Multiple Dinosaur Tracks Confirmed at NASA Center

Fossilized nodosaur footprints discovered at NASA’s Goddard Space Flight Center in Maryland. (NASA/GSFC/Rebecca Roth)

At NASA’s Goddard Space Flight Center in Greenbelt, MD, where some of the world’s most advanced research in space technology is being performed on a daily basis, paleontologists have discovered ancient evidence of dinosaurs on the Center’s wooded campus — at least two, possibly a mother and child, crossed that way between 112 and 110 million years ago and left their muddy footprints as proof.

The tracks of two nodosaurs — short, stocky and heavily-armored herbivorous dinosaurs — have been confirmed by dinosaur tracker Ray Stanford and USGS emeritus paleontologist Dr. Robert Weems. The second track is a smaller version of the first.

The first, larger footprint was announced by Stanford on August 17. When Dr. Weems was called in to verify, the smaller print was discovered within the first, evidence that they were made around the same time and leading researchers to suggest it may have been a mother-and-child pair.

Dinosaur tracker Ray Stanford describes the cretaceous-era nodosaur track he found on the Goddard Space Flight Center campus with Dr. Robert Weems, emeritus paleontologist for the USGS who verified his discovery. (NASA/GSFC/Rebecca Roth)

“It looks to be a manus (front foot) print of a much smaller dinosaur than the first one, but it looks to be the same type,” Weems said of the second track. “If the one that came through was a female, it may have had one or more young ones following along. If you’ve seen a dog or cat walking with its young, they kind of sniff around and may not go in the same direction, but they end up in the same place.”

It’s thought that the nodosaurs were moving quickly since the tracks don’t show strong imprints of the animals’ heels. Still, the ruddy Cretaceous-era mud preserved their brief passage well — even as millions of years went by.

“This was a large, armored dinosaur,” Stanford said. “Think of it as a four-footed tank. It was quite heavy, there’s a quite a ridge or push-up here. Subsequently the sand was bound together by iron-oxide or hematite, so it gave us a nice preservation, almost like concrete.”

The next steps will be to have the site analyzed to determine whether further excavation is called for, and possibly to extract and preserve the existing footprints.

“Space scientists may walk along here, and they’re walking exactly where this big, bungling heavy armored dinosaur walked, maybe 110 to 112 million years ago.”

– Ray Stanford

Read more on the GSFC site here.

What Are The Radiation Belts?

NASA’s twin Radiation Belt Storm Probe (RBSP) satellites, scheduled to launch from Cape Canaveral Friday, August 24* at 4:08 a.m. ET, will enter into an eccentric orbit around our planet, repeatedly passing through both of the Van Allen radiation belts that surround Earth like enormous high-intensity particle filled inner tubes. The plasma contained within these belts can affect satellites, spacecraft and communication here on Earth, and are affected in turn by outbursts of solar energy from the Sun — especially during periods of solar maximum. But how do these invisible yet powerful radiation belts actually work, and how will two six-foot-wide satellites help us learn more about them? Watch the video.

(And then read more here.)

Video: NASA

*UPDATE: After several delays due to weather and technical issues, the RBSP mission successfully launched on Thursday, August 30.

On the Hunt for High-Speed Sprites

Air glow (along with a lightning sprite) is visible in this image from the International Space Station. Credit: NASA

A bright red sprite appears above a lightning flash in a photo captured from the ISS

Back on April 30, Expedition 31 astronauts aboard the ISS captured this photo of a red sprite hovering above a bright flash of lightning over Myanmar. Elusive atmospheric phenomena, sprites are extremely brief bursts of electromagnetic activity that are associated with powerful lightning discharges, but exactly how and why they form isn’t yet known — although recent research (along with some incredible high-speed video) is shedding new light on sprites.

Although the appearance of bright high-altitude flashes above thunderstorms have been reported by pilots for nearly a century, it wasn’t until 1989 that a sprite was captured on camera — and the first color image of one wasn’t taken until 1994.

