A Star’s Dying Scream May Be a Beacon for Physics

When a star suffered an untimely demise at the hands of a hidden black hole, astronomers detected its doleful, ululating wail — in the key of D-sharp, no less — from 3.9 billion light-years away. The resulting ultraluminous X-ray blast revealed the supermassive black hole’s presence at the center of a distant galaxy in March of 2011, and now that information could be used to study the real-life workings of black holes, general relativity, and a concept first proposed by Einstein in 1915.

Within the centers of many spiral galaxies (including our own) lie the undisputed monsters of the Universe: incredibly dense supermassive black holes, containing the equivalent masses of millions of Suns packed into areas smaller than the diameter of Mercury’s orbit. While some supermassive black holes (SMBHs) surround themselves with enormous orbiting disks of superheated material that will eventually spiral inwards to feed their insatiable appetites — all the while emitting ostentatious amounts of high-energy radiation in the process — others lurk in the darkness, perfectly camouflaged against the blackness of space and lacking such brilliant banquet spreads. If any object should find itself too close to one of these so-called “inactive” stellar corpses, it would be ripped to shreds by the intense tidal forces created by the black hole’s gravity, its material becoming an X-ray-bright accretion disk and particle jet for a brief time.

Such an event occurred in March 2011, when scientists using NASA’s Swift telescope detected a sudden flare of X-rays from a source located nearly 4 billion light-years away in the constellation Draco. The flare, called Swift J1644+57, showed the likely location of a supermassive black hole in a distant galaxy, a black hole that had until then remained hidden until a star ventured too close and became an easy meal.

See an animation of the event below:

The resulting particle jet, created by material from the star that got caught up in the black hole’s intense magnetic field lines and was blown out into space in our direction (at 80-90% the speed of light!) is what initially attracted astronomers’ attention. But further research on Swift J1644+57 with other telescopes has revealed new information about the black hole and what happens when a star meets its end.

(Read: The Black Hole that Swallowed a Screaming Star)

In particular, researchers have identified what’s called a quasi-periodic oscillation (QPO) embedded inside the accretion disk of Swift J1644+57. Warbling at 5 mhz, in effect it’s the low-frequency cry of a murdered star. Created by fluctuations in the frequencies of X-ray emissions, such a source near the event horizon of a supermassive black hole can provide clues to what’s happening in that poorly-understood region close to a black hole’s point-of-no-return.

Einstein’s theory of general relativity proposes that space itself around a massive rotating object — like a planet, star, or, in an extreme instance, a supermassive black hole — is dragged along for the ride (the Lense-Thirring effect.) While this is difficult to detect around less massive bodies a rapidly-rotating black hole would create a much more pronounced effect… and with a QPO as a benchmark within the SMBH’s disk the resulting precession of the Lense-Thirring effect could, theoretically, be measured.

If anything, further investigations of Swift J1644+57 could provide insight to the mechanics of general relativity in distant parts of the Universe, as well as billions of years in the past.

See the team’s original paper here, lead authored by R.C. Reis of the University of Michigan.

Thanks to Justin Vasel for his article on Astrobites.

Image: NASA. Video: NASA/GSFC

Mystery Blur in Mars Image Explained

When Curiosity executed a perfect six-wheel landing on Mars on the morning of August 6 to the excitement of millions worldwide — not to mention quite a few engineers and scientists at JPL — it immediately began relaying images back to Earth. Although the initial views were low-resolution and taken through dusty lens covers, features of the local landscape around the rover could be discerned… distant hills, a pebbly surface, the rise of Gale Crater’s central peak — and a curious dark blur on the horizon that wasn’t visible in later images.

What could it have been? Another bit of lens dust? An image artifact? A piece of ancient Martian architecture that NASA demanded be erased from the image? As it turns out, it was most likely something even cooler (or at least real): the result of Curiosity’s descent stage crash-landing into the Martian surface.

Seen in an image from NASA’s Mars Reconnaissance Orbiter’s HiRISE camera, the remnants of Curiosity’s descent to Mars are scattered around the landing site. The heat shield, parachute, back shell — and undeniably the star player of Curiosity’s EDL sequence, the descent stage and sky crane — all landed in relatively close proximity to where the rover touched down. As it turned out, Curiosity’s’s rear Hazcam happened to be aimed right where the sky crane landed after it severed Curiosity’s bridles and rocketed safely away — just as it had been shown in the landing animation.

See an infographic on Curiosity’s EDL timeline here.

