.

This will be a controversial measure by the Russian space program and they are expecting resistance from their European partners. Although monkeys and other animals are used in medical science here on Earth, it might prove too distasteful and cruel for most, but possibly the only means to measure the physical impact on the human body after a long trip to Mars.

Source: BBC

Japanese Moon Mission Returns Detailed Maps of the Lunar Surface

The JAXA Moon satellite Selene map of the Lunar relief (JAXA)

The Japanese SELENE lunar orbiter has returned some of the most detailed maps of the Moon to date. The new collection of high-definition maps includes topological data and mineral location. Critically, the locations of uranium, thorium and potassium have been mapped, essential for mission planners when considering the future of manned settlements on the Moon. Seeing the lunar relief mapped to such fine detail makes for an impressive sight. So far six million data points have been collected and there’s more to come…

Selene topological map of the surface of the Moon (JAXA)
The SELENE mission was launched on September 14th, 2007 from Tanegashima Space Center on a H-IIA carrier rocket. SELENE stands for “Selenological and Engineering Explorer”, but Selene was also the Greek lunar deity. The orbiter arrived into lunar orbit on October 3rd and began science operations soon after. Since then, the spacecraft has been using a large number of instruments to characterise the surface of the Moon from analysing its mineral distribution to measuring its terrain. It has been described as the largest Moon mission since the US Apollo program.
A full-disk map of the Moon (JAXA)
According to the JAXA press release, these new maps are ten-times more accurate than previous maps. Using the laser altimeter (LALT) instrument, 3D data of the shapes and altitudes of surface features are promising to give the most advanced relief mapping capabilities ever performed on a planetary body other than the Earth. It has also been indicated that deposits of uranium, potassium and thorium have been pinpointed through the use of one of its onboard spectrometers. This will have massive implications for the future of manned exploration of the natural satellite. It is likely that a nuclear source of energy would be required for future lunar settlements, if there are quantities of uranium to be mined, this will have an impact on where the settlement should be located.
SELENE relief map (colour) (JAXA)
So, when venturing out onto the cold, lonely lunar surface, be sure to pack the newest edition of the Selene high-definition map to plot your journey…

Sources: JAXA, Gizmodo

Mysterious Omega Centauri Dazzling in Infrared: New Spitzer Observations

Omega Centauri - in infrared and optical wavelengths (NASA/NSF)

By combining ground-based optical observations with space-borne infrared images from Spitzer, an incredible new view of mysterious Omega Centauri has been revealed. Astronomers have had a hard time identifying what type of galaxy Omega Centauri actually is, so any new information on the cluster of millions of stars is needed. By combining observations in different wavelengths, stars of different ages are highlighted, possibly aiding our understanding about the origins of Omega Centauri and answer the question: Why is this galaxy so strange?

As discussed in an article last week, Omega Centauri is of particular interest to astrophysicists. Over the years this strange collection of stars has been classified as a single star (by Ptolemy), a nebula (by Halley in 1677) and a globular cluster (by Herschel in the 1830’s). Now it is believed that this dwarf galaxy may be a survivor of an ancient collision with the Milky Way which stripped away its outermost stars. This is why it may look like a globular cluster now, but doesn’t have globular cluster characteristics. For a start Omega Centauri is too big (ten times bigger than the largest globular clusters) and it contains stars of many generations (globular clusters usually contain one generation). Recent observations also show a very fast rotating galactic core, revealing the presence of an intermediate-size black hole… the missing link connecting stellar black holes with supermassive black holes. Exciting stuff.

Omega Centauri in optical and infrared wavelengths (NASA/JPL-Caltech/ NOAO/AURA/NSF)

Putting the scientific implications to one side for now, I can’t help but stare at this stunning view of this interesting cluster of star systems. I’m used to monochromatic images of space with some false-colour thrown in for good measure; this image seems to be different. Very quickly we are able to gain an insight to the dispersion of star generations, just by looking at the image. A quick glance shows the majority of young stars are clustered toward the middle (the blue stars), older red giants located around the outside of the galaxy (the red/yellow stars).

Detail of Omega Centauri stars - highlighting a Spitzer red giant and some Blanco young stars (NASA/JPL-Caltech/ NOAO/AURA/NSF)

According to the NASA news release, where green and red dots overlap, yellow dots appear. These are NASA Spitzer Space Telescope stars observed in infrared. We know that these emissions come from old, large and dusty stars, the red giants. The blue dots are younger stars, much like our Sun, as observed in optical and near-infrared wavelengths by the National Science Foundation’s Blanco 4-meter telescope at Cerro Tololo Inter-American Observatory in Chile. I’ve included a little section from the main image with the two types of star ringed and annotated (pictured).

These new Spitzer observations show very little dust around any of the dimmest red giants and the space between the stars also does not seem to contain much dust (as interstellar dust would glow infrared radiation as nearby stars heat it). Astronomers have concluded that any dust within the cluster is quickly destroyed or lost from the galaxy.

Source: NASA