So-named because of their elusive nature, sprites appear as several clusters of red tendrils above a lighting flash followed by a breakup into smaller streaks, often extending as high as 55 miles (90 km) into the atmosphere. The brightest region of a sprite is typically seen at altitudes of 40-45 miles (65-75 km).

Because they occur above storms, only last for a thousandth of a second and emit light in the red portion of the visible spectrum (to which our eyes are the least sensitive) studying sprites has been notoriously difficult for atmospheric scientists. Space Station residents may get great views but they have lots of other things to do in the course of their day besides sprite hunting! Luckily, a team of scientists were able to capture some unprecedented videos of sprites from airplanes in the summer of 2011, using high-speed cameras and help from Japan’s NHK television.

Chasing storms over Denver via plane for two weeks, researchers were able to locate “hot zones” of sprites and capture them on camera from two planes flying 12 miles apart. Combining their videos with ground-based measurements they were able to create 3-dimensional maps of the formation and evolution of individual sprites.

Based on the latest research, it’s suggested that sprites form as a result of a positive electrical charge within a lightning strike that reaches the ground, which leaves the top of the cloud negatively charged — a one-in-ten chance that then makes conditions above the cloud “just right” for a sprite to form higher in the atmosphere.

“Seeing these are spectacular,” said Hans C. Stenbaek-Nielsen, a geophysicist at the University of Alaska in Fairbanks, Alaska, where much sprite research has been conducted. “But we need the movies, because not only are they so fast that you could blink and miss them, but they emit most of their light in red, where the human eye is relatively blind.”

An example of how energy can be exchanged between lower and higher regions of Earth’s atmosphere, it’s been suggested that sprites could also be found on other planets as well, and may provide insight into the exotic chemistries of alien atmospheres.

Read more on NASA Heliophysics here.

Main image: Image Science & Analysis Laboratory, NASA Johnson Space Center. Inset image: the first color image of a sprite  (NASA/UAF.) Video: NHK.

Take a Look Through Curiosity’s ChemCam

This (adjusted) image was taken by ChemCam’s Remote Micro-Imager on Sol 15 (NASA/JPL-Caltech/LANL)

While Curiosity has been getting a good look around its landing spot on Mars, taking in the sights and sending back some impressive views of distant hills and Gale Crater’s enormous central peak, it’s also been peering very closely at some tiny targets just meters away — with its head-mounted, laser-powered and much-touted ChemCam.

The images above and below were acquired by ChemCam’s Remote Micro-Imager on August 21, the 15th “Sol” of the mission. A full-sized image accessed from the public MSL mission site, it’s been brightened quite a bit to show the details of the target rocks.

Mounted to Curiosity’s “head”, just above its Mastcam camera “eyes”, ChemCam combines a powerful laser with a telescope and spectrometer that can analyze the light emitted by zapped materials, thereby determining with unprecedented precision what Mars’ rocks are really made of.

So even though the rover hasn’t actually roved anywhere yet, it’s still performing valuable scientific investigations of Mars — without moving a single wheel. (UPDATE: actually, Curiosity has begun to do some roving — here are some images of its first wheel tracks!)

Read: Curiosity Blasts First Mars Rock with Powerful Laser Zapper

Because ChemCam uses a laser, Curiosity can examine many targets — up to a dozen — within a small time period without having to drive right up to them. Even the dustiest rocks won’t pose a problem for ChemCam – one or two zaps with its laser will be enough to vaporize any loose surface material.

In addition to searching for the building blocks of life hidden inside rocks, ChemCam will also serve a precautionary role for future explorers by helping identify the potential toxicity of Mars’ soil and dust. When astronauts one day land on Mars, they are going to get dusty. It’s important to know if Mars’ dust contains anything dangerous like lead, arsenic (and who knows what else!)

See the latest images from the MSL mission — including more ChemCam pictures — here.

Images: NASA/JPL-Caltech/LANL. Edited by J. Major.

