A Shimmering, Simmering Sunspot

This quick animation made by astrophotographer Alan Friedman shows a 30-minute view of sunspot 1520, a large region of magnetic activity on the Sun that’s currently aimed directly at Earth. Although 1520 has been quiet for the past couple of days, it’s loaded with a delta-class magnetic field — just right for launching powerful X-class flares our way. There’s no guarantee that it will, but then there’s no guarantee that it won’t either.

(Click the image to play the animation.)

Alan captured the images from his location in upstate New York using a 10″ Astro-Physics scope and PGR Grasshopper CCD. A master at solar photography — several of his hydrogen alpha images have been featured here on Universe Today as well as other popular astronomy news sites — Alan’s work never fails to impress.

A static, color version of sunspot 1520 can be seen here… what Alan calls “a magnetic beauty.”

Although the sunspots don’t change much over the course of the animation, the surrounding texture on the Sun’s photosphere can be seen to shift and move rapidly. These bright kernels are called granules, and are created by convective currents on the Sun. An individual granule typically lasts anywhere from 8 to 20 minutes and can be over 600 miles (1000 km) across.

The overall wavering effect is caused by distortion from Earth’s atmosphere.

While 1520 is facing Earth we’re subject to any flares or CMEs that may erupt from it, potentially sending a solar storm our way. In another week or so it will have rotated safely around the Sun’s limb and eventually dissipate altogether… but then, it is solar maximum and so there’s likely to be more active regions just like it (or even larger!) coming around the bend.

When they do come, there’s a good chance that Alan will grab some pics of those too.

Check out more of Alan’s photography on his site AvertedImagination.com.

Image © Alan Friedman. All rights reserved.

 

Fifth Moon Found Around Pluto

This just in! Astronomers working with the Hubble Space Telescope have spotted a new moon around distant Pluto, bringing the known count up to 5. The image above was released by NASA just minutes ago, showing the Pluto system with its newest member, P5.

This news comes just a couple of weeks shy of the one-year anniversary of the announcement of Pluto’s 4th known moon, still currently named “P4”.

The news was shared this morning by an undoubtedly excited Alan Stern of the Southwest Research Institute (SwRI) on Twitter.

Astronomers estimate P5 to be between 6 and 15 miles (9.6 to 24 km) in diameter. It orbits Pluto in the same plane as the other moons — Charon, Nix, Hydra and P4.

“The moons form a series of neatly nested orbits, a bit like Russian dolls,” said team lead Mark Showalter of the SETI Institute.

A mini-abstract of an upcoming paper lists image sets acquired on 5 separate occasions in June and July. According to the abstract, P5 is 4% as bright as Nix and 50% as bright as P4.

The satellite’s mean magnitude is V = 27.0 +/- 0.3, making it 4 percent as bright as Pluto II (Nix) and half as bright as S/2011 (134340) 1. The diameter depends on the assumed geometric albedo: 10 km if p_v = 0.35, or 25 km if p_v =0.04. The motion is consistent with a body traveling on a near-circular orbit coplanar with the other satellites. The inferred mean motion is 17.8 +/- 0.1 degrees per day (P = 20.2 +/- 0.1 days), and the projected radial distance from Pluto is 42000 +/- 2000 km, placing P5 interior to Pluto II (Nix) and close to the 1:3 mean motion resonance with Pluto I (Charon).

The new detection will help scientists navigate NASA’s New Horizons spacecraft through the Pluto system in 2015, when it makes an historic and long-awaited high-speed flyby of the distant world.

See the news release from NASA here.

(H/T to Ray Sanders at DearAstronomer.com)

Top image: NASA, ESA and M. Showalter (SETI Institute)

The Moon Is Toxic

As our closest neighbor in space, a time-capsule of planetary evolution and the only world outside of Earth that humans have stepped foot on, the Moon is an obvious and ever-present location for future exploration by humans. The research that can be done on the Moon — as well as from it — will be invaluable to science. But the only times humans have visited the Moon were during quick, dusty  jaunts on its surface, lasting only 2-3 days each before departing. Long-term human exposure to the lunar environment has never been studied in depth, and it’s quite possible that — in addition to the many inherent dangers of living and working in space — the Moon itself may be toxic to humans.

An international team of researchers has attempted to quantify the health dangers of the Moon — or at least its dust-filled regolith. In a paper titled “Toxicity of Lunar Dust” (D. Linnarsson et al.) the health hazards of the Moon’s fine, powdery dust — which plagued Apollo astronauts both in and out of their suits — are investigated in detail (or as best as they can be without actually being on the Moon with the ability to collect pristine samples.)

