Mercury’s Ready For Its Close-Up, Mr. MESSENGER

One of the highest-resolution images of Mercury's surface ever acquired.

Are you ready for a good close look at Mercury? At an incredible 5 meters per pixel, this is one of the highest-resolution images of Mercury’s surface ever captured. It was acquired on March 15 with the MESSENGER spacecraft’s MDIS (Mercury Dual Imaging System) instrument and shows an 8.3-km (5.2-mile) -wide section of Mercury’s north polar region, speckled with small craters and softly rolling hills.

Because MESSENGER was moving so quickly relative to the targeted area it was imaging, a short exposure time was necessary to avoid blurring. As a result the image appears a bit grainy. See the original map projection here.

Wondering what the next-best image was of Mercury? Find out below:

The previous record for most extreme close-up of Mercury was held by this image:

7 meter/pixel targeted observation of Mercury by the MESSENGER spacecraft
7 meter/pixel targeted observation of Mercury by the MESSENGER spacecraft

It was acquired as a targeted observation by MESSENGER’s Narrow-Angle Camera on April 30, 2012, and has a resolution of 7 meters/pixel. It shows an impact melt-covered area about 11 km (7 miles) across near Gaugin crater.

(Although Mercury’s surface may at first appear strikingly similar to the Moon’s, it’s been known since the Mariner 10 mission that the two worlds are very different at fundamental geologic and compositional levels. Read more on that here.)

Images like these are extremely special; during the first two years of MESSENGER’s mission in orbit around Mercury, over 150,000 images were acquired but only five images had resolutions better than 10 meters per pixel.

Artist's impression of MESSENGER orbiting Mercury
Artist’s impression of MESSENGER orbiting Mercury

On April 20, 2014, MESSENGER completed its 3,000th orbit of Mercury (3,075 to date) and is steadily moving into an even lower-altitude orbit. MESSENGER now comes within less than 200 km (124 miles) of the planet’s surface when it passes over its north pole every eight hours… that’s less than half the altitude of the Space Station!

Orbiting at such a low altitude and so often will allow MESSENGER to examine Mercury’s surface in unprecedented detail. Now that 100% of the planet has been successfully mapped by MESSENGER it can spend its second — and last — extended mission investigating specific scientific targets.

Watch: A Tribute to MESSENGER 

“The final year of MESSENGER’s orbital operations will be an entirely new mission,” said Sean Solomon, Principal Investigator for MESSENGER. “With each orbit, our images, our surface compositional measurements, and our observations of the planet’s magnetic and gravity fields will be higher in resolution than ever before. We will be able to characterize Mercury’s near-surface particle environment for the first time. Mercury has stubbornly held on to many of its secrets, but many will at last be revealed.”

Read more in a recent news release from the MESSENGER team here.

Want to explore a high-res map of Mercury and see where MESSENGER is right now? Click here.

Image credits: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

This Was the Best Watched Solar Flare Ever

X1-class solar flare on March 29, 2014 as seen by NASA's IRIS (video screenshot) Some stars emit even stronger "superflares" similar to these, but much brighter. Credit: NASA/IRIS/SDO/Goddard Space Flight Center
X1-class solar flare on March 29, 2014 as seen by NASA's IRIS (video screenshot) Some stars emit even stronger "superflares" similar to these, but much brighter. Credit: NASA/IRIS/SDO/Goddard Space Flight Center

Are giant dragons flying out of the Sun? No, this is much more awesome than that: it’s an image of an X-class flare that erupted from active region 2017 on March 29, as seen by NASA’s Interface Region Imaging Spectrograph (IRIS) spacecraft. It was not only IRIS’s first view of such a powerful flare, but with four other solar observatories in space and on the ground watching at the same time it was the best-observed solar flare ever.

(But it does kind of look like a dragon. Or maybe a phoenix. Ah, pareidolia!)