Curiosity’s Sundial Carries a Message of Hope

Image from Curiosity's Mastcam shows the rover's MarsDial (NASA/JPL-Caltech)

 A recent high-definition image from Curiosity’s Mastcam shows the rover’s sundial (NASA/JPL-Caltech)

While Curiosity is definitely loaded up with some of the most high-tech instruments ever made to investigate the surface of Mars, it also carries a very low-tech instrument: a sundial (aka the “MarsDial”) which can be used to determine the position of the Sun in the sky and the season on Mars just like they do here on Earth. Curiosity’s sundial also has additional color calibration tools for the rover’s Mastcam, which captured the image above on August 19 — the 13th “Sol” of the mission.

The connection between a device invented by people thousands of years ago being in use today on a robotic explorer on another planet didn’t go unnoticed by the Mars Exploration Rover team either; in addition to the words “Mars 2012” and “To Mars, To Explore” around its top bezel, Curiosity’s sundial also carries a message of history, hope and inspiration printed along its edges…

Along with line drawings and the word for “Mars” in sixteen languages, Curiosity’s sundial bears the following inscription:

“For millennia, Mars has stimulated our imaginations. First, we saw Mars as a wandering star, a bringer of war from the abode of the gods. In recent centuries, the planet’s changing appearance in telescopes caused us to think that Mars had a climate like the Earth’s. Our first space age views revealed only a cratered, Moon-like world, but later missions showed that Mars once had abundant liquid water. Through it all, we have wondered: Has there been life on Mars? To those taking the next steps to find out, we wish a safe journey and the joy of discovery.”

Curiosity’s successful landing on Mars at 10:31 p.m. on August 5, 2012 (PDT) was only the first (although very exciting!) step of its mission, and the first of hopefully many next steps to explore our neighboring world. Perhaps one day this message will be revisited by human explorers on Mars who may then reflect back on how it all began, and all of the innovations, hope and — well, curiosity — that made each of their rust-dusted steps possible.

Follow the sun, Curiosity!

Find out more about Curiosity’s many science and exploration instruments on JPL’s interactive 3D page here, and keep up with the latest MSL downloaded images here.

What If All of Kepler’s Exoplanets Orbited the Same Star?


That’s exactly the scenario shown by a mesmerizing animation called “Worlds” by Alex Parker — a single system containing 2299 multiple-transit planetary candidates identified to date by NASA’s Kepler space telescope, which is currently scrutinizing a field of view within the constellation Cygnus to detect the oh-so-faint reductions in brightness caused by planets passing in front of their stars.

The search requires patience and precision; it’s not really this crowded out there.

Alex’s animation takes 2299 candidates that have been observed multiple times, each shown to scale in relation to their home star, and puts them in orbit around one star, at their relative distances.

The result, although extravagantly impossible, is no less fascinating to watch. (I suggest going full screen.)

“The Kepler observatory has detected a multitude of planet candidates orbiting distant stars,” Alex writes on his Vimeo page. “The current list contains 2321 planet candidates, though some of these have already been flagged as likely false-positives or contamination from binary stars. This animation does not contain circumbinary planets or planet candidates where only a single transit has been observed, which is why ‘only’ 2299 are shown.

“A fraction of these candidates will likely be ruled out as false positives as time goes on, while the remainder stand to be confirmed as real planets by follow-up analysis,” Alex adds.

The white ellipses seen when the animation pulls back are the relative sizes of the orbits of Mercury, Venus and Earth.

At this time the Kepler mission has identified 2321 planetary candidates, with 74 exoplanets confirmed. See more on the Kepler mission here.

Animation: Alex Parker. Image: Kepler mission planet candidates family portrait (NASA Ames/Jason Rowe/Wendy Stenzel)

NASA’s Mighty Eagle Takes Flight; Finds Its Target

No, it’s not a UFO — it’s NASA’s “Mighty Eagle”, a robotic prototype lander that successfully and autonomously found its target during a 32-second free flight test at Marshall Space Flight Center yesterday, August 16.

You have to admit though, Mighty Eagle does bear a resemblance to classic B-movie sci-fi spacecraft (if, at only 4 feet tall, markedly less threatening to the general populace.)