Within their research the team, which included physiologists, pharmacologists, radiologists and toxicologists from 5 countries, investigated some of the following potential health hazards of lunar dust:

Inhalation. By far the most harmful effects of lunar dust would come from inhalation of the particulates. Even though lunar explorers would be wearing protective gear, suit-bound dust can easily make its way back into living and working areas — as Apollo astronauts quickly discovered. Once inside the lungs the super-fine, sharp-edged lunar dust could cause a slew of health issues, affecting the respiratory and cardiovascular system and causing anything from airway inflammation to increased risks of various cancers. Like pollutants encountered on Earth, such as asbestos and volcanic ash, lunar dust particles are small enough to penetrate deep within lung tissues, and may be made even more dangerous by their long-term exposure to proton and UV radiation. In addition, the research suggests a microgravity environment may only serve to ease the transportation of dust particles throughout the lungs.

Skin Damage. Lunar regolith has been found to be very sharp-edged, mainly because it hasn’t undergone the same kind of erosive processes that soil on Earth has. Lunar soil particles are sometimes even coated in a glassy shell, the result of rock vaporization by meteorite impacts. Even the finer particles of dust — which constitute about 20% of returned lunar soil samples — are rather sharp, and as such pose a risk of skin irritation in instances of exposure. Of particular note by the research team is abrasive damage to the outer layer of skin at sites of “anatomical prominence”, i.e., fingers, knuckles, elbows, knees, etc.

“The dust was so abrasive that it actually wore through three layers of Kevlar-like material on Jack [Schmitt’s] boot.”

– Professor Larry Taylor, Director of the Planetary Geosciences Institute, University of Tennessee (2008)

Eye Damage. Needless to say, if particles can pose abrasive damage to human skin, similar danger to the eyes is also a concern. Whether lunar dust makes its way into the eye via airborne movement (again, much more of a concern in microgravity) or through direct contact from fingers or another dust-coated object, the result is the same: danger of abrasion. Having a scratched cornea is no fun, but if you’re busy working on the Moon at the time it could turn into a real emergency.

While the research behind the paper used data about airborne pollutants known to exist on Earth and simulated lunar dust particles, actual lunar dust is harder to test. The samples returned by the Apollo missions have not been kept in a true lunar-like environment — being removed from exposure to radiation and not stored in a vacuum, for instance — and as such may not accurately exhibit the properties of actual dust as it would be encountered on the Moon. The researchers conclude that only studies conducted on-site will fill the gaps in our knowledge of lunar dust toxicity. Still, the research is a step in the right direction as it looks to ensure a safe environment for future explorers on the Moon, our familiar — yet still alien — satellite world.

Read the team’s paper in full here.

“The Apollo astronauts reported undesirable effects affecting the skin, eyes and airways that could be related to exposure to the dust that had adhered to their space suits during their extravehicular activities and was subsequently brought into their spacecraft.”

– Dag Linnarsson, lead author, Toxicity of Lunar Dust

Top image: Apollo 16 astronaut Charlie Duke with a dust-coated LRV. Side image: a dusty Gene Cernan in the LM at the end of an Apollo 17 EVA. (NASA/JSC)

Surprising Swirls Above Titan’s South Pole

View of Titan's South Pole, showing a vortex. Credit: NASA

Thanks to Cassini’s new vantage point granted by its inclined orbit researchers have gotten a new look at the south pole of Titan, Saturn’s largest moon. What they’ve recently discovered is a swirling vortex of gas forming over the moon’s pole, likely the result of the approach of winter on Titan’s southern hemisphere.

What we’re seeing here is thought to be an open cell convection process in Titan’s upper atmosphere. In open cells, air sinks in the center of the cell and rises at the edge, forming clouds at cell edges. However, because the scientists can’t see the layer underneath the layer visible in these new images, they don’t know what other mechanisms may be at work.

A stable atmospheric event that’s found here on Earth as well, open cell convection can be compared to the action of boiling water.

Titan has already been seen to have a thicker area of high-altitude haze over its north pole, and as autumn progresses toward winter in Titan’s south during the course of Saturn’s 29.7-year-long orbit this may very well be the beginnings of a southern polar hood.

An animation of this southern vortex can be found here.

“We suspect that this maelstrom, clearly forming now over the south pole and spinning more than forty times faster than the moon’s solid body, may be a harbinger of what will ultimately become a south polar hood as autumn there turns to winter.  Of course, only time will tell.”