Check out a video from NASA’s Goddard Space Flight Center below:

In addition to IRIS, the March 29 flare was observed by NASA’s Solar Dynamics Observatory (SDO), NASA’s Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), JAXA and NASA’s Hinode spacecraft, and the National Solar Observatory’s Dunn Solar Telescope in New Mexico.

With each telescope equipped with instruments specially designed to observe the Sun in specific wavelengths almost no detail of this particular flare went unnoticed, giving scientists comprehensive data on the complex behavior of a single solar eruption.

Also, for another look at this flare from SDO and a coronal dimming event apparently associated with it, check out Dean Pesnell’s entry on the SDO is GO! blog here.

Source: NASA/GSFC

Cassini’s View of Another Pale Blue Dot

Uranus as seen by Cassini on July 19, 2013 (NASA/JPL-Caltech/SSI)

When you hear the words “pale blue dot” you’re probably reminded of the famous quote by Carl Sagan inspired by an image of Earth as a soberingly tiny speck, as imaged by Voyager 1 on Feb. 14, 1990 from beyond the orbit of Pluto. But there’s another pale blue world in our Solar System: the ice giant Uranus, and its picture was captured much more recently by the Cassini spacecraft from orbit around Saturn on April 11, 2014.

Released today by the Cassini Imaging Team, the image above shows Uranus as a tiny blue orb shining far beyond the bright hazy bands of Saturn’s F ring.

“Do you relish the notion of being a Saturnian, and gazing out from the lofty heights of Saturn at the same planets we see here from the Earth?”
– Carolyn Porco, Cassini Imaging Team Leader

Uranus’ coloration is a result of methane high in its frigid atmosphere. According to the description on the CICLOPS site, “methane on Uranus — and its sapphire-colored sibling, Neptune — absorbs red wavelengths of incoming sunlight, but allows blue wavelengths to escape back into space, resulting in the predominantly bluish color seen here.”

This was also the first time Uranus had been imaged by the Cassini spacecraft, which has been in orbit around Saturn since 2004. In fact its ten-year orbital anniversary will come on July 1.

This image adds one more planet to the list of worlds captured on Camera by Cassini, which made headlines last fall when a glorious mosaic was released that featured a backlit Saturn in eclipse surrounded by its luminous rings, the specks of several of its moons, and the distant dots of Venus, Mars, and the Earth and Moon. Made from 141 separate exposures, the mosaic was captured on July 19, 2013 — known by many space aficionados as “the day the Earth smiled” as it was the first time the world’s population was alerted beforehand that its picture would be taken from over 900 million miles away.

Saturn — with its terrestrial spacecraft in tow — was about 28.6 AU away from Uranus when the image was acquired. That’s about  4.28 billion kilometers (2.66 billion miles). From that distance the glow of the 51,118-kilometer (31,763-mile) -wide Uranus is reduced to a mere few pixels (which required digital brightening by about 4.5x, as well.)

Read more on the Cassini Imaging Central Laboratory for Operations (CICLOPS) page here and in a news release from NASA’s JPL here.

Image credit: NASA/JPL-Caltech/SSI. Source: Carolyn Porco, CICLOPS Director

Hello From Mars! Curiosity Smiles in Her Latest “Selfie”

A mosaic of MSL MAHLI images acquired on Sol 613 (NASA/JPL-Caltech/MSSS. Edit by Jason Major.)

This is very cute — Curiosity’s latest “selfie,” a mosaic I assembled from about a dozen images acquired with the rover’s Mars Hand Lens Imager (MAHLI) instrument on April 27-28, 2014 (Sol 613), with the 5.5-km-high Mount Sharp (Aeolis Mons) rising in the background. Click the image for a high-res version.

While it’s far from a perfect image — there are plenty of discrepancies in the mosaic tiling, I admit — I really like the character it imparts to Curiosity, who almost seems to be giving a toothy (if slightly dusty) grin there on the left with her cylindrical RUHF antenna and a bit of her RTG visible in the lower center. And with almost 21 Earth-months on Mars and lots of discoveries already under her robot belt, Curiosity (and her team) certainly have plenty to smile about!