Fueled by 90% pure hydrogen peroxide, Mighty Eagle is a low-cost “green” spacecraft designed to operate autonomously during future space exploration missions. It uses its onboard camera and computer to determine the safest route to a pre-determined landing spot.

During the August 16 test flight, Mighty Eagle ascended to 30 feet, identified a target painted on the ground 21 feet away, flew to that position and landed safely — all without being controlled directly.

“This is huge. We met our primary objective of this test series — getting the vehicle to seek and find its target autonomously with high precision,” said Mike Hannan, controls engineer at Marshall Space Flight Center. “We’re not directing the vehicle from the control room. Our software is driving the vehicle to think for itself now. From here, we’ll test the robustness of the software to fly higher and descend faster, expecting the lander to continue to seek and find the target.”

In the wake of a dramatically unsuccessful free flight test of the Morpheus craft on August 9, another green lander designed by Johnson Space Center, the recent achievements by the Mighty Eagle team are encouraging.

Here’s a video from a previous test flight on August 8:

Future tests planned through September will have the lander ascend up to 100 feet before landing. Read more here.

The Mighty Eagle prototype lander was developed by the Marshall Center and Johns Hopkins University Applied Physics Laboratory in Laurel, Md., for NASA’s Planetary Sciences Division, Headquarters Science Mission Directorate Image/video: NASA/Marshall Space Flight Center

What Curiosity Looks Like From 200 Kilometers Up

Here’s a look down at Curiosity from the HiRISE camera aboard NASA’s Mars Reconnaissance Orbiter, orbiting approximately  200 km (125 miles) above the surface of Mars. This new image, released today, shows the rover inside Gale Crater surrounded by a skirt of blue-tinted material, including several bright radiating marks –the  result of the descent stage rockets clearing layers of dust from the surface.

In this exaggerated-color view the blue indicates material of a different texture and composition than the surrounding area. HiRISE captures images in visible light wavelengths as well as near-infrared, which we can’t see. To us, the blue material would look grey.

North is up, and Curiosity’s ultimate exploration target, Gale Crater’s central peak, Mount Sharp, is off frame to the lower right.

Click here for a full-size version of the HiRISE image scan, showing the scene above plus some areas further north and south — including portions of the dark dune fields visible in recent images from Curiosity.

It’s nice to know that Curiosity has friends in high places!

Image: NASA/JPL/University of Arizona

 

“The Hobbit” Author Gets a Crater on Mercury

Here’s a little something to please fans of space, art and fantasy alike (and those who enjoy all three): on August 6 the International Astronomical Union approved names for 9 craters on Mercury, one of which is named for J.R.R. Tolkien, revered author of The Hobbit and The Lord of the Rings (among other seminal fantasy works.)

The crater Tolkien is approximately 30 miles (48 km) in diameter. All 9 newly-named craters are located in Mercury’s north polar region and exhibit radar evidence of water ice hidden in their shadowy pocketses.

IAU procedure for craters on Mercury has them named after “deceased artists, musicians, painters, and authors who have made outstanding or fundamental contributions to their field and have been recognized as art historically significant figures for more than 50 years.” Find out who all 9 new craters are named for after the jump:

Egonu, for Uzo Egonu (1931-1996), a Nigerian-born painter who at 13 was sent to England to study art, first at a private school in Norfolk and later at the Camberwell School of Arts and Crafts. Exile, alienation, and the pain of displaced peoples were recurrent themes in his work.

Gaudí­, after Antoni Gaudí­ (1852-1926), a Spanish architect whose work concentrated largely on the Catalan capital of Barcelona. He was very skilled with ceramics, stained glass, wrought-iron forging, and carpentry and integrated these crafts into his architecture.

Kandinsky, for Wassily Kandinsky (1866-1944), a Russian painter and art theorist credited with painting the first purely abstract works.

Petronius, for Titus Petronius (c. AD 27-66), a Roman courtier during the reign of Nero. He is generally believed to be the author of the Satyricon, a satirical novel believed to have been written during the Neronian era.