– Carolyn Porco, Cassini Imaging Team Leader

Discoveries like this are prime examples of why it was so important for Cassini to have an extended, long-duration mission around Saturn, so that seasonal changes in the planet and moons could be closely observed. New seasons bring new surprises!

The southern vortex structure was also captured in raw images acquired by Cassini on June 28. A color-composite made from three of those raw images is below (the vortex can be seen at center just right of the terminator):

You can find more images from Cassini on the CICLOPS Imaging Team site.

Image credits: NASA/JPL/Space Science Institute. Bottom RGB composite by Jason Major.

The Return of the Rings!

Now that Cassini has gone off on a new trajectory taking it above and below the equatorial plane of Saturn, we’re back to getting some fantastic views of the rings — the likes of which haven’t been seen in over two and a half years!

The image above shows portions of the thin, ropy F ring and the outer A ring, which is split by the 202-mile (325-km) -wide Encke gap. The shepherd moon Pan can be seen cruising along in the gap along with several thin ringlets. Near the A ring’s outer edge is a narrower space called the Keeler gap — this is the home of the smaller shepherd moon Daphnis, which isn’t visible here (but is one of my personal favorites!)

The scalloped pattern on the inner edge of the Encke gap downstream from Pan and a spiral pattern moving inwards from that edge are created by the 12.5-mile-wide (20-km-wide) moon’s gravitational influence.

Other features that have returned for an encore performance are the so-called propellers, spiral sprays of icy ring material created by tiny micro-moons within the rings. Individually too small to discern (less than half a mile in diameter) these propeller moons kick up large clumps of reflective ring particles with their gravity as they travel through the rings, revealing their positions.

The three images above show a propeller within the A ring. Nicknamed “Sikorsky” after Russian-American aviator Igor Sikorsky, the entire structure is about 30 miles (50 km) across and is one of the more well-studied propellers.

Scientists are eager to understand the interactions of propellers in Saturn’s rings as they may hold a key to the evolution of similar systems, such as solar systems forming from disks of matter.

See a video of a propeller orbiting within the rings here, and here’s an image of one that’s large enough to cast a shadow!

“One of the main contributing factors to the enormous success we on the Cassini mission have enjoyed in the exploration of Saturn is the capability to view the planet and the bodies around it from a variety of directions,” Cassini Imaging Team Leader Carolyn Porco wrote earlier today. “Setting the spacecraft high into orbit above Saturn’s equator provides us direct views of the equatorial and middle latitudes on the planet and its moons, while guiding it to high inclination above the equator plane affords the opportunity to view the polar regions of these bodies and be treated to vertigo-inducing shots of the planet’s glorious rings.”

As always, keep up with the latest Cassini news on the mission site here, and read more about these images on the CICLOPS imaging team page here.

Image credits: NASA / JPL / Space Science Institute.

 

NASA To Launch The Finest Mirrors Ever Made

This Wednesday NASA will launch its High Resolution Coronal Imager (HI-C) mission from White Sands Missile Range in New Mexico, sending a sounding rocket above the atmosphere with some of the best mirrors ever made to capture incredibly-detailed ultraviolet images of our Sun.

HI-C will use a state-of-the-art imaging system to focus on a region near the center of the Sun about 135,000 miles (271,000 km) across. During its brief flight — only ten minutes long — HI-C will return some of the most detailed images of the Sun’s corona ever acquired, with a resolution five times that of previous telescopes… including NASA’s Solar Dynamics Observatory.

While SDO collects images in ten wavelengths, however, HI-C will focus on just one: 193 Angstroms, a wavelength of ultraviolet radiation that best reveals the structures of the Sun’s corona present in temperatures of 1.5 million kelvin. And although HI-C’s mirrors aren’t any larger than SDO’s — about 9.5 inches in diameter — they are “some of the finest ever made.” In addition, an interior “maze” between mirrors effectively increases HI-C’s focal length.

Researchers expect HI-C’s super-smooth mirrors to resolve coronal structures as small as 100 miles (160 km) across (0.1 arcsec/pixel).

“Other instruments in space can’t resolve things that small, but they do suggest – after detailed computer analysis of the amount of light in any given pixel – that structures in the sun’s atmosphere are about 100 miles across,” said Jonathan Cirtain, project scientist for HI-C at NASA’s Marshall Space Flight Center. “And we also have theories about the shapes of structures in the atmosphere, or corona, that expect that size. HI-C will be the first chance we have to see them.”