See these and all the raw images from the MSL mission here, and read more about Curiosity’s latest work in Gale Crater in Ken Kremer’s article here.

Imagine What Could Be Done With a “Penny4NASA”

NASA's % of the U.S. budget over the years

If you’re reading this then you’re probably a big fan of space exploration. And while on one hand you could say that we are now living in a “golden age” of exploration, what with the ongoing missions there are around the Solar System and the new discoveries being made on an almost weekly basis about our Universe, on the other hand it seems like we are getting more and more “grounded” as human explorers, with still years to go before the first footprints are made on Mars, an ever-growing span since we last walked on the Moon, and steadily-shrinking or stagnant budgets that can’t support all the missions that DO exist — and sometimes cancel them altogether.

“We have discovered amazing places. But imagine what’s hiding where we haven’t even looked?”


In order for missions to ever get off the ground, they need to be funded. Right now NASA — still arguably the leader in space exploration among world agencies — receives a little over 0.4 percent of every U.S. tax dollar. Less than half a penny. That’s what NASA explores the Solar System with, what makes our knowledge of the Universe — from the farthest visible reaches right down to our own planet Earth — even possible. What if NASA were to receive a full one percent? A whole penny from every dollar? That’d still be only a quarter of what NASA worked with to put men on the Moon in 1969, but it’d be more than double what it gets now.

A penny for NASA… this is the goal of Penny4NASA.org, an outreach group that strives to increase the funding — if just by a little — of the world’s most accomplished, inspirational, and powerful space exploration administration. (Before… you know, it isn’t.)

The video above was created for Penny4NASA by artist and animator Brad Goodspeed, and reminds us of what NASA has achieved in its 50-year history, of what its goals are (or at least should be) and, unfortunately, why many of them have remained unattained. NASA needs support — our support — or else its candles will stay unlit and our windows and doors to the Universe will slowly but surely close.

How can you help? Well for one thing, stay excited about space and science (and get others excited too!) Interest is the key to making sure people don’t lose sight of what’s happening in the field; you might be surprised to hear the misinformation that’s been passed around. (No, NASA isn’t “dead.”) And let your policy-makers know that space exploration and the investment in technology and innovation that goes along with it is important to you — the Planetary Society has a convenient page where you can find links to write to your state representative here. And finally you can support groups like Penny4NASA, made up of enthusiastic young professionals who want to see our nation’s past successes in space exploration continued into their future.

“America is fading right now. Nobody’s dreaming about tomorrow anymore. NASA knows how to dream about tomorrow — if the funding can accommodate it, if the funding can empower it.”
– Neil deGrasse Tyson

Want more inspiration? Read this excerpt from Neil deGrasse Tyson’s Space Chronicles on TheWeek.com here.

Video credit: Brad Goodspeed/Penny4NASA.org

Surprise: Earth Is Hit By a Lot More Asteroids Than You Thought

Sentinel will orbit the Sun, looking outwards for NEOs that could potentially impact our planet.

“The fact that none of these asteroid impacts shown in the video was detected in advance is proof that the only thing preventing a catastrophe from a ‘city-killer’ sized asteroid is blind luck.”

– Ed Lu, B612 Foundation CEO and former NASA astronaut

When we think of recent large asteroid impacts on Earth, only a handful may come to mind. In particular, one is the forest-flattening 1908 Tunguska explosion over Siberia (which may have been the result of a comet) and another is the February 2013 meteor that exploded over Chelyabinsk, shattering windows with its air blast. Both occurred in Russia, the largest country on Earth, and had human witnesses — in the case of the latter many witnesses thanks to today’s ubiquitous dashboard cameras.

While it’s true that those two observed events took place 105 years apart, there have been many, many more large-scale asteroid impacts around the world that people have not witnessed, if only due to their remote locations… impact events that, if they or ones like them ever occurred above a city or populated area, could result in destruction of property, injuries to people, or worse.