Seen in the first images captured by Curiosity’s rear Hazcams just minutes after touchdown — but not in higher-resolution images acquired later — the dark blur is now thought to be a plume of dust and soil kicked up by the sky crane’s impact.

“We know that the cloud was real because we saw it in both the left and right rear Hazcams, so it wasn’t just a smudge on the lens cover or anything like that… and then 45 minutes later it was gone,” said Steven Sell, Deputy Operations for Entry, Descent and Landing at JPL, during an interview with Universe Today on Friday.

“When we were putting together the sequence of images of what would happen after touchdown, we specifically put in the Hazcam shots as soon as we could on the off chance that we would see something,” Sell said. “It was just one of those things where we had some choices we could make, and we said if we put these really close to landing maybe we’ll actually see part of the descent stage.”

Although capturing the sky crane or other part of the descent stage on camera was an intriguing idea, it wasn’t any particular goal of the mission.

“We know that the cloud was real because we saw it in both the left and right rear Hazcams, so it wasn’t just a smudge on the lens cover or anything like that.”

– Steven Sell, Deputy Operations for Entry, Descent and Landing at JPL in Pasadena, CA

“We literally weren’t even thinking about it,” Sell said. “It’s a total bonus that we were able to capture that.”

Unfortunately, the plume only appears in the initial Hazcam shots, which were taken through lens covers coated with dust from landing. It wasn’t until nearly an hour later that the covers were removed and clearer images were captured, and by then the plume was gone. Plus the Hazcams themselves are low-resolution by design — they’re more for navigation than landscape photography.

“Those cameras are not intended for doing that kind of science, or even any science at all,” said Sell. “They’re strictly engineering cameras.”

It’s been said that the best camera is the one you have with you, and in this case Curiosity’s best camera happened to be aimed in the right place at the right time. Plus the sky crane just so happened to land in view of the cameras that got turned on first, which wasn’t a guarantee.

“The descent stage had two possible directions to go: it could have gone forward or backward,” Sell explained. “The way it decides which way to go is whichever direction would take it more north. We knew that the science target is toward the south — the scientists want to study the mountain — and so we didn’t want to throw the descent stage toward the mountain.

Read: Curiosity’s First 360-Degree Color Panorama

“The good news is that the forward Hazcams were at a lower temperature upon landing, we knew they were going to be colder,” Sell said. “The cameras have to reach a certain temperature before they can take a picture, so we knew the rear Hazcams were going to get the picture first, and so the fact that the thing flew to the rear was another coincidence.”

About the same mass as the rover itself, the sky crane weighed about 800 kg (1700 lbs) at the time of impact  — including 100 kg of fuel — and hit going 100 mph. That’s going to kick up a good-sized plume (although exactly how large has yet to be determined.)

“It was one hell of an impact,” Sell said.

You can watch Steve Sell describe this and other data from the first few days of the MSL mission in the press conference held at JPL on Friday, August 10 below, and follow Sell on his Twitter feed here.


Images: NASA/JPL-Caltech. HiRISE image NASA/JPL/University of Arizona.

Curiosity’s First 360-Degree Color Panorama

Doesn’t Gale Crater look lovely this time of year? This is the first 360-degree panorama of color images taken by Curiosity’s color Mast Camera. The individual images used in this first panorama may only have been thumbnail-sized, but the effect is no less stunning.

(Click the image to panoramify.)

 The images were acquired on August 9 EDT. Although taken during late afternoon at Gale crater, the individual images still had to be brightened as Mars only receives half the amount of sunlight that Earth does.

Full-size 1200×1200 pixel images will be available at a later date.

The two grey patches in the foreground at left and right are the result of Curiosty’s sky crane rockets blasting the Martian surface. Scientists will be investigating these areas as they expose material that was previously hidden beneath Mars’ red dust.

The base of Gale Crater’s 3.4-mile (5.5 km) high central peak, named Mt. Sharp in honor of planetary science pioneer Robert P. Sharp, can be seen in the distance at center. (Check out an oblique view of a portion of Mt. Sharp acquired by HiRISE camera here.)

You can play with an interactive 360-degree panorama at the NASATech website, put together by John O’Connor, and if you look closely, visible is the full JPL logo on the middle right wheel — in Morse Code!

As always, you can find more news from the MSL mission here.

Image: NASA/JPL-Caltech

Morpheus Lander Crashes and Burns

NASA’s “lean and green” Morpheus lander crashed and burned during a free flight test at Kennedy Space Center today, August 9, at approximately 12:46 pm EDT.