One of the main goals of HI-C will be to place significant new constraints on theories of coronal heating and structuring, by observing the small-scale processes that exist everywhere in hot magnetized coronal plasma and establishing whether or not there are additional structures below what can currently be seen.

“This instrument could push the limits on theories of coronal heating, answering questions such as why the temperature of the sun’s corona is millions of degrees higher than that of the surface,” said Marshall’s Dr. Jonathan Cirtain, heliophysicist and principle investigator on the mission.

Read more on the NASA news release here.

Top image: A Black Brant sounding rocket containing NASA’s HI-C mission will launch on July 11, 2012 to observe the sun’s corona. (NASA) Bottom image: TRACE image of the Sun at a resolution of 0.5 arcsec/pixel. HI-C will have a resolution 5 times finer.

Kickstart Your DNA (And a Rover) To The Moon!


Omega Envoy, the non-profit research lab Earthrise Space, Inc.’s team competing for the Google Lunar X PRIZE, has launched a Kickstarter project to help fund a 4-axis CNC milling machine needed to continue development on their proposed lunar rover. CNC machines don’t come cheap, but in typical Kickstarter fashion Earthrise Space is offering incremental rewards to anyone who donates to their project — from mentions on their site to t-shirts, Moon globes and facility tours (and even 5-gallon tubs of duck sauce) and, if you’re lucky enough to have deep pockets and a desire to help a student training ground get their designs off the ground, you can even have your DNA sent to the Moon!

From the Google Lunar X PRIZE article:

For the first time in human history, individuals will have the opportunity to send a sample of their DNA to the lunar surface. For a pledged donation of $10,000 or more, ESI will collect your DNA sample, package it into a storage container mounted on the company’s Lunar Descent Vehicle and fly it to the surface of the moon where it will be preserved for all time.

“We are excited to be exploring new approaches for fundraising and for public engagement, including through the crowdsourcing Kickstarter platform,” said ESI’s Chief Operating Officer (COO) Joseph Palaia. “We are hopeful that this Kickstarter project helps us to make significant progress towards our near-term fundraising goals, while also providing some incredible rewards for our supporters.”

With the Google Lunar X PRIZE, a total of $30 million in prize money is available to the first privately funded team to safely land a robot on the surface of the Moon, have that robot travel 500 meters over the surface, and send HD video, images and data back to Earth.

Of the 26 teams in the competition, ESI is one of only six teams which have been selected for a NASA Innovative Lunar Demonstrations Data contract worth up to $10M. But the contract is awarded incrementally and a multi-axis CNC machine is needed to take their designs to the next level (and meet upcoming contract goals.) Donate to their Kickstarter project here.

At whatever level you contribute, know that you are helping students build real spacecraft, and you’re going to be getting some pretty amazing rewards as well! The students appreciate your support!

— Omega Envoy team, ESI

Find out more about ESI’s project on the Earthrise Space Inc. website, and check out the other Google Lunar X PRIZE competitors here.

Source: Google Lunar X PRIZE blog

The Last Outbursts of a Dying Star

As stars approach the inevitable ends of their lives they run out of stellar fuel and begin to lose a gravitational grip on their outermost layers, which can get periodically blown far out into space in enormous gouts of gas — sometimes irregularly-shaped, sometimes in a neat sphere. The latter is the case with the star above, a red giant called U Cam in the constellation Camelopardalis imaged by the Hubble Space Telescope.

From the Hubble image description:

U Cam is an example of a carbon star. This is a rare type of star whose atmosphere contains more carbon than oxygen. Due to its low surface gravity, typically as much as half of the total mass of a carbon star may be lost by way of powerful stellar winds. Located in the constellation of Camelopardalis (The Giraffe), near the North Celestial Pole, U Cam itself is actually much smaller than it appears in Hubble’s picture. In fact, the star would easily fit within a single pixel at the center of the image. Its brightness, however, is enough to saturate the camera’s receptors, making the star look much bigger than it really is.

The shell of gas, which is both much larger and much fainter than its parent star, is visible in intricate detail in Hubble’s portrait. While phenomena that occur at the ends of stars’ lives are often quite irregular and unstable, the shell of gas expelled from U Cam is almost perfectly spherical.

Image credit: ESA/NASA

The Case of the Disappearing Dust

Astronomy has always taught us that planets form from vast clouds of dust and gas orbiting young stars. It’s a gradual process of accretion that takes hundreds of thousands, perhaps even millions, of years… or does it?