(And I’m only referring to the ones we’ve found out about over the past 13 years.)

A new video released by the B612 Foundation shows a visualization of data collected by a global nuclear weapons test network. It reveals 26 explosive events recorded from 2000 to 2013 that were not the result of nuclear detonations — these were impacts by asteroids, ranging from one to 600 kilotons in energy output.

Update: a list of the 26 aforementioned impacts and their energy outputs is below:

8/25/2000 (1-9 kilotons) North Pacific Ocean
4/23/2001 (1-9 kilotons) North Pacific Ocean
3/9/2002 (1-9 kilotons) North Pacific Ocean
6/6/2002 (20+ kilotons) Mediterranean Sea
11/10/2002 (1-9 kilotons) North Pacific Ocean
9/3/2004 (20+ kilotons) Southern Ocean
10/7/2004 (10-20 kilotons) Indian Ocean
10/26/2005 (1-9 kilotons) South Pacific Ocean
11/9/2005 (1-9 kilotons) New South Wales, Australia
2/6/2006 (1-9 kilotons) South Atlantic Ocean
5/21/2006 (1-9 kilotons) South Atlantic Ocean
8/9/2006 (1-9 kilotons) Indian Ocean
9/2/2006 (1-9 kilotons) Indian Ocean
10/2/2006 (1-9 kilotons) Arabian Sea
12/9/2006 (10-20 kilotons) Egypt
9/22/2007 (1-9 kilotons) Indian Ocean
12/26/2007 (1-9 kilotons) South Pacific Ocean
10/7/2008 (1-9 kilotons) Sudan
10/8/2009 (20+ kilotons) South Sulawesi, Indonesia
9/3/2010 (10-20 kilotons) South Pacific Ocean
12/25/2010 (1-9 kilotons) Tasman Sea
4/22/2012 (1-9 kilotons) California, USA
2/15/2013, (20+ kilotons) Chelyabinsk Oblast, Russia
4/21/2013 (1-9 kilotons) Santiago del Estero, Argentina
4/30/2013 (10-20 kilotons) North Atlantic Ocean
(Source: B612 Foundation)

To include the traditonally macabre comparison, the bomb used to destroy Hiroshima at the end of World War II was about 15 kilotons; the Nagasaki bomb was 20.

This evening former NASA astronauts Ed Lu, Tom Jones, and Apollo 8 astronaut Bill Anders will present this video to the public at a live Q&A event at the Museum of Flight in Seattle, Washington.

CEO and co-founder of the B612 Foundation, Ed Lu is working to increase awareness of asteroids and near-Earth objects with the ultimate goal of building and launching Sentinel, an infrared observatory that will search for and identify as-yet unknown objects with orbits that intersect Earth’s. The event, titled “Saving the Earth by Keeping Big Asteroids Away,” will be held at 6 p.m. PDT. It is free to the public and the visualization above is now available online on the B612 Foundation website. A press event will also be taking place at 11:30 a.m. PDT, and will be streamed live here.

Currently there is no comprehensive dynamic map of our inner solar system showing the positions and trajectories of these asteroids that might threaten Earth. The citizens of Earth are essentially flying around the Solar System with eyes closed. Asteroids have struck Earth before, and they will again – unless we do something about it.

– B612 Foundation

Want to support the Sentinel mission? Donate online here.

Added 4/24: The April 22 press conference at the Museum of Flight can be watched in its entirety below:

Technical note: While B612 and Ed Lu are presenting a new visualization on April 22, the data behind it are not entirely new. Previous surveys on NEA populations have determined within reasonable parameters the number of objects and likelihood of future impacts of varying sizes using data from WISE and ground-based observatories… see a series of slides by Alan Harris of JPL/Caltech here. (ht Amy Mainzer)

Also, if you have questions on the asteroid visualization, there are some FAQs on the B612 site here.