Watch a video of the failed test after the jump:


Designed in-house at Johnson Space Center, the Morpheus lander is engineered to use a liquid oxygen and methane fuel — relatively cheap materials that can be stored easily and would be available resources on other worlds besides Earth.

Morpheus’ first successful tethered flight had just occurred a few days earlier, on August 3.

It IS still rocket science, after all…

Images: NASA TV

A Panorama of Curiosity’s Surroundings

Taken this morning (mission Sol 2) with the rover’s left Navcam, here’s a high-res panorama of Curiosity’s view at its landing site within Gale crater. The wide-angle view was assembled from two separate raw images, so while the mountainous rim of the crater is lined up horizontally there’s some distortion in alignment of objects closer to the rover due to the angle of the Navcam lens. Still, it’s a very cool view of Curiosity’s surroundings!

See the latest images from the MSL mission here, and check out 3D anaglyph images from Curiosity here.

Image: NASA/JPL-Caltech. Edited by J. Major.

(Image updated to link to full-size version.)

Winds of Change at the Edge of the Solar System

As the venerable Voyager 1 spacecraft hurtles ever outward, breaking through the very borders of our solar system at staggering speeds upwards of 35,000 mph, it’s sending back information about the curious region of space where the Sun’s outward flow of energetic particles meets the more intense cosmic radiation beyond — a boundary called the heliosheath.

Voyager 1 has been traveling through this region for the past seven years, all the while its instruments registering gradually increasing levels of cosmic ray particles. But recently the levels have been jumping up and down, indicating something new is going on… perhaps Voyager 1 is finally busting through the breakers of our Sun’s cosmic bay into the open ocean of interstellar space?

Data sent from Voyager 1 — a trip that currently takes the information nearly 17 hours to make — have shown steadily increasing levels of cosmic radiation as the spacecraft moves farther from the Sun. But on July 28, the levels of high-energy cosmic particles detected by Voyager jumped by 5 percent, with levels of lower-energy radiation from the Sun dropping by nearly half later the same day. Within three days both levels had returned to their previous states.

The last time such a jump in levels occurred was in May — and that spike took a week to happen.

“The increase and the decrease are sharper than we’ve seen before, but that’s also what we said about the May data,” said Edward Stone, the Voyager project scientist based at the California Institute of Technology. “The data are changing in ways that we didn’t expect, but Voyager has always surprised us with new discoveries.”

The graph below shows the jump in cosmic particles detected starting May 2012.

Over 11 billion miles (18 billion km) from home, Voyager 1 has been cruising through space since its launch on September 5, 1977. Its twin, Voyager 2, was launched two weeks earlier and is currently 9.3 billion miles (15 billion km) away. Both spacecraft are healthy and continue to communicate with Earth, and will both eventually break through the borders of our solar system and enter true interstellar space. If they are still operational when that happens — and there’s no reason that they shouldn’t be — we will finally get a sense of what conditions are like “out there”.

Although Voyager 1 is registering intriguing fluctuations in radiation from both inside and outside the Solar System, it’s not quite there yet.

“Our two veteran Voyager spacecraft are hale and healthy as they near the 35th anniversary of their launch,” said Suzanne Dodd, Voyager project manager based at JPL in Pasadena. “We know they will cross into interstellar space. It’s just a question of when.”

Read more about Voyager’s ongoing breakout here.

“We are certainly in a new region at the edge of the solar system where things are changing rapidly. But we are not yet able to say that Voyager 1 has entered interstellar space.”

–  Edward Stone, Voyager project scientist, Caltech

Images: NASA/JPL-Caltech

When Will We Hear From Curiosity?

Just over a day from now the Mars Science Laboratory mission will arrive at Mars, its nine-month journey through space culminating in a harrowing “seven minutes of terror” that will place the Curiosity rover safely onto Mars’ surface within Gale crater. Although the world will be watching, there’s a chance that nobody will know exactly what happened to Curiosity for quite some time — even if everything goes perfectly.

This cool animation from NASA’s Jet Propulsion Laboratory shows why “simple” communication between two neighboring planets is still tricky business. (Hey, it’s not called rocket science for nothing!)

(Also check out “How Hard Is It to Land Curiosity on Mars?)

And if you want to be part of all the action as it unfolds tomorrow night/Monday morning, tune in to a live webcast on Google+ hosted by Universe Today’s Fraser Cain, CosmoQuest’s Dr. Pamela Gay, and Dr. Phil Plait — a.k.a. the “Bad Astronomer.” The webcast will feature interviews with special guests, a live video feed from NASA of the landing, and live coverage from JPL… don’t miss out! Find out more here.