During a 1983 sky survey with the Infrared Astronomical Satellite (IRAS) astronomers identified a young Sun-like star with a large cloud of dust surrounding it. The star, named TYC 8241 2652 1, is 450 light years away and what they had found around it was thought to be the beginnings of a solar system – the protoplanetary disc from which planets form.

Fast forward to 2008. Astronomers observed at the same star with a different infrared telescope, the Gemini South Observatory in Chile. What was observed looked a lot like what was previously seen in ’83.

Then, in 2009, they looked again. Curiously, the brightness of the dust cloud was only a third of what it was the year before. And in WISE observations made the very next year, it had disappeared entirely.

“It’s like the classic magician’s trick: now you see it, now you don’t. Only in this case we’re talking about enough dust to fill an inner solar system, and it really is gone.”

– Carl Melis, lead author and postdoctoral fellow at UC San Diego

Abracadabra?

“It’s as if you took a conventional picture of the planet Saturn today and then came back two years later and found that its rings had disappeared,” said study co-author and circumstellar disk expert Ben Zuckerman of UCLA.

It’s always been thought that planets take some time to form, in the order of hundreds of thousands of years. Although that may seem like forever to humans, it’s quick in cosmic time scales. But if what they’ve seen here with TYC 8241 is in fact planetary formation, well… it may happen a lot faster than anyone thought.

On the other hand, the star could have somehow blown all the dust out of the system. More research will be needed to see if that was the case.

The really interesting thing here is that astronomers have traditionally looked for these kinds of dust clouds around stars to spot planetary formation in action. But if planets form quicker than we thought, and the dust clouds are only fleeting features, then there may be a lot more solar systems out there that we can’t directly observe.

“People often calculate the percentage of stars that have a large amount of dust to get a reasonable estimate of the percentage of stars with planetary systems, but if the dust avalanche model is correct, we cannot do that anymore,” said study co-author Inseok Song, assistant professor of physics and astronomy at the University of Georgia. “Many stars without any detectable dust may have mature planetary systems that are simply undetectable.”

Read more in the news release from the University of Georgia.

Top image: Gemini Observatory/AURA artwork by Lynette Cook.

WISE Spies a Hunter’s Flame

A vast star-forming cloud of gas and dust in the constellation Orion shines brightly in this image from NASA’s WISE space telescope, where infrared light is represented in visible wavelengths. It’s part of a recent data release from WISE, a trove of infrared images acquired during the telescope’s second sky scan from August to September of 2010 — just as it began to run out of its essential cryogenic coolant.

Shining brightly in infrared radiation, the Flame nebula (NGC 2024) is at the heart of the cloud.  Just below it is the reflection nebula NGC 2023, and the small, bright loop protruding from the edge of the gas and dust cloud just to its lower right is the Horsehead nebula  — whose famous equine profile appears quite different in infrared light than it does in visible.

The two bright blue stars at the upper right portion of the image are both stars in Orion’s belt. Alnitak, the brighter one closer to the Flame nebula, is a multiple star system located 736 light-years away whose stellar wind is responsible for ionizing the Flame nebula and causing it to shine in infrared. Alnilam, the dimmer star at the uppermost corner, is a blue supergiant 24 times the radius of our Sun and 275,000 times as bright, but 1,980 light-years distant.

The red arc at lower right is the bow shock of Sigma Orionis, a multiple-star system that’s hurtling through space at a speed of 5,260,000 mph (2,400 kilometers per second). As its stellar wind impacts the interstellar medium and piles up before it, an arc of infrared-bright radiation is emitted.

Sigma Orionis is also the star responsible for the glow of the Horsehead nebula.

This rich astronomical scene is an expanded view from WISE’s previously-released image of the region (at right) which used data from only three of its four infrared detectors. In contrast, all four detectors were used in the image above, making more of the nebulae’s intricate structures visible as well as providing comparative information for researchers.

“If you’re an astronomer, then you’ll probably be in hog heaven when it comes to infrared data,” said Edward (Ned) Wright of UCLA, the principal investigator of the WISE mission. “Data from the second sky scan are useful for studying stars that vary or move over time, and for improving and checking data from the first scan.”

Read more on the NASA news release here.

Top and right images: NASA/JPL-Caltech/WISE team. Horsehead nebula visible light image was taken with the 0.9-meter telescope at Kitt Peak National Observatory. Photo credit & copyright: Nigel Sharp (NOAO), KPNO, AURA, NSF. Comparison by J. Major/Universe Today.