Echoes of Chelyabinsk: Another Fireball Explodes Over Russia

Why does Russia seem to get so many bright meteors? Well at 6.6 million square miles it’s by far the largest country in the world plus, with dashboard-mounted cameras being so commonplace (partly to help combat insurance fraud) statistically it just makes sense that Russians would end up seeing more meteors, and then be able to share the experience with the rest of the world!

This is exactly what happened early this morning, April 19 (local time), when a bright fireball flashed in the skies over Murmansk, located on the Kola Peninsula in northwest Russia near the border of Finland. Luckily not nearly as large or powerful as the Chelyabinsk meteor event from February 2013, no sound or air blast from this fireball has been reported and nobody was injured. Details on the object aren’t yet known… it could be a meteor (most likely) or it could be re-entering space debris. The video above, some of which was captured by Alexandr Nesterov from his dashcam, shows the object dramatically lighting up the early morning sky.

One Russian astronomer suggests this bolide may have been part of the debris that results in the Lyrid meteor shower, which peaks on April 22-23. (Source: NBC)

Source: RT.com

Ancient Martian Life May Be Preserved in Glass

A fresh impact left this 30-meter-wide crater on Mars, imaged by HiRISE in Nov. 2013 (NASA/JPL-Caltech/Univ. of Arizona )

When large asteroids or comets strike the Earth — as they have countless times throughout our planet’s history — the energy released in the event creates an enormous amount of heat, enough to briefly melt rock and soil at the impact site. That molten material quickly cools, trapping organic material and bits of plants and preserving them inside fragments of glass for tens of thousands, even millions of years.

Researchers studying impact debris on Earth think that the same thing could very well have happened on Mars, and that any evidence for ancient life on the Red Planet might be found by looking inside the glass.

A research team led by Pete Schultz, a geologist at Brown University in Providence, Rhode Island, has identified the remains of plant materials trapped inside impact glass found at several different sites scattered across Argentina, according to a university news release issued Friday, April 18.

Melt breccias from two impact events in particular, dating back 3 and 9 million years, were discovered to contain very well-preserved fragments of vegetation — providing not only samples of ancient organisms but also snapshots of the local environment from the time of the events.

An asteroid impacts ancient Mars and send rocks hurtling to space - some reach Earth
Mars experienced many large impact events in its early history, just like Earth

“These glasses preserve plant morphology from macro features all the way down to the micron scale,” said Schultz. “It’s really remarkable.”

Schultz believes that the same process that trapped once-living material in Argentina’s Pampas region — which is covered with windblown, Mars-like sediment, especially in the west — may have occurred on Mars, preserving any early organics located at and around impact sites.

“Impact glass may be where the 4 billion-year-old signs of life are hiding,” Schultz said. “On Mars they’re probably not going to come out screaming in the form of a plant, but we may find traces of organic compounds, which would be really exciting.”

The research has been published in the latest issue of Geology Magazine.

Read more in the full report here.

Source: Brown University

Kepler Has Found the First Earth-Sized Exoplanet in a Habitable Zone!

Artist's rendering of Kepler-186f (Credit: NASA Ames/SETI Institute/Caltech)

It’s truly a “eureka” moment for Kepler scientists: the first rocky Earth-sized world has been found in a star’s habitable “Goldilocks” zone, the narrow belt where liquid water could readily exist on a planet’s surface without freezing solid or boiling away. And while it’s much too soon to tell if this really is a “twin Earth,” we can now be fairly confident that they do in fact exist.

The newly-confirmed extrasolar planet has been dubbed Kepler-186f. It is the fifth and outermost planet discovered orbiting the red dwarf star Kepler-186, located 490 light-years away. Kepler-186f completes one orbit around its star every 130 days, just within the outer edge of the system’s habitable zone.

The findings were made public today, April 17, during a teleconference hosted by NASA.

“This is the first definitive Earth-sized planet found in the habitable zone around another star,” says lead author Elisa Quintana of the SETI Institute at NASA Ames Research Center. “Finding such planets is a primary goal of the Kepler space telescope. The star is a main-sequence M-dwarf, a very common type.  More than 70 percent of the hundreds of billions of stars in our galaxy are M-dwarfs.”