Prokofiev, for Sergei Prokofiev (1891-1953), a Russian composer, pianist, and conductor who is considered one of the major composers of the 20th century. His best-known works include the ballet Romeo and Juliet — from which “Dance of the Knights” is taken — and Peter and the Wolf.

Tolkien, for John Ronald Reuel (J. R. R.) Tolkien (1892-1973), an English writer, poet, philologist, and university professor, best known as the author of the classic fantasy novels The Hobbit and The Lord of the Rings.

Tryggvadóttir, for Nina Tryggvadóttir (1913-1968), one of Iceland’s most important abstract expressionist artists and one of very few Icelandic female artists of her generation. She primarily worked in painting, but she also created collages, stained glass work, and mosaics.

Qiu Ying, for Shifu Qiu Ying (1494-1552), a Chinese painter who specialized in the gongbi brush technique, a careful realist method in Chinese painting. He is regarded as one of the Four Great Masters of the Ming Dynasty.

Yoshikawa, for Eiji Yoshikawa (1892-1962), a Japanese historical novelist best known for his revisions of older classics including The Tale of the Heike, Tale of Genji, Outlaws of the Marsh, and Romance of the Three Kingdoms.

“These designations expand the opportunities to recognize the contributions to the arts by the most creative individuals from many cultures and eras. The names of those individuals are now linked in perpetuity to the innermost planet.”

– Sean Solomon, MESSENGER Principal Investigator

The craters were imaged by NASA’s MESSENGER spacecraft, currently in extended mission around Mercury. Learn more about the preciousss MESSENGER mission here. (Gollum! Gollum!)

Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington 

New Satellites Will Tighten Knowledge of Earth’s Radiation Belts


Surrounding our planet like vast invisible donuts (the ones with the hole, not the jelly-filled kind) are the Van Allen radiation belts, regions where various charged subatomic particles get trapped by Earth’s magnetic fields, forming rings of plasma. We know that the particles that make up this plasma can have nasty effects on spacecraft electronics as well as human physiology, but there’s a lot that isn’t known about the belts. Two new satellites scheduled to launch on August 23 August 24 will help change that.

“Particles from the radiation belts can penetrate into spacecraft and disrupt electronics, short circuits or upset memory on computers. The particles are also dangerous to astronauts traveling through the region. We need models to help predict hazardous events in the belts and right now we are aren’t very good at that. RBSP will help solve that problem.”
– David Sibeck, RBSP project scientist, Goddard Space Flight Center

NASA’s Radiation Belt Storm Probes (RBSP) mission will put a pair of identical satellites into eccentric orbits that take them from as low as 375 miles (603 km) to as far out as 20,000 miles (32,186 km). During their orbits the satellites will pass through both the stable inner and more variable outer Van Allen belts, one trailing the other. Along the way they’ll investigate the many particles that make up the belts and identify what sort of activity occurs in isolated locations and across larger areas.

“Definitely the biggest challenge that we face is the radiation environment that the probes are going to be flying through,” said Mission Systems Engineer Jim Stratton at APL. “Most spacecraft try to avoid the radiation belts — and we’re going to be flying right through the heart of them.”

Read: The Van Allen Belts and the Great Electron Escape

Each 8-sided RBSP satellite is approximately 6 feet (1.8 meters) across and weighs 1,475 pounds (669 kg).

The goal is to find out where the particles in the belts originate from — do they come from the solar wind? Or Earth’s own ionosphere? — as well as to find out what powers the belts’ variations in size and gives the particles their extreme speed and energy. Increased knowledge about Earth’s radiation belts will also help in the understanding of the plasma environment that pervades the entire Universe.

Read: What Are The Radiation Belts?

Ultimately the information gathered by the RBSP mission will help in the design of future science and communications satellites as well as safer spacecraft for human explorers.

The satellites are slated to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station no earlier than 4:08 a.m. EDT on August 24.

Find out more about the RBSP mission here.

Video/rendering: NASA/GSFC.