Video: JPL News

Europe’s Plans to Visit the Moon in 2018

The European Space Agency is aiming for the Moon with their Lunar Lander mission, anticipated to arrive on the lunar surface in 2018. Although ESA successfully put a lander on Titan with the Huygens probe in 2005, this will be the first European spacecraft to visit the surface of Earth’s Moon.

Although Lunar Lander will be an unmanned robotic explorer, the mission will be a forerunner to future human exploration of the Moon as well as Mars. Lunar Lander will use advanced technologies for autonomous landing and will be able to determine the best location for touchdown on its own, utilizing lasers to avoid obstacles on the Moon’s surface.

With no GPS on the Moon, Lunar Lander will navigate by digitally imaging the surface on the fly. Landing will be accomplished via thrusters, which were successfully tested earlier this year at a test chamber in Germany.

Lunar Lander’s destination will be the Moon’s south pole, where no exploration missions have ever landed. Once on the lunar surface, the Lander will investigate Moon dust using a robotic arm and a suite of onboard diagnostic instruments, sending data and images back to scientists on Earth for further study.

Watch a video of the Lunar Lander mission below, from launch to landing.

Read more about Lunar Lander on the ESA site here.

Images and video: ESA

Mercury’s Many Colors

Although composited from expanded wavelengths of light, this wide-angle image from NASA’s MESSENGER spacecraft shows the amazing variation of colors and tones to be found on Mercury’s Sun-scoured surface.


This scene lies between Mercury’s Moody and Amaral craters, spanning an area of about 1200 km (745 miles). The patch of dark blue Low Reflectance Material (LRM) in the upper left of the image and the bright rayed crater on the right make this a diverse view of Mercury’s surface. Note the curious small, dark crater just below the bright rayed crater on the right.

Dark LRM material is thought to indicate the presence of a mineral called ilmenite, which is composed of iron and titanium and has been revealed through volcanic, cratering and erosion processes.

More Mercury images: Postcards from the (Inner) Edge

Did you know that until MESSENGER arrived in 2008 half of Mercury had never been seen? And that although Mercury is the closest planet to the Sun there may still be water ice on its surface? Learn more about these and other fascinating facts about Mercury here.

Image: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

 

Canada Unveils its Contributions to the JWST

Today Canada’s Minister of Industry Christian Paradis unveiled the technologies that comprise Canada’s contribution to the James Webb Space Telescope, a next-generation infrared observatory that’s seen as the successor to Hubble.


CSA will provide JWST with a two-in-one instrument: a Fine Guidance Sensor (FGS) Near-Infrared Imager and Slitless Spectrograph (NIRISS). Both were designed, built and tested by COM DEV International in Ottawa and Cambridge, Ontario, with technical contributions from the Université de Montréal and the National Research Council Canada.

Read: Watch the James Webb Being Built via “Webb-Cam”

“Canada has a proud legacy in space and we are once again pushing the frontier of what is possible. These two outstanding technologies are perfect examples of how Canada has secured its world-class reputation. Our Government is committed to ensuring the long-term competitiveness and prosperity of such a vital economic sector.”
– The Honourable Christian Paradis

The FGS consists of two identical cameras that are critical to Webb’s ability to “see.” Their images will allow the telescope to determine its position, locate its celestial targets, and remain pointed to collect high-quality data. The FGS will guide the telescope with incredible precision, with an accuracy of one millionth of a degree.

The NIRISS will have unique capabilities for finding the earliest and most distant objects in the Universe’s history. It will also peer through the glare of nearby young stars to unveil new Jupiter-like exoplanets. It will have the capability of detecting the thin atmosphere of small, habitable, earth-like planets and determine its chemical composition to seek water vapour, carbon dioxide and other potential biomarkers such as methane and oxygen.

The FGS/NIRISS instruments can be seen in this development video from CSA:

“Imagine the challenge at hand here: to design and deliver technology capable of unprecedented levels of precision to conduct breakthrough science on board the largest, most complex and most powerful telescope ever built,” said Steve MacLean, President of the CSA. “The Webb telescope will be located 1.5 million kilometers from Earth— too far to be serviced by astronauts like Hubble was. At that distance, the technology simply has to work. This is the outstanding level of excellence Canadians are capable of achieving. It’s something for all of us to be proud of.”

The instruments will be delivered to NASA on July 30.

Read more on the CSA press release here, and learn more about the James Webb here.

Images/video: CSA and NASA