A visualization of the “unseen” red dwarfs in the night sky. Credit: D. Aguilar & C. Pulliam (CfA)
A visualization of the many “unseen” red dwarfs in the night sky. (CLICK FOR ANIMATION) Credit: D. Aguilar & C. Pulliam (CfA)

Unlike our Sun, which is a G-type yellow dwarf, M-dwarf stars (aka red dwarfs) are much smaller and dimmer. As a result their habitable zones are much more confined. But, being cooler stars, M-dwarfs have long lifespans, offering planets in their habitable zones — like Kepler-186f — potentially plenty of time to develop favorable conditions for life.

In addition, M-dwarfs are the most abundant stars in our galaxy; 7 out of 10 stars in the Milky Way are M-dwarfs, although most can’t be seen by the naked eye. Finding an Earth-sized planet orbiting one relatively nearby has enormous implications in the hunt for extraterrestrial life.

“M dwarfs are the most numerous stars,” said Quintana. “The first signs of other life in the galaxy may well come from planets orbiting an M dwarf.”

Read more: Earthlike Exoplanets Are All Around Us

Still, there are many more conditions on a planet that must be met for it to be actually habitable. But size, composition, and orbital radius are very important first steps.

“Some people call these habitable planets, which of course we have no idea if they are,” said Stephen Kane, an assistant professor of physics and astronomy at San Francisco State University in California. “We simply know that they are in the habitable zone, and that is the best place to start looking for habitable planets.”

Scale comparison of the Kepler-186 system to our inner Solar System (
Scale comparison of the Kepler-186 system and the inner Solar System (NASA Ames/SETI Institute/Caltech)

As far as the planetary system’s age is concerned — which relates to how long life could have potentially had to evolve on Kepler-186f’s surface — that’s hard to determine… especially with M-dwarf stars. Because they are so stable and long-lived, once they’re formed M-dwarfs essentially stay the same throughout their lifetimes.

“We know it’s probably older than a few billion years, but after that it’s very difficult to tell,” BAERI/Ames scientist Tom Barclay told Universe Today. “That’s the problem with M-dwarfs.”

A comparison of the Kepler 186 and Solar systems (NASA/Ames)
A comparison of the Kepler 186 and Solar systems (Presentation slide, NASA/Ames)

The exoplanet was discovered via the transit method used by NASA’s Kepler spacecraft, whereby stars’ brightnesses are continually monitored within a certain field of view. Any dips in luminance reveal the likely presence of a passing planet.

Because of its small size — just slightly over 1 Earth radius — and close proximity to its star, Kepler-186f can’t be observed directly with current telescope technology.

The Gemini North telescope on the summit of Mauna Kea (Gemini Observatory/AURA)
The Gemini North telescope on the summit of Mauna Kea (Gemini Observatory/AURA)

“However, what we can do is eliminate essentially all other possibilities so that the validity of these planets is really the only viable option,” said Steve Howell, Kepler project scientist and a co-author on the paper.

Using the latest advanced imaging capabilities of the Gemini North and Keck II observatories located atop Mauna Kea in Hawaii, astronomers were able to determine that the signals detected by Kepler were from a small orbiting planet and not something else, such as a background or companion star.

“The Keck and Gemini data are two key pieces of this puzzle,” Quintana said. “Without these complementary observations we wouldn’t have been able to confirm this Earth-sized planet.”

Kepler-186f joins the other 20 extrasolar worlds currently listed in the Habitable Exoplanets Catalog, maintained by the Planetary Habitability Laboratory at the University of Puerto Rico at Arecibo. To date 961 exoplanets have been confirmed through Kepler observations, with 1,696 total confirmed altogether. (Source)

Artist's conception of the Kepler Space Telescope. Credit: NASA/JPL-Caltech
Artist’s conception of the Kepler Space Telescope. Credit: NASA/JPL-Caltech

Read more: Mega Discovery! 715 Alien Planets Confirmed Using a New Trick on Old Kepler Data

Whether Kepler-186f actually resembles Earth or not, this discovery provides more information on the incredible variety of planetary systems to be found even in our little corner of the galaxy.

“The diversity of these exoplanets is one of the most exciting things about the field,” Kane said. “We’re trying to understand how common our solar system is, and the more diversity we see, the more it helps us to understand what the answer to that question really is.”

The SETI Institute’s Allen Telescope Array has surveyed the Kepler-186 system for any potential signals but so far none has been detected. Further observations are planned.

“Kepler-186f is special because we already know that a planet of its size and distance is capable of supporting life.”
– Elisa Quintana, research scientist, SETI Institute

The team’s paper, “An Earth-sized Planet in the Habitable Zone of a Cool Star” by Elisa V. Quintana et al., will be published in the April 18 issue of Science.

Learn more about the Kepler mission here, and read more about this discovery in NASA’s news release here and on the W.M. Keck website here.

Watch some video excerpts of team interviews and data renderings below:

Also, you can download the slides used in the NASA teleconference here.

Sources: San Francisco State University, Gemini Observatory, W.M. Keck Observatory, and SETI news releases

Astronauts to Reveal Sobering Data on Asteroid Impacts

Chelyabinsk fireball recorded by a dashcam from Kamensk-Uralsky north of Chelyabinsk where it was still dawn. A study of the area near this meteor air burst revealed similar signatures to the Tall el_Hammam site.
Chelyabinsk fireball recorded by a dashcam from Kamensk-Uralsky north of Chelyabinsk where it was still dawn. A study of the area near this meteor air burst revealed similar signatures to the Tall el_Hammam site.

This Earth Day, Tuesday, April 22, three former NASA astronauts will present new evidence that our planet has experienced many more large-scale asteroid impacts over the past decade than previously thought… three to ten times more, in fact. A new visualization of data from a nuclear weapons warning network, to be unveiled by B612 Foundation CEO Ed Lu during the evening event at Seattle’s Museum of Flight, shows that “the only thing preventing a catastrophe from a ‘city-killer’ sized asteroid is blind luck.”

Since 2001, 26 atomic-bomb-scale explosions have occurred in remote locations around the world, far from populated areas, made evident by a nuclear weapons test warning network. In a recent press release B612 Foundation CEO Ed Lu states:

“This network has detected 26 multi-kiloton explosions since 2001, all of which are due to asteroid impacts. It shows that asteroid impacts are NOT rare — but actually 3-10 times more common than we previously thought. The fact that none of these asteroid impacts shown in the video was detected in advance is proof that the only thing preventing a catastrophe from a ‘city-killer’ sized asteroid is blind luck. The goal of the B612 Sentinel mission is to find and track asteroids decades before they hit Earth, allowing us to easily deflect them.”

The Sentinel Space Telescope in orbit around the Sun. Image courtesy of Ball Aerospace.
The Sentinel Space Telescope in orbit around the Sun. Image courtesy of Ball Aerospace.

The B612 Foundation is partnered with Ball Aerospace to build the Sentinel Infrared Space Telescope Mission. Once positioned in solar orbit closer to the Sun from Earth, Sentinel will look outwards in infrared to detect hundreds of thousands of as-yet unknown near-Earth objects over 140 meters in size. The privately-funded spacecraft is slated to launch in 2017-18 aboard a SpaceX Falcon 9 rocket.

In addition to Lu, Space Shuttle astronaut Tom Jones and Apollo 8 astronaut Bill Anders will be speaking at the event, titled “Saving the Earth by Keeping Big Asteroids Away.”

The event will be held at 6 p.m. PDT at the Museum of Flight in Seattle, WA. It is free to the public and the visualization will be made available online on the B612 Foundation website.

Want to support the Sentinel mission? Donate online here.